GALGO: Scalable Graph Analytics with a Parallel DBMS

Wellington Cabrera®
University of Houston
Houston, USA

Ladjel Bellatreche
LIAS/ISAE-ENSMA
Poitiers, France

ABSTRACT

We present GALGO, a system for large scale graph analytics. GALGO
provides complex graph analytics in a parallel cluster, exploiting a
parallel database system as a computation engine. In this demon-
stration we show that fundamental graph algorithms including
all pairs shortest path, single source shortest path, PageRank, tri-
angle counting, connected components and reachability can be
solved completely with queries, dynamically generated by our sys-
tem. Our system presents performance that is very competitive
to state-of-the-art graph systems. Furthermore, our out-of-core
graph computation can process graphs larger than available main
memory, without compromising performance.

KEYWORDS
Graph; Query Processing; DBMS; Parallel; SQL

1 INTRODUCTION

In an increasingly interconnected world, graph data sets become
larger and more complex to analyze, especially in domains such as
telecommunication, transportation and social networks. Fueled by
the practical importance of graphs, several systems for large graph
analysis have emerged. The common wisdom is that demanding
graph problems should be solved either in large Hadoop clusters or
with optimized C++ programs. Pregel and its open source successor
Giraph are well studied systems for large graph analytics, running
on top of Google DFS and Hadoop DFS. More recently, Apache
incorporated GraphX, a graph library for Spark users. Pregel, Gi-
raph and GraphX are based on the vertex-centric approach. In this
approach the information of a vertex needs to be propagated to its
neighbors in iterations called Supersteps. Recently this approach
has been questioned, mainly because of an excessive message pass-
ing across the cluster [9]. In a recent work, Jindal et al. [6] proposed
another graph analytics system using columnar DBMS technol-
ogy, keeping the vertex-centric approach. Another recent work is
EmptyHeaded [1], a main memory system for graph processing in
multiple threads, running in one large-memory node. Other systems
solve graph algorithms with matrix multiplications in distributed
memory clusters, such as CombBLAS [3]. Highly optimized lin-
ear algebra packages (LAPACK, ScaLAPACK) work only when the
input matrices fit in RAM.

*Also with Teradata.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA
2022. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Xiantian Zhou
University of Houston
Houston, USA

Carlos Ordonez
University of Houston
Houston, USA

The popular wisdom considers DBMS inadequate for graph pro-
cessing. In fact, due to inflexibility of the relational model, graph
algorithms are hard to program and most of the solutions are ineffi-
cient. On the other hand, recently columnar DBMSs have shown to
provide orders of magnitude time improvement in analytic query
processing, preserving the scalability of row-based parallel DBMSs.
With that background, we present GALGO (Graph Analytics and
aLGOrithms), a novel system for graphs stored in a DBMS. Our
system extends previous research on recursive and iterative queries
applied to graphs algorithms, as described in [4, 7, 8, 10]. We support
a representative set of DBMS technologies: the classical row-store,
the state-of-the art column-store, and the less explored array-store.
Graph algorithms are solved completely with database queries, as
we will explain in detail. The user is able to run demanding graph al-
gorithms in parallel, remaining isolated from the details of complex
C++ programming.

Our contributions can be summarized as follows: (1) We present a
powerful graph analytics system that uses parallel DBMSs as a com-
putation engine, implementing complex graphs algorithms with
queries (combining joins, aggregations and filters). (2) We improve
query performance for graph analytics, by ensuring join with local
matching, linear time join, and benefitting from data compression.
(3) Our system opens new opportunities for interactive and flexible
graph analytics for large problems, which are commonly solved
with batch-oriented, more rigid tools. (4) We show that columnar
storage is the DBMS technology that yields the best performance
to compute several graph algorithms, being competitive with state-
of-the-art graph systems such as Spark-GraphX.

2 SYSTEM DESCRIPTION

2.1 System Overview

Our system exploits parallel clusters [7] as a computation engine
to run a set of graph analytics and algorithms. Graphs are stored in
a distributed manner in a cluster with shared nothing architecture.
From a light-weight computer, the user sent requests using our APL
These requests are translated to appropriate SQL (AQL in case of
array DBMS).

2.2 Definitions

Let G = (V, E) be a directed graph, where V is a set of vertices and
E is a set of edges, considered as an ordered pairs of vertices. Let
n = |V| vertices and m = |E| edges. An edge (i, j) in E links two
vertices in V and has a direction. Undirected graphs, a particular
case, are easily represented by including two edges, one for each

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

direction. Notice our definition allows the existence of cycles and
cliques in graphs, which make graph algorithms slower.

In general, real-life graphs are sparse. Even though popular so-
cial networks have hundredsi of millions users, a typical user is
connected to just a few hundreds contacts. Other common examples
are links in web pages and flights connecting airports. Therefore, it
is reasonable to represent the adjacency matrix E in a sparse storage
format, which saves computing, memory and storage resources.
Several methods to represent sparse matrices are well known, and
the interested reader may check [2]. In our work, sparse matrices
(especially E) are represented as a set of tuples (i, j,v) such that
v # 0, where i and j represent source/destination vertices, and v rep-
resents the value (weight) of the edge. Thus, the space complexity
of G is determined by m = |E|.

2.3 Linear Algebra with Queries

Many graph algorithms can be solved via matrix-matrix and vector-
matrix multiplication. Most of the real life graphs are sparse, and
can be stored either: (1) as a table of edges in relational DBMS;
(2) as an adjacency matrix in Array DBMS. As explained in our
previous work, we use regular join-aggregation queries to perform
vector-matrix and matrix-matrix multiplication under several semi-
rings [4, 5, 8]. Taking advantage of the sparsity of the graph data
and a careful data partitioning, join-aggregation queries execute in
parallel with promising performance.

2.4 Graph Storage

The input of the system consists of a table containing the edges and
their attributes, and an optional table containing vertex attributes.
In social network analysis, vertex attributes may be hometown,
company, and other personal information. After uploading the
dataset , we project the edge table to get E. Table E(i, j,v) stores
the adjacency matrix of G in sparse representation. The numerical
attribute v is some value, representing distance in a road network,
cost in distribution network, or any required weight. E has primary
key (i, j). This storage layout is equivalent to store a combination
of the adjacency and weights matrices of the graph in sparse matrix
representation. Since we use sparse matrix representation (entries
with zero values are not stored), the space required for table E is
O(m), much smaller than O(n?).

2.5 System Architecture

Graph algorithms are called from a light-weight client by using
our API and computed in the DBMS cluster. Moreover, the data
analyst can retrieve results and summaries to a local object; there-
fore, the analyst can use iteratively Python, R, or Java language
to present visualizations and further analysis. We developed an R
library, Translator of R Commands, which provides the interface
between R and the database cluster. Running in the R runtime, the
library has the following duties: a) To allow the user to invoke
graph analytics and algorithm, adding to the R environment a set
of functions. b) Generate requests to the Sparse Matrix Operation
Solver (SMOS), after the user calls the computation of an algorithm.
c) Retrieve partial, total or summarized results from the database
to the local client. (for instance diag(E) will retrieve the diagonal
of the adjacency matrix, or rowSums (E) a summation of its rows).

Wellington Cabrera, Xiantian Zhou, Ladjel Bellatreche, & Carlos Ordonez

e rrm e rrrr ey

: o

: =H

: CE

: R =1

H ©

Translator of a0

R comands L) E

ALGORHHMS%............. R -

BASIC QUERIES
Sparse DBMS
Matrix | QI master -COLUMNAR

Oper. node -ROW

Solver -ARRAY

ELLSNITO VOO / @NOTD

NN EEEEEEE SR AN S NN NN EEEEEEESEEEEEEEEEEEEE
PN EEEEEEE N NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEnE

Figure 1: System Architecture. The user sends requests to
the DBMS using a data science language (Python or R). Our
library requests computations to our Sparse Matrix Opera-
tions Solver, which generates SQL queries. Such queries are
evaluated by the DBMS.

Note that massive data transfer from the DBMS to the client is
avoided; the only data sent back to the client node are the results.

The demanding I/O and numerical computations required for
graph algorithms is performed by a parallel database cluster. The
cluster may run on a cloud service or on-site, as presented in Fig
1. The DBMS running in the cluster can be any of these types:
a) column-store; b) row-store; and c) array-store. Note that the
DBMS is not a mere data repository. Actually, GALGO solves graph
algorithms in the DBMS with dynamically generated SQL queries.

We have named Sparse Matrix Operation Solver (SMOS) the
subsystem that controls the computation in the DBMS cluster,
where the principal operations are matrix-vector multiplication
and matrix-matrix multiplication. Of course, a DBMS does not
support such matrix operations; these operations are solved via
database queries, as we elaborate in section 2.6. For that reason, a
main duty of SMOS is the generation of dynamic queries to com-
pute matrix-vector products and matrix powers. For columnar and
row DBMS, SMOS generates standard SQL. For SciDB, the array-
store DBMS, SMOS generates queries in Array Query Language, a
specialized language for array queries. We emphasize the user is
isolated from such code generation, she just calls functions to solve
graph algorithms.

GALGO: Scalable Graph Analytics with a Parallel DBMS

2.6 Graph Algorithms Computed with Queries

The computation of graph algorithms in a DBMS is conceptu-
alized on the foundation of linear algebra. Matrix powers and
matrix-vector multiplication are operations that solve many im-
portant graph algorithms. Our previous research [8] showed that
matrix powers can be computed in a DBMS with linear recursive
queries. We implemented linear recursive queries by iteration of
SPJA queries. Let Ry a table with the partial output at a recursion
depth d, initialized as R; = E. In each recursive step, R; is computed
as:
Ry = 7 jsum(E.vR) (E ™E.i=R(4_y).j Rd-1) (1
On the other hand, algorithms solved by iterative matrix vector
multiplication can be expressed as an iteration of SPJA queries [4].
Considering a vector S and a matrix E stored in relational tables
S(i,v) and E(i, j, v), the matrix-vector product can be clearly com-
puted with a relational query as: Sg = 7 j:sum(E.0xSy_;.0) (E =i
Sa-1)-
Algorithm 1 is a pattern to solve several graph problems with iter-

ative matrix-vector multiplication, computed by relational queries[4].

The algorithm keeps iterating while the value A is greater than a
small value €. Both A and e depend on the specific graph problem.
For instance, in PageRank the value A is computed as the maxi-
mum difference between page rank value of a vertex in the last two
iterations, and € is a small value (default or user-defined). This al-
gorithmic pattern works for relational and array DBMSs. Moreover,
we keep the query as simple as possible, as follows:

1. The query joins two tables.

2. The query performs one aggregation, grouping by one column.

3. The output of the query is inserted in an empty table. We do
not do updates. Note |S;| < n

Data: Table E, Table Sy , optional vertexId s, €
Result: S;
d — 0; A « oo;
while A > e do
de—d+1;
S4 < query to compute E X Sg_1 ;
compute A ;
end
return Sy ;
Algorithm 1: Graph algorithms via matrix-vector multiplica-
tion computed with relational queries

2.7 Optimizations in a Paralle]l DBMS

In parallel graph processing, execution performance is improved
by an adequate data distribution trough the computing nodes. An
even data distribution is necessary to avoid bottlenecks. Moreover,
we apply the following strategies for efficient query execution:

1. Local parallel joins: Rows that satisfy the join condition are
always in the same cluster node. This can be accomplished parti-
tioning the data by a hash function applied to the joining columns
(i.e. i joining j, as in Eq.1). This method is key to avoid costly data
transfer between nodes.

2. Presorted tables: The join between E and S can achieve a linear
time complexity when the tables are presorted by the columns

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Table 1: Available graph algorithms.

Query Graph algorithm
Aggregation In-degree/Out-degree
Aggregation Graph Density
Aggregation Degree Distribution
Aggr/Addition Laplacian Matrix

Join Transition Matrix
Iterative Matrix X Vec | Single Src Shortest Path
Iterative Matrix X Vec | Reachability

Iterative Matrix X Vec | Connected Components
Iterative Matrix X Vec | PageRank

Recursive Queries Triangle Counting
Recursive Queries Triangle Enumeration
Recursive Queries All pairs Shortest Path
Recursive Queries Transitive Closure

participating in the join condition, taking advantage of a merge
join algorithm. This is critical for very large graphs. Presorted data
is inherent of the array-based data organization.

3. Data Compression: The storage layout in the columnar DBMS
uses light weight data compression, which achieves significantly
less I/0.

2.8 Available Graph Algorithms

Table 1 presents the algorithms provided by GALGO, classified by
the type of operation in the DBMS. Note that the supported queries
and algorithms can be run for the complete graph or filtering by
vertex or edges. For instance, the user may filter a social network
graph by the hometown attribute, to count triangles that satisfies
such condition. Likewise, the user may filter a road network to find
the shortest path avoiding toll roads.

Running Graph Algorithms in the Cluster. Computing graph algo-
rithms just require an API call. Furthermore, a user familiar with
SQL may access results from any client, as the resuls of the algo-
rithms are stored in regular tables. This means better interactivity
and usability, compared with tools as Giraph or Spark/GraphX.

Interactive Graph Analysis. A useful feature of our system is the
ability of access partial results, which are available for all the graph
algorithms. As the algorithms are computed in an iterative until
specific termination conditions, each iteration generates a partial
result in the database, which are inmediately available for explo-
ration. Partial results are available in SQL as well as the supported
languages.

3 SYSTEM DEMONSTRATION
3.1 Goals

The objectives of our demonstration are: (1) Showing that graph
algorithms can be computed by queries in the parallel cluster. More-
over, mo math libraries are required. (2) Comparing the perfor-
mance of graphs algorithms in the DBMS vs Spark-GraphX. (3)
Understanding how table partitioning (storing the graph edges)

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Table 2: PageRank execution time (seconds). Parallel cluster:
4 Nodes with 4GB RAM.

Graph data set |E| | Columnar | Array Spark

DBMS | DBMS | GraphX
web-Google 5M 18 143 58
soc-pokec 30M 72 380 153
LiveJournal 69M 99 1037 477
wikipedia-en 378M 507 stop crash
WebCommonsc | 620M 2764 stop crash

impacts performance. (4) Solving popular graph problems. (5) Ex-
periencing the easy access to complex graph analytics in a cluster,
with straightforward function calls.

3.2 Setup

The DBMSs used in the demonstration are: (a) columnar: Vertica; (b)
row: Postgres. Moreover, Spark 2.0 with GraphX will be available
during the demonstration session for comparison purposes. Notice
Postgres can run in one node only. A set of scripts in the supported
programming languages would be available, to make calls to the
cluster from a laptop. The database will contain graph data sets
from the Stanford SNAP repository. We plan to show analytic tasks
on sparse graphs of various sizes (m denotes the number of edges):
small, web-Google (m = 5M); medium, soc-LiveJournall (m = 68M);
large, wikipedia-en (m=378M); extra-large (m =620M). These data
sets will be preloaded, but if requested we can demonstrate how to
load (import into the DBMS) more data sets.

3.3 Demonstration Scenarios

User is encouraged to run performance test and comparisons be-
tween column DBMS, array DBMS and Spark-GraphX. As Postgres
runs in only one node, it is meaningless to compare it to parallel
systems. The demonstration will include the following scenarios:

Performance Comparisons: The audience can try any of the
algorithms and data sets, and make comparisons between parallel
DBMS technologies and Spark-GraphX. Table 2 presents perfor-
mance comparisons for one of the algorithms:PageRank. The audi-
ence will note that columnar DBMS presents superior performance
in graphs analytics.

Impact of appropriate partitioning: The user will compare
the execution time of several algorithms both with an arbitrary
partitioning and with an even data distribution.

Computing in-database graph algorithms The audience may
trigger the computation of in-database algorithms using pre-defined
scripts in Python, R or Java. Nevertheless

The audience may try a set of scripts in Python, R and Java to
compute any of the graph algorithms provided. The user may get
results via the API, or the results can be queried directly in the
database system.

Looking under the hood: Users interested in technical aspects
may browse the history of queries generated by our system, and
query plans. This history is accessible from the R environment by
functions from our library: queryHistory() and planHistory().

Experiencing flexible and interactive analytics:

Wellington Cabrera, Xiantian Zhou, Ladjel Bellatreche, & Carlos Ordonez

Q rstudio - o x
Fie Edit Code View Plots Sesion Euid Debug Tools Help
e-@- 88 B project (None) -

Source Environment History

console Fies Plots Pacages Help Viewer
> & Triangle counting with matrix operations in R-style syntax

> E3= calcHatrixpover (E,3) #computed in the DBMS

> diage3 = diag(e3) #conputed in the DBMS, return results to R
> tgent = sum(diagE3)/3 #computed in R

> print(tgent)

[1] 303

2 70om | Bexors O Clearnt

Histogram of outdegrees, path length=3

>'# Straightforward syntaxis also provided
> Triangle counting with Filter in the DBMS &
> triangmx = trianglecount (dbfilter (g, "state="Tx "))
> print(triangT

1] 192

Frequency
150

> # outdegree for path Tength =3

> outdeg = ronsuns(E3) Fcomputed in the DEMS, return results to R
2 ¥ displaying histogram 2
> hist(outdeg, main="istogram of outdegrees, path Tength=3",

20, col="blue")

vy

outdeg

Figure 2: Graph analytics using R as a front-end. Demonstra-
tion of triangle counting and visualization of a graph out-
degree

o

console Fi P Padeges Hep Viewsr

> s | Bon Eopnr Q| Laeem
Pr = dbPageRank(€,6) #conputed in the DeMS

> print(sun(er)) fconputed in the DBNS, results return to &

> topvertices = as.matrix(dbfilter(, .
4 vertexList = dbTop(pr, 100))) fconputed .

tices, mode= "directed")
=0.2, 4R graph visualization function .
yout sphere)

Figure 3: PageRank computation, and visualization of the
subgraph comprised by the top 100 vertices.

The audience is encouraged to computed analytics on the graph
datasets, as vertex counting, edges counting, in-degree and out-
degree by vertices. This operations can be done to a complete data
set, or only to interesting vertices, based on custom conditions.
SQL-savvy users may also try filters, projection an joins with the
results, directly in the DBMS.

REFERENCES

[1] C.R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded: A relational engine
for graph processing. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD °16. ACM, 2016.

[2] Z.Bai,]. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the
solution of algebraic eigenvalue problems: a practical guide, volume 11. Siam, 2000.

[3] A.Bulucand]. R. Gilbert. The combinatorial blas: Design, implementation, and
applications. Int. J. High Perform. Comput. Appl., 25(4):496-509, Nov. 2011.

[4] W. Cabrera and C. Ordonez. Unified algorithm to solve several graph problems
with relational queries. In Proc. AMW Workshop, 2016.

[5] W. Cabrera and C. Ordonez. Scalable parallel graph algorithms with matrix-
vector multiplication evaluated with queries. Distributed and Parallel Databases,
35(3-4):335-362, 2017.

[6] A.Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M. Stonebraker.
Vertexica: your relational friend for graph analytics! Proceedings of the VLDB
Endowment, 7(13):1669-1672, 2014.

[7] C.Ordonez, S. T. Al-Amin, and X. Zhou. A simple low cost parallel architecture for
big data analytics. In IEEE International Conference on Big Data,, pages 2827-2832,
2020.

[8] C.Ordonez, W. Cabrera, and A. Gurram. Comparing columnar, row and array
dbmss to process recursive queries on graphs. Information Systems, 2016.

[9] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson. From "think
like a vertex" to "think like a graph". Proc. VLDB Endow., 7(3):193-204, Nov. 2013.

[10] X.Zhou and C. Ordonez. Computing complex graph properties with SQL queries.
In 2019 IEEE International Conference on Big Data, pages 4808-4816, 2019.

	Abstract
	1 Introduction
	2 System Description
	2.1 System Overview
	2.2 Definitions
	2.3 Linear Algebra with Queries
	2.4 Graph Storage
	2.5 System Architecture
	2.6 Graph Algorithms Computed with Queries
	2.7 Optimizations in a Parallel DBMS
	2.8 Available Graph Algorithms

	3 System Demonstration
	3.1 Goals
	3.2 Setup
	3.3 Demonstration Scenarios

	References

