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ABSTRACT
Incremental learning is used to continuously update and tune an
existing model, as more data points come in. However, there is a
tradeoff between speed and accuracy as the model becomes stable.
From a big data angle, computing machine learning models is chal-
lenging when data sets cannot fit in main memory or when they
exceed CPU capacity. On the other hand, data summarization is a
fundamental technique that has promise to accelerate data science
computations and compress a data set. Keeping these motivations
in mind, we present an innovative system, VIM, that computes
machine learning models in an incremental manner, visualizing
continuous learning of model parameters as the data set is scanned.
Our system is fast, it works for a wide spectrum of machine learning
models and it can handle data sets larger than main memory. We
developed an intuitive GUI which: (1) guides the user to upload
data sets and choose a machine learning model, (2) offers inter-
active visualization of model parameters, and (3) helps getting an
approximate model, stopping early, without reading the whole data
set.
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1 INTRODUCTION
With the advancement of big data, machine learning model nowa-
days are usually trained with a large amount of data. In many
practical scenarios, the samples in the data set can change over
time mostly due to the addition of new data samples and removal
of existing data samples. It is still computationally intensive to re-
compute the model parameters on the entire data set when only a
few samples in the data set change. Rather, it is smarter and more
efficient to update the model by including or excluding the influ-
ence of specific data samples, which is known as incremental and
decremental learning [4], [10]. In our work, we focus on the com-
putation of incremental machine models in a single machine when
the data set size is large. On the other hand, accelerating machine
learning algorithms does not always mean adding hardware and
more memory. Therefore, processing and analyzing a large volume
of data, specially when it is larger than the main memory, becomes
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infeasible with a traditional serial approach. Data summarization
has been a standard mechanism to accelerate the computation of
machine learning models [1], [2]. Our work is inspired by previous
research extending DBMSs with machine learning computation
with SQL queries and UDFs [6–8].

Our contributions are the following: (1) We present a system
that can compute several incremental machine models using data
summarization for large data sets in a single machine, (2) We vi-
sualize the learning of the model parameters as the data is being
summarized and model is being computed. (3) Our solution can get
an approximate model faster than the built-in Python incremental
library. (4) We provide a GUI to help the user navigate our system
and display our results. In this work, we focus on the incremental
computation of three popular and fundamental machine learning
models: Linear Regression (LR) [5], Principal Component Analysis
(PCA) [5], and Naïve Bayes (NB). The models were solved by com-
puting the summarization matrix first while we read the data set in
blocks and compute the models from the summarization matrix for
each block. From a system angle, our system can show the learning
of the model parameters as we read through the data set. Also, the
system can show the evaluation metrics on the test data to help
determine along with the model parameters to see if the model has
been saturated.

2 SYSTEM OVERVIEW
2.1 Definitions
The input matrix is defined as 𝑋 which is a set of 𝑛 column-vectors.
Θ is used to represent a machine learning model. All the models
take a 𝑑 × 𝑛 matrix 𝑋 as input. Let the input data set be defined
as 𝑋 = {𝑥1, ..., 𝑥𝑛} with 𝑛 points, where each point 𝑥𝑖 is a column-
vector in R𝑑 . Intuitively, 𝑋 is a wide rectangular matrix with 𝑑

columns. We augment 𝑋 with an output variable 𝑌 , making 𝑋 a
(𝑑 +1) ×𝑛 matrix, called X. Thereafter, we augmentXwith an extra
row of 𝑛 1s, resulting in a new matrix called 𝑍 , with (𝑑 + 2) ×𝑛 size.

2.2 Theory and Algorithm
Here, we first review the powerful summarization matrix (Γ) [3, 9]
and the computation of several ML models (Θ), based on Γ. The
previous algorithm had two independent phases [9]. In contrast,
our incremental algorithm efficiently computes these two phases
together, interleaving them, at each iteration, for each block of data.

(1) Phase 1: Compute summarization matrix: one matrix Γ or 𝑘
matrices Γ𝑘 .

(2) Phase 2: Compute ML model Θ based on Gamma matrix
(matrices).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2.2.1 Phase 1: We consider 𝑋 as the input data set, 𝑛 counts the
total number of points in the dataset, 𝐿 is the linear sum of 𝑥𝑖 , and𝑄
is the sum of vector outer products of 𝑥𝑖 , then from [3], the Gamma
(Γ) is defined below in Eq. 2. The Γ matrix can be computed in the
two ways: (1) matrix-matrix multiplication i.e., 𝑍 · 𝑍𝑇 (2) sum of
vector outer products i.e.,

∑
𝑖 𝑧𝑖 · 𝑧𝑇𝑖 . Here, we evaluate the later

one.

𝑛 = |𝑋 |; 𝐿 =

𝑛∑
𝑖=1

𝑥𝑖 ; 𝑄 = 𝑋𝑋𝑇 =

𝑛∑
𝑖=1

𝑥𝑖 · 𝑥𝑇𝑖 . (1)

Γ =


𝑛 𝐿𝑇 1𝑇 · 𝑌𝑇
𝐿 𝑄 𝑋𝑌𝑇

𝑌 · 1 𝑌𝑋𝑇 𝑌𝑌𝑇

 (2)

Now, as explained in [3], we need 𝑘-Gamma (Γ𝑘 ) for classifi-
cation/clustering models which is given in Eq. 3 (𝑘=number of
classes/clusters). Here, we need only a few parameters,𝑛, 𝐿, 𝐿𝑇 , 𝑑𝑖𝑎𝑔(𝑄).
Both 𝐿 and 𝑑𝑖𝑎𝑔(𝑄) can be represented as a single vector and we
do not need to store𝑄 as a matrix. Hence, the 𝑘-Gamma matrix can
be represented as a single matrix of size 𝑑 × 2𝑘 , where each Gamma
is represented in two columns (𝐿 and 𝑄). We still need to store the
value of 𝑛 in a row, which makes the 𝑘-Gamma (𝑑 + 1) × 2𝑘 .

Γ𝑘 =


𝑛1 0 ... 𝑛𝑘 0
𝐿11 𝑄111 ... 𝐿1𝑘 𝑄11𝑘
.. .. ... .. ..

𝐿𝑑1 𝑄𝑑𝑑1 ... 𝐿𝑑𝑘 𝑄𝑑𝑑𝑘

 (3)

2.2.2 Phase 2: Both Γ and Γ𝑘 provide summarization for a different
set of machine learning models (Θ). We briefly discuss how to com-
pute each model (Θ) below. The details of the model computation
are discussed in [2].

LR:. We can get the column vector of regression coefficients (𝛽),
from the above mentioned Γ with:

𝛽 = 𝑄−1 (𝑋𝑌𝑇 ) (4)

Eq. 4 will yield a 𝑑 × 1matrix, the regression coefficients. To get the
intercept along with it, we need to modify Eq. 4 as: 𝛽 = �̃�−1 (X𝑌𝑇 ),
where �̃� is a (𝑑 + 1) × (𝑑 + 1) matrix.

PCA:. PCA can be computed on the covariance matrix (𝑉 ), or
the correlation matrix (𝜌). We compute 𝜌 , the correlation matrix
as 𝜌 = 𝑈𝐷2𝑈𝑇 = (𝑈𝐷2𝑈𝑇 )𝑇 . We can also compute the covariance
matrix as 𝑉 = 𝑄/𝑛 − 𝐿𝐿𝑇 /𝑛2. Then we compute PCA from the 𝜌
by solving the Singular Value Decomposition on it (𝑠𝑣𝑑 (𝜌)). We
express 𝜌 in terms of sufficient statistics in Eq. 5, where 𝑎, 𝑏 are
indexes/subscripts (e.g. the term 𝑄𝑎𝑏 represents a particular entry
like 𝑄 [𝑎, 𝑏]).

𝜌𝑎𝑏 =
(𝑛𝑄𝑎𝑏 − 𝐿𝑎𝐿𝑏 )√

𝑛𝑄𝑎𝑎 − 𝐿2𝑎

√
𝑛𝑄𝑏𝑏 − 𝐿2

𝑏

(5)

.

NB:. Here, we need the 𝑘-Gamma matrix. We assume, there
are 𝑘 number of classes (where 𝑔 = 1, .., 𝑘), and for each class (𝑔),
we compute 𝑛𝑔, 𝐿𝑔, 𝑄𝑔 as discussed in Phase 1. The output of NB
model is three parameters: mean (𝐶), variance (𝑅), and the prior
probabilities (𝑊 ). We can compute these parameters from the Γ𝑘

Figure 1: System architecture and data flow.

matrix for each class label (𝑔 = 1, .., 𝑘) with the following statistical
equations.

𝑊𝑔 =
𝑛𝑔

𝑛
; 𝐶𝑔 =

𝐿𝑔

𝑛𝑔
; 𝑅𝑔 =

𝑄𝑔

𝑛𝑔
− 𝑑𝑖𝑎𝑔

[𝐿𝑔𝐿𝑇𝑔 ]
𝑛2𝑔

(6)

2.2.3 Integration with Python: The input data set 𝑋 is read into
𝑚 blocks (𝑚 ≪ 𝑛) of the same size (|𝑚 | > 1), 𝑋 = {𝑋1, 𝑋2, .., 𝑋𝑚}.
We read each block (𝑋𝑏 ) into the main memory and compute the
summarization matrix (ΓΔ or Γ𝑘Δ ) for that block as mentioned in
Phase 1. This partial Gamma (ΓΔ or Γ𝑘Δ ) is added to the Gamma
computed up to the previous block (𝑋𝑏−1) and we get the Gamma
(Γ or Γ𝑘 ) for up to 𝑏𝑡ℎ block. This phase 1 is comptued in C/C++ as
the sum of vector outer products (𝑧𝑖 ∗𝑧𝑇𝑖 ) can be computed block by
block efficiently in C++. Computing this operation using traditional
loops in Python is slow, usually one row at a time. Based on the
summarization matrix computed here, we compute the machine
learning models in Phase 2 as discussed earlier. We compute this
Phase 2 in Python. Reprogramming all the models in C++ is unnec-
essary and error-prone. Since our model computation requires just
changing certain steps in the numerical method, we rewrite the
equations based on the data summaries and program them in the
data science language efficiently. To call C++ from Python we use
the Python SWIG library. However, our solution can be integrated
with any language that supports API calls to C/C++.

2.3 System Architecture
We assume the user needs to compute the machine learning models
quickly and accurately.We assume visualizing the learning of model
parameters can help them understand how the model is behaving,
when to stop the model (if needed), and satisfy their needs. Our
system offers incremental machine learning algorithms for large
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datasets as a service and provides a graphical visualization that will
be easily understandable to the user. Our system splits the work
among Python and C++.

Fig 1 shows the data flow diagram of our proposed system. Our
system has three main parts: (1) Host Module, (2) Processing, and
(3) Visualization. Here, Python will act as the host program as it is
interactive and popular in analytics. Moreover, it can run on any
machine and it has many extensive library support. The compu-
tation is divided between Python and C++. The main processing
will be done (computing summarization matrix, Phase 1) in C++
while the other parts will be done in Python. C++ works at the back
end and it is hidden from the user. As mentioned above, a Python
library (‘SWIG’) will handle the data passing through Python and
C++. We emphasize that we only need to compute the summariza-
tion in C/C++ as Python is slower for this kind of processing. After
processing is done in C++, it returns the output as a matrix back
to the Python module. As the size of our summarization matrix is
concise, transferring data to Python will be fast and it will easily
fit in the main memory. Python processes the matrix and compute
machine learning models exploiting it as mentioned earlier. While
computing the machine learning models, we visualize the learning
of the model parameters to the user using a GUI. We use plots, and
graphs in the GUI to visualize the model learning to the user.

From a system perspective, our proposed system can show the
learning of the machine learning models quickly and accurately.
Users can also interact with the system to explore the models. For
example, users can stop the computation at any time and get an
approximate model there. Also, users have the option to visualize
the evaluation metrics. Our system will divide the data set into train
and test set, and visualize the respective evaluation metrices for
each model based on the test data set. Our system has the potential
to be released as a standard Python package that can be easily
installed in any machine, solving all the dependencies (SWIG, C++
in this case).

2.4 Benchmarking

Table 1: Comparing accuracy to get approximate machine
learning models.

Relative error
Θ Data set (𝑋 ) 𝑛 𝑑 % of 𝑋 Our Sol. Python
LR YearPrediction 500k 91 38 3.1E-2 14.9
PCA YearPrediction 500k 91 8 1.8E-3 6.6E-2
NB SkinNonskin 200k 4 2 1.1E-3 4.5E-3

To the best of our knowledge, there is little work putting to-
gether visualization of complex math models as they are gradually
computed. Mostly, users call Python or R libraries in their code,
and they have to wait until the computation ends. So, we cannot
compare our system end-to-end with another system. Here, we
compare our algorithm utilizing summarization matrix with the
Python incremental library. Table 1 shows the result of our exper-
imental outcome. We used data sets obtained from UCI machine
learning repository, where 𝑛 and 𝑑 represent the original size of
the data sets. We first compute the model parameters on the whole

data set to get reference measurements. For each model, we show
the amount of the data needed to get an approximate model (%
of 𝑋 column), the relative error of our solution for the approxi-
mate model, and the relative error from the Python incremental
library at the same point. However, the final error after reading the
whole data set between our solution and Python is less than 0.01%.
Our incremental algorithm can get a solution in about 50% of time
taken by the Python library [3]. Therefore, our solution can get
an approximate model faster than Python with much less relative
error.

3 SYSTEM DEMONSTRATION
We will run our system on a portable computer with Python and
C++ installed (Python 3.6 and C++ 11). Our program provides a
GUI to load or select data sets (path of the data set location), to
choose a machine learning algorithm and to visualize model results
and accuracy. Nevertheless, our system has the potential to work
both from the OS command prompt and a GUI. Users can choose
the machine learning model. Then it will be processed in Python
and C++ in an incremental manner. Users can also select the block
size (chunk size) to read the data. However, a default block size of
1000 will be set as the recommended block size which is justified in
[3]. the visualization will be shown mostly in the GUI itself.

Pythonwill be connected to C++with a standard Python package
(SWIG). A pre-loaded data set of small size will be available for
faster demonstration purposes. If the data set size is large (> 8𝐺𝑏),
our system displays a warning. The output shown by our system is
concise and it is updated as the data set is scanned.

3.1 Points to Emphasize
In our system demonstration we will emphasize the following
points: (1) Our system is simple. It can be easily installed solv-
ing library dependencies, and the GUI is easy to use. (2) Our system
is portable and it can work on any modern OS. That is, we do not
need any system-specific libraries since computation is done by C++
and Python. (3) Our prototype is ideal to compute popular machine
learning models. (4) Users can choose the machine learning model
and main input parameters from Python GUI. Users can also tune
the block size to read the data set. (5) Processing will be performed
in C++ and Python. (6) Visualization is available in the GUI. (7)
Interface between C++ and Python is performed with a Python
library (SWIG). The connection and computation are hidden from
the user. (8) We use a single machine for processing. However, it
is possible to do the processing in parallel. The system is ran as a
stand-alone application in the machine. (9) Our system is easy to
modify for the developer. To extend the system, only the Python
module needs to be changed without worrying about C++ code.

3.2 Demonstration Scenarios
Here, we walk through the demonstration scenarios showing our
system can provide increasingly accurate output with excellent
time performance.

Once the user runs our system as an application in any OS (e.g.,
Linux, Windows or Mac), the Python GUI will provide options
to paste the file-path of a new data set or choose from existing
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Figure 2: Input parameters.

Figure 3: Visualizing incremental learning of model.

Figure 4: Output summary after running/stopping model
computation.

data sets. For example, the user can choose YearPrediction or Skin-
NonSkin dataset available from UCI machine learning respiratory
or paste the file-path of any dataset of their own in CSV format.
However, small data sets will be loaded for the demonstration, but
the user can load any data set of any size. The user can also choose
the block size (or chunk size) of their own or choose the default
one. Providing small block size will show a warning as the models

will take more time to saturate. The user will also have the option
to show the evaluation metrics or not. After that, the system will
start the computation and Python will start reading the data set
in blocks. As the summarization matrix and model parameters are
computed, the results will be shown in the GUI. We show a demo
scenario in Figure 2 and Figure 3 to compute Linear Regression
in an incremental manner. We can see that our system is showing
the learning of the model parameters (regression coefficients and
intercepts). The X-axis shows the % of data that is being read and
the Y-axis shows the model parameter values. Similarly, the bottom
images show the accuracy evaluation metrics for the model on the
test data set. Here, we show the R-Squared value as well as the
cross-validation score.

As the model is being computed, the user has the option to wait
until the model is computed on the full data set or the execution
can be stopped at any time if the model is accurate enough. In any
case, the user will be shown as summary report in a new window.
For example, Figure 4 shows a report of the above mentioned model
performance (LR). We can see that it notifies the user that the com-
putation was stopped by the user, and the % of data read so far.
Next, it shows the values of the model parameters (regression coef-
ficients and Y axis intercept), as well as the values of the evaluation
metrics (R-Squared and CV-Socre). Although here we present the
demo scenario for the Linear Regression model, PCA and Naïve
Bayes models behave the same way. Only output model parameters
and ther corresponding evaluation metrics (if applicable) will be
changed.

4 CONCLUSIONS
Our system provides many benefits. Our system helps users who
need to analyze large data sets. Users can explore multiple models
by visualizing their parameters and see how the model is behaving
on the data set. Users do not have to wait until the completion: they
can stop the computation at any time if they think the model is
sufficiently accurate. For future work, we plan to integrate more
ML models and compare our approach with models computed by
gradient descent, the workhorse behind most libraries today.
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