
Noname manuscript No.
(will be inserted by the editor)

Incremental and Accurate Computation of Machine
Learning Models with Smart Data Summarization

Sikder Tahsin Al Amin · Carlos Ordonez

Received: date / Accepted: date

Abstract Nowadays, data scientists prefer “easy” high-level languages like R
and Python, which accomplish complex mathematical tasks with a few lines
of code, but they present memory and speed limitations. Data summarization
has been a fundamental technique in data mining that has promise with more
demanding data science applications. Unfortunately, most summarization ap-
proaches require reading the entire data set before computing any machine
learning (ML) model, the old-fashioned way. Also, it is hard to learn models if
there is an addition or removal of data samples. Keeping these motivations in
mind, we present incremental algorithms to smartly compute summarization
matrix, previously used in parallel DBMSs, to compute ML models incremen-
tally in data science languages. Compared to the previous approaches, our
new smart algorithms interleave model computation periodically, as the data
set is being summarized. A salient feature is scalability to large data sets,
provided the summarization matrix fits in RAM, a reasonable assumption in
most cases. We show our incremental approach is intelligent and works for
a wide spectrum of ML models. Our experimental evaluation shows models
get increasingly accurate, reaching total accuracy when the data set is fully
scanned. On the other hand, we show our incremental algorithms are as fast
as Python ML library, and much faster than R built-in routines.

Keywords Data mining · Incremental Computation · Summarization ·
Machine Learning

University of Houston
Houston, TX 77204, USA
E-mail: sal-amin2@uh.edu

University of Houston
Houston, TX 77204, USA

2 Sikder Tahsin Al Amin, Carlos Ordonez

1 Introduction

Machine learning models in many applications usually need to be trained with
a large amount of data. In many practical scenarios, the samples in the data set
can change over time, due to the addition of new data samples (e.g., those that
have been collected and labeled recently) and removal of existing data samples
(e.g., those that are too noisy or incorrectly labeled). Recomputing the model
from scratch whenever there is a change in the data set is time-consuming
and not a “clever” way. Also, it is still computationally intensive to recompute
the model parameters on the entire data set when only a few samples in the
data set change. Rather, it is more smart and efficient to update the model by
including or excluding the influence of specific data samples, which is known
as incremental and decremental learning. The goal is to adapt a pre-computed
model to the changes in the data set, without recomputing the model on all
the data, where the changes can include addition and deletion of data samples.

Nowadays, deep learning [18] is widely used among machine learning and
data science practitioners. Although using deep learning yields better accuracy
in most cases, it is still computationally expensive than traditional algorithms
and a kind of “black box” in nature. Moreover, they are most suited for im-
ages and text data and they cannot provide a statistical explanation of their
accuracy. So, many data scientists are still using traditional machine learning
algorithms and statistics for data analysis and data pre-processing [2], [10],
[19], [22], [30]. In fact, in most data science projects, data scientists iterate
many times before a good model is computed as it is never accurate the first
time. However, for an average data scientist with limited memory in one ma-
chine, large data sets become a problem (e.g. bigger than RAM). They do not
have parallel cluster set up at home, and clouds are expensive. So, they have
to rely on their single machine for large scale data analysis. Also, sometimes
data scientists want to see “early results” instead of waiting until the com-
pletion of the full data set to see how their model is behaving, or they may
need an approximate accurate model with fewer data points. Moreover, most
ML algorithms require multiple pass to the data set or recomputing the model
from scratch when new data points are added or removed with the original
data set. With these motivations in mind, we propose an incremental and ac-
curate computation of ML models that can handle large data sets in a single
machine, and does not need to recompute the models from scratch with the
addition of new data points.

Our contributions are the following: (1) We present intelligent incremental
algorithms that will compute the ML models efficiently with smart data sum-
marization. (2) We provide properties and proof sketch of our solution, giving
it a solid theoretical background. (3) We improve and optimize the technique
to read the data set from disks in blocks and discuss the optimal block size. (4)
We compare against R built-in routines and Python scikit-learn incremental
library, the most popular machine learning library nowadays. We focus on the
incremental computation of four popular and fundamental machine learning
models: Linear Regression (LR) [14], Principal Component Analysis (PCA)

Title Suppressed Due to Excessive Length 3

[14], Näıve Bayes (NB) [14] and K-means (KM) [14]. This article is a signifi-
cant step forward and is fundamentally different from our previous work where
the summarization and computation of machine learning models utilizing it
was introduced [7]. The models were solved by computing the summarization
matrix first (full pass) while we compute the models incrementally here. Also,
we can solve all the models with one-pass to the data set which was not pos-
sible for some models before(e.g. K-means). Experimental results in Section 4
prove that our incremental computation can handle more data than [7], per-
forms better than R, and is competitive with Python scikit-learn incremental
library. Also, we can get an accurate model with very minimal relative error
without reading the full data set. In summary, to our knowledge, there does
not exist an approach which (1) supports both incremental and decremental
summarization matrix, and (2) updates model parameters based on the sum-
marization matrix. Here, we propose such an approach satisfying both (1) and
(2) in this paper.

This is an outline of the rest of this article. Section 2 is a reference section
that introduces the definitions used throughout the paper. Section 3 presents
our theoretical research contributions where we present our incremental algo-
rithm. Section 4 presents an experimental evaluation comparing our solution
to state-of-the-art data science systems including the R package, and Python.
We discuss closely related work in Section 5. Conclusions and directions for
future work are discussed in Section 6.

2 Definitions

The input matrix is defined as X which is a set of n column vectors. And
Θ is used to represent a statistical or machine learning model in a general
manner. All the models take a d × n matrix X as input. Intuitively, X is a
wide rectangular matrix. We augment X with an output variable Y , making
X a (d+ 1)× n matrix and we call it X. We augment X with an extra row of
n 1s and call that as matrix Z, (d+ 2)× n dimension.

Table 1: Basic symbols and their description

Symbol Description
X Data set
d Number of records/rows in X
n Number of attributes/columns in X
Y Dependent Variable
X Augmented X with Y
Z Augmented X with 1s and Y
Γ Gamma Summarization Matrix
Γk k-Gamma Summarization Matrix
Θ Machine learning model
b Blocks to read data
m Total number of blocks

4 Sikder Tahsin Al Amin, Carlos Ordonez

Fig. 1: Example of Matrix Z (in R)

2.1 Example

An example of Z matrix is shown in Fig 1. We show this example to make the
Z matrix clear to the reader which is at heart of our summarization matrix
computation. Here, “d1, ..., d4” are the input dimensions (d), and “Y ” is the
output variable Y , “n1, ..., n8” are the column vectors, and 1 is row of n 1s,
making Z a (d+ 2)× n matrix as mentioned above. We use this Z matrix to
show an example of our algorithms in Section 3.

3 Theory and Algorithm

3.1 Summarization Matrix and ML Model Computation

Here, we first review the Gamma summarization matrix (Γ) [7], [20] and com-
putation of several ML models (Θ) exploiting Γ . The main algorithm had two
phases where after computing Phase 1, Phase 2 is computed.

1. Phase 1: Compute summarization matrix: one matrix Γ or k matrices Γ k.
2. Phase 2: Compute ML model Θ based on Gamma matrix (matrices).

3.1.1 Phase 1

We consider X as the input data set, n counts the total number of points
in the dataset, L is the linear sum of xi, and Q is the sum of vector outer
products of xi, then from [20], the Gamma (Γ) is defined below in Eq. 2.

n = |X|; L =

n∑
i=1

xi; Q = XXT =

n∑
i=1

xi · xTi . (1)

Γ =

 n LT 1T · Y T
L Q XY T

Y · 1 Y XT Y Y T

 =

 n
∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i

 (2)

As mentioned in Section 2, X is defined as a d×n matrix, and Z is defined
as a (d + 2) × n matrix with extra row of n 1s and output variable Y . From
[20], we can easily understand that the Γ matrix can be computed in the

Title Suppressed Due to Excessive Length 5

two ways: (1) matrix-matrix multiplication i.e., ZZT (2) sum of vector outer
products i.e.,

∑
i zi · zTi . Here, we evaluate the later one. So, in short, the

Gamma computation can be defined as:

Γ = ZZT =

n∑
i=1

zi · zTi (3)

Now, from [7], we need k-Gamma (Γ k) for classification/clustering models
which is given in Eq. 4 (k=number of classes/clusters). Here, we need only
a few parameters, n,L, LT , diag(Q). Both L and diag(Q) can be represented
as a single vector and we do not need to store Q as a matrix. Hence, the
k-Gamma matrix can be represented as a single matrix of size d × 2k, where
each Gamma is represented in two columns (L and Q). We still need to store
the value of n in a row, which makes the k-Gamma (d+1)×2k. Hence, we are
using minimal memory to store k-Gamma even if the value of k is very large.
So, the storage of optimized k-Gamma matrix in shown in Eq. 4.

Γ k =


n1 0 ... nk 0
L11 Q111 ... L1k Q11k

..
Ld1 Qdd1 ... Ldk Qddk

 (4)

3.1.2 Phase 2

Both Γ and Γ k provide summarization for a different set of machine learning
models (Θ). We briefly discuss how to compute each model (Θ) below. The
details of the model computation are discussed in [7].

LR: We can get the column vector of regression coefficients (β̂), from the
above mentioned Γ with:

β̂ = Q−1(XY T) (5)

Eq. 5 will yield a d× 1 matrix, the regression coefficients. To get the intercept
along with it, we need to modify Eq. 5 as: β̂ = Q̃−1(XY T), where Q̃ is a
(d+ 1)× (d+ 1) matrix.

PCA: PCA can be computed on the covariance matrix (V), or the correla-
tion matrix (ρ). We compute ρ, the correlation matrix as ρ = UD2UT =
(UD2UT)T . We can also compute the covariance matrix as V = Q/n −
LLT /n2. Then we compute PCA from the ρ by solving the Singular Value
Decomposition on it (svd(ρ)). We express ρ in terms of sufficient statistics
in Eq. 6, where a, b are indexes/subscripts (e.g. the term Qab represents a
particular entry like Q[a, b]).

ρab =
(nQab − LaLb)

(
√
nQaa − L2

a

√
nQbb − L2

b)
(6)

.

6 Sikder Tahsin Al Amin, Carlos Ordonez

Fig. 2: Incremental Computation of ML models.

NB: Here, we need the k-Gamma matrix. We assume, there are k number
of classes (where g = 1, .., k), and for each class (g), we compute ng, Lg, Qg
as discussed in Phase 1. The output of NB model is three parameters: mean
(C), variance (R), and the prior probabilities (W). We can compute these
parameters from the Γ k matrix for each class label (g = 1, .., k) with the
following statistical relations.

Wg =
ng
n

; Cg =
Lg
ng

; Rg =
Qg
ng
− diag

[LgL
T
g]

n2g
(7)

KM: We assume, there are total k number of clusters and we denote them
by j = 1, .., k. Similar to NB, for each cluster (j), we first compute nj , Lj ,
Qj from the k-Gamma matrix (notice that, we used g to denote the classes
in NB, and j as the clusters in KM). Based on these, we compute the model
parameters: mean (C), variance (R), and prior (W) for each cluster (j) as
presented in Eq. 8.

Cj =
Lj
nj

; Rj =
Qj
nj
− diag

[LjL
T
j]

n2j
; Wj =

nj
n

(8)

Then, the algorithm iterates executing two steps starting from random ini-
tialization until cluster centroids become stable. Step 1 determines the closest
cluster for each point using Euclidean distance (d(xi, Cj) = (xi−Cj)T (xi−Cj))
and adds the point to it. And Step 2 updates all the centroids Cj by comput-
ing the mean vector of points belonging to cluster j. The K-means algorithm
stops when centroids change by a marginal fraction in consecutive iterations
which is measured by the quantization error [7].

3.2 Our Smart Incremental Algorithm to Compute ML Models

Here, we present our main contribution. We introduce a general, smart al-
gorithm to efficiently compute the two phases together that were introduced
in Section 3.1. The block diagram of our incremental computation of the ML

Title Suppressed Due to Excessive Length 7

models using the summarization matrix can be shown in Fig 2. The mathemat-
ical symbols are discussed in Section 2. We explain in technical detail how Γ is
exploited in intermediate computations to compute the models (Θ) incremen-
tally. We present two algorithms. Algorithm 1 shows incremental computation
of models (e.g. LR, PCA) using Gamma matrix and Algorithm 2 shows incre-
mental computation of models (e.g. NB, KM) using k-Gamma matrix. First,
we discuss the properties of our algorithms.

Property 1 Θ must be recomputed at each iteration (i). For iteration i,
Θ(Γi) 6= Θ(Γi−1) +Θ(Γ∆).

Property 2 Iterative algorithms (e.g. KM, HMM) only work on Γk and re-
quire X to compute Θ at each iteration.

Property 3 One-pass algorithms (e.g. LR, PCA, NB) work on both Γ and
Γk, and does not require X to compute Θ. So, Θ(Γi) = Θ(Γi−1 + Γ∆)

Property 4 Matrix Γ or Γ k can be decremental too.

Property 1 is fundamental to compute models (Θ) at each iteration (i). Our
model computation is not distributive. That means, at iteration i, we can not
reuse the model computed at the previous iteration (Θ(Γi−1)) to compute the
model at the current iteration (Θ(Γi)). It is not possible to converge Γi−1 and
Γ∆ separately and then add them to get the correct model. For example, in the
case of LR, βi 6= βi−1+β∆. Similarly, for means in NB and KM, µi 6= µi−1+µ∆

2 .
So, Θ must be recomputed at each iteration based on Γ or Γ k.

Property 2 states that iterative algorithms (e.g. K-means, Hidden Markov
Model) only work on Γ k. And they also require to read X at each iteration to
compute the model Θ. We need to read the entire X at each iteration along
with the Γ k to increase the accuracy of the model. Otherwise, the accuracy of
Θ may go down. So, only computing Γ k is not enough to build a good model.

Property 3 is relevant to one-pass algorithms which work on both Γ and Γ k.
And we do not need to read X at each iteration. Popular one-pass algorithms
presented here such as LR, PCA, and NB can achieve up to 99% accuracy
(presented in Section 4) based on only Gamma assuming Θ(Γ) is 99% accurate.

We explain Property 4 in more technical details which states that our
summarization matrix (Γ or Γk) is decremental too. Instead of adding new
records to the data set, there can be cases where records are deleted from the
data set based on some conditions or filters. In that case, we update the model
without recomputing the whole data set. That is, we perform decremental
operation on Gamma to compute or update the models. The main steps are
the following which will be the same for k-Gamma too. (1) Read the deleted
records (Xdel). (2) Compute partial Gamma (Γ∆) on the deleted records (Γ∆
= gamma(Xdel)). (3) Perform Γ = Γ − Γ∆. (4) Compute the model, Θ =
compute (Γ). Hence, we can update the models without reading the whole
data set. However, instead of adding or removing rows from the data set,
there can be addition or deletion of columns from the data set. Whether we
have to recompute the model by reading the whole data set or Gamma can
perform incremnetally or decrementally, is an aspect for future research.

8 Sikder Tahsin Al Amin, Carlos Ordonez

Incremental Algorithm:

Now, we explain the algorithm in details. From Algorithm 1 and 2, the in-
put data set X is read into m blocks (m) of the same size (|m| > 1), X =
{X1, X2, .., Xm}. Later we discuss how to determine the block size in detail.
Processing data one block at a time has many benefits. It is the key to being
able to scale the computations without increasing memory requirements. And
we can handle data sets that are larger than the main memory. Now, we read
each block (Xb) into the main memory and compute Gamma (Γ∆ or Γ k∆) for
that block. However, for KM, there is one extra step before computing Gamma
to get the nearest cluster j (j = 1, .., k) for each data point in the block Xb.
Computing Gamma or k-Gamma matrix is discussed in Section 3.1. This par-
tial Gamma (Γ∆ or Γ k∆) is added to the Gamma computed up to the previous
block (Xb−1) and we get the Gamma (Γ or Γ k) for up to bth block. Finally, we
compute the models (Θ) based on this Gamma (Γ or Γ k). We iterate phase
1 and phase 2 together (inside “While” loop) until there are no more blocks
left. So, the main difference between Algorithm 1 and 2 is that we are using
one full Gamma (Eq. 2) for LR and PCA in Algorithm 1 while we are using
k-Gamma (Eq. 4) for NB and KM in Algorithm 2.

Algorithm 1: Incremental algorithm to compute ML models with
Gamma.
Data: X = {x1, x2, ..., xn}
Result: Θ

1 Read X into m blocks as X1, X2, ..., Xm;
2 while next(Xb) do
3 read(Xb) ;
4 Γ∆ ← gamma(Xb) //phase 1;
5 Γ ← Γ + Γ∆ ;
6 Θ ← compute (Γ) //phase 2 ;

7 end

Algorithm 2: Incremental algorithm to compute ML models with k-
Gamma.
Data: X = {x1, x2, ..., xn}, k
Result: Θ

1 Read X into m blocks as X1, X2, ..., Xm;
2 while next(Xb) do
3 read(Xb) ;
4 getNearestClusters() //only for KM ;

5 Γk∆ ← k-gamma(Xb,k) //phase 1 ;

6 Γk ← Γk + Γk∆ ;

7 Θ ← compute (Γk) //phase 2 ;

8 end

Title Suppressed Due to Excessive Length 9

Fig. 3: Example of our Incremental Gamma algorithm with LR model (in R).

To illustrate an example, Fig 3 shows the steps of our Algorithm 1 for the
input data set in Fig 1. We assume the block size is 4 to show this example,
so there will be 2 iterations of our algorithm. For the LR model, we show the
state of Γ and model parameter β (regression coefficients) after each iteration.
Here, from matrix Γ , entry [1,1] is the value of n. Entry [2,1] to [5,1] is the
value of L. And Q is a d× d matrix which ranges from [2,2] to [5,5]. Based on
this Γ , we get the value of regression coefficients (β) using Eq. 5.

3.3 Parallel Processing Aspects

The summarization matrix proposed in Section 3.1 is fully parallel and it has
been implemented for DBMSs before [21]. For our incremental algorithm, let us
assume we want to compute our solution in N nodes (number of machines).
The steps are shown in Algorithm 3. Though we present this algorithm for
Gamma (Eq. 2), it will be similar for k-Gamma (Eq. 4). Phase 1 can be
easily parallelized as we can compute the summaries for partial data sets in
each machine. This is similar to our previously presented Algorithm 1 and 2.
However, Phase 2 is difficult and will be significantly different. Computing Θ
incrementally and in parallel requires a barrier. To compute the model (Θ),
we need to send the ΓIs or Γ kI s (where ΓI = partial summarization matrix
in machine I) from N machines to one central node because parallelizing Θ
is difficult and assuming d � n, it is best to it on one node. Then we need
to update the Θ and maybe broadcast the Θ depending on the ML model.
In this way, the accuracy of LR and NB will be good because they do not
need the previous Θ. For PCA, it is dependent on small principal components
and KM requires redistributing points or iterations over the full data set to

10 Sikder Tahsin Al Amin, Carlos Ordonez

Algorithm 3: Parallel Incremental Algorithm to compute ML models

Data: X = {x1, x2, ..., xn}
Result: Θ
Partition X into I = 1, ..., N machines ;
//Phase 1: parallel
for I = 1, ..., N machine (in parallel) do

Read partitioned XI into m blocks ;
while next(XIb) do

read(XIb) ;
Γ∆ ← gamma(XIb) ;
ΓI ← ΓI + Γ∆ ;
send to a central machine(ΓI).

end

end
//Phase 2: In central machine
Collect ΓIs from N machines and compute Γ = Γ1 + ...+ ΓN ;
Θ = compute (Γ) ;
Redistribute Θ to N machines if necessary.

converge. So, the accuracy will not be always good for PCA and KM. Overall,
computing the ML models incrementally in parallel is a deep topic and beyond
the scope of this paper. We leave this for future work.

3.4 Error Analysis of Model Approximation

In this section, we discuss how error the goes down as we read more data
points and how to determine the block size. First, we present the following
two propositions.

Proposition 1 According to the central limit theorem in statistics, sampling
distribution of the sample means approaches a normal distribution as the sam-
ple size gets larger [27]. In other words, for a sufficiently large sample size
(blocks), the closer distribution of the sample means will be to a normal dis-
tribution. We assume that the standard error of the sample mean is denoted
by ŝ [27], defined as, ŝ = σ√

n
; where n is the sample size (blocks) and σ is the

standard deviation.

Proposition 2 When estimating a global mean/variance by a sample mean/
variance, the larger the sample size (blocks) - the greater the likelihood for
possible mean values to cluster closely around the global mean, indicating the
sampling error tends to smaller.

Proof Sketch: For linear regression, we assume the error is Gaussian. For sim-
plicity, we assume LR can be viewed as Y = β0 + β1X + ε. We have already
stated that in general, the mean of a block will provide a good estimate of
the overall mean. In the same way, the unknown coefficients β0 and β1 in LR
define the overall regression line. We seek to obtain coefficients estimates β̂0
and β̂1 such that the linear model fits the data well as they are similar to true

Title Suppressed Due to Excessive Length 11

values β0 and β1. To compute the standard error associated with β̂0 and β̂1,
we use following formulas from [16]. These equations tell us how this deviation
shrinks with n, the more blocks we have, the smaller the standard error.

ŝ(β̂0)2 = σ2[
1

n
+

x̄2∑n
i=1(xi − x̄)2

], ŝ(β̂1)2 =
σ2∑n

i=1(xi − x̄)2
(9)

However, one extreme case is that the LR model will not work if the vari-
ables are correlated. That is, if it is a straight line, the matrix can not be
inverted. We need some variability in the data.

The PCA finds top q (conventional symbol is top k, but it will conflict
with our k=number of classes/clusters) principal components from all the
dimensions. These top components capture 90% variance of the data set [14].
We assume error goes down for these top q components as we read more data
points. It is impossible that all the dimensions show this behavior separately.
We know from Section 3.1 that we need to compute covariance or correlation
matrix from Γ first to compute PCA. From Proposition 2 presented above, it is
clear that error will go down for covariance and correlation matrix as we read
more data points. However, for both LR and PCA, dimensions that are 100%
correlated would induce noise and should be eliminated. Total correlation is
bad because it uncovers redundant data. Also, constant dimensions have the
same value for all the points and they should be eliminated too.

The Proposition 2 mentioned above tells us that sufficiently larger blocks
tend to produce more accurate results. Hence, for random blocks, the mean
and variance will be the same as the entire data set for larger block sizes. This
is totally applicable to Näıve Bayes and K-means as we are computing mean
(C) and variance (R) of these two models given in Eq. 7 and 8. So, as we read
more blocks of n, the standard error goes down. However, one extreme case
of KM is that it will not work for very large k (number of clusters) as it uses
distance to determine the closest cluster for each point.

Determining Block Size

We have discussed that for sufficiently large blocks, the error goes down as we
read more data points. Now the question is how large does the block size has
to be so that we get good accuracy and minimize error. That is, how many
data points are needed to re-estimate the ML model (Θ). For example, only
1 point is too small, and total n (number of records) points will have 100%
accuracy but it is not incremental. Estimation of mean and variance can be
explained using the central limit theorem but it does not give a proper bound.
So, we need a sharper bound like Chernoff bound. We define block size as nb
where 1 ≤ nb ≤ n, and accuracy α. For confidence 1 − δ, utilizing Chernoff
bounds, we get:

12 Sikder Tahsin Al Amin, Carlos Ordonez

δ ≥ 2 exp(− α2

2 + α
· nb)⇔ exp(

α2

2 + α
· nb) ≥

2

δ

⇔ nb ≥
2 + α

α2
ln

2

δ

(10)

The block size should at least satisfies the above-mentioned equation for
error going down. It is clear from the above equation that getting high accuracy
is costly but getting high confidence is comparatively easy because of ln. For
example, if we want α = 0.05 with 95% confidence, we need to set nb ≥ 3020.
Similarly, for α = 0.01 with 99% confidence, we need to set nb ≥ 106330.
However, having α = 0.01 with 99% confidence is very hard as we need very
large sample size. So, we define α = 0.01 with 99% confidence as the best case
scenario and α = 0.05 with 95% confidence as the worst case scenario. Also,
in this way, the sample size does not depend on the total data points.

3.5 Integration with Data Science Languages

We integrate our solution into a data science language. While our solution
applies to any language which provides an API call to C or C++ code (e.g.
Python, R), we will discuss our solution based on R here. The only dependency
is a library to read the data set in blocks. Data science languages like Python
or R are most popular among data analysts nowadays. The reason lies behind
SQL queries being slow, UDFs are not portable among DBMSs, Spark is not
easy to debug, and Java is slower than C++.

For our algorithm, Phase 1 must work in C++ (or C), and Phase 2 works
in the data science language. As Phase 1 does the “heavy” processing, the sum
of vector outer products (zi ∗ zTi) can be computed block by block efficiently
in C++. Computing this operation using traditional loops in R or any other
data science language is slow, usually one row at a time. However, R has a
dedicated matrix multiplication operator (%∗%) that is commonly used by R
analysts, is still very slow for multiplying large dimensional matrices [20]. We
use Rcpp [12], an R add-on package that facilitates extending R with C++
functions to compute Phase 1 efficiently. Rcpp can be used to accelerate the
computation by replacing an R function with its C++ equivalent function. In
Rcpp, only the reference gets passed to the other side but not the actual value
when we pass the values. So, memory consumption is very efficient and the
run time is the same. An equivalent of Rcpp library in Python is SWIG [4],
which automatically generates the bindings between C/C++ code and Python.
Moreover, C++ code can be optimized with compiler flags. Our summarization
matrix is also ideal for multi-core CPU and GPU computation, but this is an
aspect of future work.

Model computation in Phase 2 can be efficiently done by calling existing
R (or other data science languages) functions. While we are exploiting C++
in Phase 1, we are using the data science language “as is” in Phase 2. Repro-
gramming all the models in C++ is an overdoing and will be error-prone. As

Title Suppressed Due to Excessive Length 13

our model computation requires just changing certain steps in the numerical
method, we write the equations based on the data summaries and program
them in the data science language efficiently. Even for high d, model com-
putation is fast in any data science language. We use the existing functions
available in R to compute models based on Eq. 5, 6, 7, and 8. These functions
are available in Python too.

As mentioned earlier, any language that API call to C/C++ will be bene-
fited from our solution. For instance, in JavaScript, Emscripten [31] provides
numerous methods to connect and interact between JavaScript and compiled
C or C++. So, phase 1 in C or C++ be can be easily exploited in JavaScript
using Emscripten “Module” object. Phase 2 can be computed in JavaScript
itself as the common matrix operations and other functions are available here
too. Moreover, JavaScript runs on any OS and web browsers. Integrating our
solution with JavaScript will allow to run our solution on various platforms.

However, there are some drawbacks to our solution - not all the ML models
can be benefited utilizing our summarization mechanism. For example, SVM,
Decision Tree (C4.5) can not be computed using our solution. Similarly, neu-
ral network or time series models like ARIMA may not fully benefit from our
solution. In general, if there is no covariance or correlation in the model com-
putation - our method does not help much. As for counts and sums or averages
(means) computation - our method can partially benefit such models.

3.6 Time and Space Complexity

Here, we discuss the complexity of our algorithms in terms of n. The time
complexity of computing Gamma in Algorithm 1 is O(d2n). On the other hand,
we only compute L and diagonal of Q of the k-Gamma matrix in Algorithm 2.
So, the time complexity of k-Gamma is O(dn). This time complexity applies to
all the models utilizing the k-Gamma except K-means. The time complexity
of K-means would be O(kdn), where k is the number of clusters. We take
advantage of Gamma to accelerate computing the machine learning models.
So, the time complexity of this part does not depend on n and is Ω(d3), which
for a dense matrix may approach O(d4), when the number of iterations in the
factorization numerical method is proportional to d.

In the case of space complexity and memory analysis, our algorithm uses
very little RAM. Space required by Gamma matrix in the main memory
is O(d2). And it is O(kd) for k-Gamma matrix where k is the number of
classes/clusters. Here, we are reading X only once. That is all the models ex-
cept K-means are computed in one-pass. It is not possible to compute K-means
in one-pass because we initialize it randomly and it computes the model until
convergence is achieved. In our incremental computation, we are adding the
new Γ with the previous one for each block. So, space does not depend on the
number of blocks either and its fixed.

14 Sikder Tahsin Al Amin, Carlos Ordonez

Table 2: Base data sets description

Data set d n Description Model Applied
YearPredictionMSD 90 515K Rain or not LR, PCA
CreditCard 30 285K Raise in credit line NB, KM
Iris 3 150 Class of iris plant KM
SuperConductivity 81 22K Predict critical temp LR, PCA
SkinNonskin 4 250K Skin or not NB, KM
HouseholdPower 7 2M Power consumption time series LR

4 Experimental Evaluation

We present a detailed experimental evaluation in this section. First, we prove
the accuracy of our model by comparing with R language standard function
with the original data sets. We also show how relative error decreases for the
models as we read more blocks of data. Then we compare our algorithms
with the previous full pass Gamma version [7], standard R functions, and
Python Scikit-learn incremental library. Finally, we show how the model can
be obtained with incremental computation without reading the full data set
and the linear time complexity for a single data set.

However, we do not evaluate the parallel processing of Γ . Computing Γ in
a parallel with an array DBMS has already been done in [21] in inter-node and
intra-node parallelism manner exploiting both CPU and GPU. And computing
the models incrementally in parallel is not trivial because accuracy must be
measured and controlled with incremental learning.

4.1 Experimental Setup

4.1.1 Hardware and Software

We conducted our experiments on a machine with Intel Pentium(R) Quad-
core CPU running at 1.60 GHz, 8 GB RAM, 1 TB disk, and Linux OS. We
developed our algorithms using standard R and C++. And we compared our
solution with R and Python.

4.1.2 Data Sets

The data sets used for our experiments are summarized in Table 2, obtained
from UCI machine learning repository [11]. For computing accuracy and error
analysis (Section 4.2), we use the data sets “as is”. And for comparing ex-
ecution speed with other systems (Section 4.5), we sampled, replicated, and
shuffled the original data sets to get varying n (data set size) and d (dimen-
sions). For varying d, we chose d randomly from the original data set. Also,
due to replication our machine learning models may suffer from overfitting or
underfitting. To overcome this, we randomize the data sets (X) first. For each
row (vector) in the data set, we assign a 64bit random number and sort the

Title Suppressed Due to Excessive Length 15

data set based on the random number. The data set X is now randomized
(shuffled) and we apply our algorithms on this randomized data set. We ran-
domize the data set using Python Pandas library and using Pandas chunking
feature to read data set in chunks. So, it does not matter if the data set size
exceeds RAM capacity while randomizing (shuffling) the data set.

4.2 Asymptotic Error Analysis

YearPredictionMSD SuperConductivity

Fig. 5: How relative error decreases as data set size grows for LR and PCA on different data
sets.

Creditcard SkinNonskin

Fig. 7: How relative error decreases as data set size grows for NB and KM on different data
sets.

Here, we first establish our incremental computation is accurate and show
error goes down as discussed in Section 3.4. We emphasize that the term ‘ac-
curacy’ discussed here is not the prediction accuracy and similarly, the term

16 Sikder Tahsin Al Amin, Carlos Ordonez

Table 3: Final relative error of the models on respective data sets for our solution and Python
incremental library.

Model Data set n d Our (R) Python
Solution (sklearn)

LR YearPredictionMSD 515K 90 4.6E-11 5.7E-1
SuperConductivity 22K 81 2.5E-9 9.5E-1

PCA YearPredictionMSD 515K 90 3.5E-5 1.3E-3
SuperConductivity 22K 81 1.3E-5 2.4E-2

NB CreditCard 285K 30 0 1.7E-3
SkinNonskin 150k 4 0 2.6E-2

KM Iris 1M 4 4.7E-2 1.6E-2
SkinNonskin 150k 4 1.6E-4 2.6E-2

‘error’ is not the prediction error. We refer both accuracy and error as the
accuracy of our model and the relative error of our model respectively. To
compute accuracy and to show error going down, we use the real-world data
sets “as is”, meaning we did not alter the data sets (except for Iris data set,
where original n is very small). Table 3 shows the results of the experiments
that were performed to prove the accuracy of our method. We used two differ-
ent data sets for each model to show our algorithm is accurate for any data set.
All the data sets were obtained from the UCI machine learning repository. We
compared the accuracy of our incremental algorithms (with summarization)
with the standard ML models in R, computed on non-summarized original
data set. And we also compare our solution with the relative error of Python
scikit-learn incremental library utilizing partial fit. The details of computing
incremental models in Python is discussed later. We take the final value after
the algorithm provides the final result in both cases. For each model, we have
a different way of measuring the accuracy with the common underlying met-
ric being ‘relative error’. For LR, we take the maximum relative error of the
coefficient β and for PCA we take the relative error of maximum Eigenvalue.
On the other hand, for both NB and KM, we take the relative error of the
model parameter C (means). From Table 3, we can see the relative error for
all our models is close to zero, almost negligible. On the other hand, Python
has also low relative error but it seems to converge its solution rather quickly
than ours with higher relative errors (compared to our solution).

As mentioned in Algorithm 1 and 2 in Section 3.2, we compute the models
at each iteration. First, we compute the Gamma based on the block and add
the Gamma with previously computed Gamma up to the previous block. Then
we use this Gamma to compute the models. The block size represents a very
low portion of the original data. So, at the beginning when we compute the
models the error is very high. As we read more data points (number of blocks
increases), the error goes down as discussed in Section 3.4. In Fig 5, we show
how relative error goes down for models LR and PCA as the number of blocks
increases for two different data sets. For LR, we take the maximum relative
error of the coefficient β among d/2 dimensions. We are taking d/2 dimensions
because we need a stable LR model without numerical issues. It is impossible

Title Suppressed Due to Excessive Length 17

that for a fairly large d, all the d dimensions will show the same behavior.
First, we compute β from the standard library in R for the full data set and
then we compute beta using our method and take the maximum relative error
for each block. Similarly, for PCA, we take the relative error of the maximum
Eigenvalue from the model. Both plots show that error is high at the beginning.
As n increases, the error goes down. We also show a 2% error line for a better
understanding. On the other hand, Fig 7 shows the relative error vs number
of blocks plot for NB and KM models for different data sets. For Näıve Bayes,
we calculate the maximum relative error of the µ. Similar to before, first we
compute the value of µ using the standard library in R and then we compute
using Gamma and we take the maximum relative error. Also, for K-means we
take the maximum relative error of the model parameter C (means). Both
plots show the error going down with the increase of blocks as presented in
Section 3.4. We can see error stabilizes after reading few initial blocks. As the
error scale here is very small compared to LR, we show a 0.01% error line for
a better understanding.

We use a default block size above the minimum discussed in Sec 3.4. For
all the models, we can see that the error is less than 1% after reading 10% of
the data set except for LR which requires estimating error per variable. Also,
the maximum error does not exceed more than 5% after reading 10% of the
data set. This proves that we can get a fairly accurate model by our method
even without reading half the data set.

4.3 Data Set with Concept Drift

(a) (b)

Fig. 9: How relative error changes as we read more data with concept drift (for LR model):
(a) 2% increment after 30% initial model (b)1% increment after 5% initial model.

Here, we further evaluate our solution with a data set that has concept
drift, meaning the variance of data changes over time. We use a public time
series data set, HouseholdPower (Table 2), which records the electric power

18 Sikder Tahsin Al Amin, Carlos Ordonez

consumption of one household with a one-minute sampling rate over a period
of almost 4 years. We had to pre-process and clean the data set to make it
compatible with our solution as the data set had some missing values and
also, we do not need the date and time columns to build the model. To show
the advantages of our method, we compute the LR model on the data set
and show how our model behaves when new batch of data comes (kind of a
streaming fashion). Fig 9 shows the changes in relative error in each increment
as new batch of data comes. We consider two scenarios. (1) First, we compute
our summarization matrix on a good portion of the data set (30%), then
compute the LR model incrementally for each 2% of data. (2) We compute the
summarization matrix on a pre-mature data set (5%), and then compute the
LR model incrementally for each 1% of data. For both scenarios, we compute
the LR model with built-in R routines and compute the relative error of our
method. From Fig 9(a), we notice that the model behaves (more stable) well
when we compute our initial summarization matrix on a good portion of the
data (30%). However, when the initial summarization matrix is computed on
a non-stable data set (5%) and the increment is too small (1%), the model
oscillates too much (Fig 9(b)). We emphasize that although this experiment
behave like a data stream, we are not actually computing the models on real
streaming data which is out of scope of this paper.

4.4 Impact of Block Size on Accuracy

YearPredictionMSD SuperConductivity

Fig. 11: Relative error vs block size for different data sets: LR model.

We discussed in Section 3.4 that we need a minimum block size for the
error to go down. Here, we present how the block size affects the relative
error for different data sets. We discuss only LR and NB models, one model
from each algorithm. Fig 11 and 13 shows how relative error changes based on
different block sizes. We take three different block sizes: 10, 100, and 1000 for
each model. For each block size, we run the model for a fixed number of blocks

Title Suppressed Due to Excessive Length 19

CreditCard SkinNonskin

Fig. 13: Relative error vs block size for different data sets: NB model.

(32 blocks) and plot the relative errors. We can see that the relative error is
very high and it oscillates too much in each case when the block size is very
small (block size = 10). For block size=100, the relative error shows better
behavior than the previous one but it is not stable. On the other hand, with
a standard block size (block size=1000), the relative error does not oscillate
much and shows a stable behavior. This is because the models can not learn
properly when the block size is small. Also, in traditional ML algorithms, the
model suffers from underfitting when data samples are very low and it is often
recommended to get more samples or perform cross-validation. In our case,
the smaller block size shows the same behavior and yields incorrect results.

4.5 Comparison with Data Science Languages (R and Python)

Table 4: Time to compute LR on YearPrediction data set (in secs)

n d Our solution full pass gamma R Python
0.5M 9 7 7 25 15

1M 9 15 15 51 29
10M 9 159 153 357 287

100M 9 1689 1604 Fail 2878
0.5M 91 53 51 350 50

1M 91 110 105 670 100
10M 91 1068 1054 Fail 931

We compare our solution with our previous method of full pass gamma
[7], standard R, and Python incremental library. Our goal is to show that our
solution has the same capabilities as existing systems without much compen-
sation in execution time. In our previous solution with full pass gamma [7],
first, we computed the full summarization matrix based on the entire data set,
and then computed the ML models based on it. Also, the k-Gamma matrices

20 Sikder Tahsin Al Amin, Carlos Ordonez

Table 5: Time to compute PCA on YearPrediction data set (in secs)

n d Our solution full pass gamma R Python
0.5M 9 8 9 26 8

1M 9 16 17 42 16
10M 9 167 178 391 152

100M 9 1742 1901 Fail 1533
0.5M 91 58 63 345 52

1M 91 118 127 726 103
10M 91 1156 1252 Fail 972

Table 6: Time to compute Näıve Bayes on Creditcard data set (in secs)

n d Our solution full pass gamma R Python
0.3M 30 8 9 68 9

1M 30 44 45 245 43
10M 30 508 Fail Fail 415

Table 7: Time to compute K-means on Iris data set (in secs)

n d Our solution full pass gamma R Python
0.15M 4 3 20 3 3

1M 4 39 237 9 43
5M 4 188 768 48 214

10M 4 386 Fail Fail 425

were represented in a different way. More details are discussed on Section 5.
For Python, scikit-learn [24] with the “partial fit” method supports out-of-core
learning when the data can not fit in the main memory. However, the exact
algorithm as ours is not available for some models in scikit-learn incremental
library. We took the most similar algorithm in that case. Also, we used the
recommended parameter settings given in the documentation for all the mod-
els. To read the data set, we used the Python pandas library which is very
fast, widely used, and supports reading data sets by chunks (blocks). On the
other hand, to the best of our knowledge, we are not aware of any packages in
R that support incremental or online learning. So, we compare with standard
R functions that compute the models. For our algorithms, we use a default
block size above the minimum discussed in Sec 3.4.

Table 4 and 5 compares the time to compute LR and PCA on YearPredic-
tion data set. We can see that as the size of the data set increases, the inbuilt R
packages crash. One of the main reasons can be - it tries to load the whole data
set into the main memory, eventually resulting in untimely aborts of the pro-
gram. In the case of Python, we use SGDRegressor that learns a linear model
using stochastic gradient. However, we must emphasize that SGDRegressor
yields a very high relative error with “partial fit” when training is done in
batches. Incremental PCA in Python [26] has a similar implementation like
our Γ matrix where a similar computation like Q (in Γ) is performed in or-
thogonal form. From both Tables, we see that our solution is much faster than
R and they are competitive with Python. We must emphasize that Python is

Title Suppressed Due to Excessive Length 21

internally faster than R in most cases. Our solution in R computes the models
in the almost same time as Python and can be easily implemented in Python
to gain better speed.

In the case of Näıve Bayes, Table 6 compares the time to compute it for
Credicard data set. We see that R crashes for large values of n (10M, 100M)
as it fails to load the data set in the main memory. Also, in the case of full
pass gamma, all the intermediate gamma for each class based on blocks are
stored in a list in R. So, when the value of n is very large, the number of
intermediate gamma matrices increase, and R gives “subscript out of bounds”
error. We discussed this problem in Section 3.2 and provided an optimization
for our current solution. In Python, we use Gaussian NB with “partial fit” to
compute the model. There are other implementations available in Python to
compute NB incrementally. But Multinominal NB “Fails” if there exist nega-
tive values in the data set and Bernoulli NB is slightly slower than Gaussian
based on our experiments. So, we are comparing with the fastest and accurate
solution from Python. Our solution stores the k-Gamma in a single matrix and
for each block, the partial gamma is added to the full gamma. So our solution
can compute the models regardless of the number of blocks or n. Similarly, we
show the comparison with K-means in Table 7. As usual, R crashes for large
n (10M). On the other hand, our incremental algorithm performs better than
full pass gamma in each case which also fails for large n due to the problem dis-
cussed above. In Python, we use ”MinibatchKMeans” available in scikit-learn
library with “partial fit” like other models to compute it incrementally. The
scikit-learn MiniBatchKMeans is a variant of the K-means algorithm which
uses mini-batches to reduce the computation time, while still attempting to
optimize the same objective function. We used the default parameter settings
for running the comparisons. We can see from Table 7 that our solution has
almost the same or better performance than Python.

Besides, the summarization matrix can help the data scientists to explore
other basic statistics like mean, variance, or correlation from the data set. They
can compute any models that contain these computations. Also, they can get a
subset of data (ex: separate data based on gender or age) and see the statistics
there. However, computing the Gamma matrix directly from R or Python is
not possible. We need to compute n, L, and Q separately in these languages.
Though computing n and L is straightforward and fast in these languages,
they have to compute Q (i.e., XXT) using a traditional matrix multiplication.
As it is well known that the traditional default matrix multiplications are slow
in these languages and they run out of memory for huge matrices, we are not
showing the comparisons for this.

We believe there does not exist any system that is entirely good. Like
every good system, our solution has some minor drawbacks too. For instance,
we may not get the exact summarization each time if there are terabytes of
data all with floating-point numbers. Because the system may truncate values
after decimal points during matrix multiplication. Another shortcoming of our
solution is that we can not get back the original data from the summarization
matrix. That is, we can not get back X from Γ .

22 Sikder Tahsin Al Amin, Carlos Ordonez

4.6 Incremental Model Computation and Linear Time Complexity

Here, we present the experiments to compute the approximate ML models in
a incremental manner and the linear speed up.

4.6.1 Incremental ML Models from Partial Data Set

Table 8: Getting approximate ML models from partial data set (M=Millions; err=error)
(Time in Seconds)

% of Rel. err. Final
Θ Data set (X) n d X Time Our Sol. Python Rel. err
LR YearPrediction 0.5M 91 38 21 3.1E-2 14.9 4.6E-11

SuperConductivity 0.1M 81 36 13 1.5E-2 21.1 2.5E-9
PCA YearPrediction 0.5M 91 8 7 1.8E-3 6.6E-2 3.5E-5

SuperConductivity 0.1M 81 11 4 3.0E-3 5.8E-1 1.3E-5
NB CreditCard 1M 31 6 4 0 9.9E-1 0

SkinNonskin 0.2M 4 2 1 1.1E-3 4.5E-3 0
KM Iris 1M 4 10 3 2.9E-2 2.81 2.5E-2

SkinNonskin 0.2M 4 2 1 2.4E-3 9.2E-1 1.6E-4

Here, we show our solution can get an approximate model without reading
the whole data set. Table 8 shows how our incremental algorithm performs to
get a stable model with low relative error before reading even half of the data
sets. As mentioned before, we are reading data set by blocks and they represent
the samples of the total data set. For each block, we compare the relative error
with the last two blocks. If both the difference values are less than a thresh-
old, we stop our algorithm and get the model. We set the threshold value as
0.0001. We report both the relative error when we stop our algorithm and the
final relative error when we read the full data set. The difference between both
values is very small. Also, we report the percentage of the data set (X) that
has been read in blocks and the time it takes to compute the models up to
that portion. We can get an accurate model without even reading 25% of the
data set except for LR which needs almost half of the data set to generate an
accurate model. As for the time measurement from 8, obtaining the approx-
imate model is much faster and can be done within seconds. Moreover, we
compare our relative error with Python’s scikit-learn incremental algorithms.
We measure the relative error for Python at the same point (% of X read)
when our solution has the approximate model. We notice that, our solution
performs much better than Python in terms of getting an approximate model
with lower relative error.

4.6.2 Linear Time Complexity

Fig 14 shows how time increases as we read more portion of the data sets. The
X-axis is what percentage of the data set is read (in percentage) and the Y-axis

Title Suppressed Due to Excessive Length 23

Fig. 14: How time increases as the data set size increases

shows the time to calculate the models using Algorithm 1 and 2 discussed in
Section 3.2. We emphasize that we are not stopping the algorithms forcefully
or by giving any condition, and we are not taking the accuracy into account.
The algorithms are executed until all the blocks are read. Hence, we used a
fairly large value of n and a default d for each data set. As we read more blocks,
the data set size increases - and the time increases linearly. When the whole
data set is read, we can see that the time is almost linear for each model. This
shows that our incremental algorithm works evenly at each iteration and our
algorithm can achieve linear speedup.

4.6.3 Memory Utilization

Table 9: Maximum Memory Utilization

Model Data Set n d Max memory (%)
LR YearPredictionMSD 100M 9 11.3
PCA YearPredictionMSD 100M 9 11.3
NB CreditCard 10M 30 11.7
KM Iris 100M 4 11.4

We measure how much memory is needed to compute the models for large
data sets. We already mentioned in Section 3.6 that our solution uses very little
RAM. Table 9 shows the percentage of the physical memory of the system that
is used by our solution. We report the maximum value during the program
execution time. We stopped all the other user-defined processes and everything
else was set to default. We can see that our program uses a small portion of
the memory even for large data sets as mentioned in Sec 3.6. As a result, we

24 Sikder Tahsin Al Amin, Carlos Ordonez

can avoid “memory leak” which may cause all or part of the system to work
incorrectly.

5 Related Work

Here, we discuss the closely related works and our previous approaches.

5.1 Data Summarization

Data summarization to accelerate the computation of machine learning models
has received significant attention [1], [2]. Summarization of scalable machine
learning algorithms was done in a parallel manner in [20]. The authors intro-
duced the Gamma summarization matrix and computed the models like LR,
PCA, and VS (variable selection). However, this work was developed for a
parallel DBMS and did not have any incremental algorithm. In this paper, we
removed the use of DBMS completely which was the main focus on [20]. We
adapted the algorithms and implemented them such that they are incremental,
scalable, and more than 99% accurate in R. We also introduced k-Gamma ma-
trix and solved more models like NB and KM which are significantly different
from [20]. Moreover, our method can read arbitrarily large data set incremen-
tally in blocks. A similar, but less general, data summarization to ours was
pioneered in [32] by Zhang et al. to accelerate the computation of distance-
based clustering: the sums of values and the sums of squares. Later Bradley
et al. [5] exploited such summaries as multidimensional sufficient statistics for
the K-means and EM clustering algorithms. Also, data summarization has
been used for hierarchical clustering of large data sets [23] where the authors
proposed a summarization scheme to speed up single-link clustering method.
In short, our summarization is more general and it can help to compute more
complex models like LR, PCA, NB, and KM that could not be solved with
older summaries.

From a “systems” angle, R combined with C++ did not exist and nobody
thought we could insert efficient C++ code for a very common computation.
Gamma can be considered a fundamental incremental operator plugged into
the language, like UDFs in a DBMS. But this approach is more efficient be-
cause we do not need to modify the R runtime interpreter. For example, for
statistical analysis in R, RIOT [33] package extends R and makes R programs
I/O efficient. It features a flexible array storage manager and an optimization
engine suitable for statistical and numerical operations but it does not sup-
port incremental computation. Another package Ricardo [9] combines the data
management capabilities of Hadoop and Jaql with the statistical functional-
ity provided by R. However, it was also not envisioned the machine learning
models could compute large data sets incrementally on a single machine with
limited RAM in R.

Title Suppressed Due to Excessive Length 25

5.2 Incremental Algorithms

Incremental learning is a method of machine learning in which input data
is continuously used to extend the existing model’s knowledge. Several re-
searchers have aimed to adapt new data without forgetting the existing knowl-
edge for their learning model [28]. The concept of incremental learning, partic-
ular challenges, and popular approaches were discussed briefly in [13]. There is
a large body of works based on incremental and decremental Support Vector
Machine (SVM) [6], [8], [17]. Linear classifiers like linear SVM can be easily
designed to support incremental and decremental algorithms because of their
simplicity over kernel or other methods. Polikar et al. in [25] presented an
algorithm for incremental training of neural network (NN) pattern classifiers.
Like our work, the algorithm does not require access to previously used data
during subsequent incremental learning sessions. The authors of [15] proposed
a general adaptive incremental learning framework that is capable of learning
from continuous raw data (stream data). The authors did not compete for the
best classification accuracy across all data sets with existing models, rather
they investigated how to effectively integrate previously learned knowledge
into currently received data to improve learning from new raw data. Similar
to our idea, multiple data streams over a sliding window of most recent entries
are computed in one-pass fashion by the authors of [3]. The authors adopted
the transform-based data summarization technique in terms of the represen-
tation quality of a single signal and they extended it for multiple streams.
An incremental algorithm for clustering spatial data streams was proposed by
Ling et al. in [30] which operates on two phases like our K-means algorithm.
Incremental approaches have also been used in relational databases by Tari et
al. in [29] where extraction is then performed on both the previously processed
data from the unchanged components as well as the updated data generated
by the improved component.

6 Conclusions

We presented a smart, generalized incremental algorithm to compute machine
learning models using summarization matrix. Our solution is intelligent, learn
with fewer points like sampling and get more and more accurate as we read
more data. Also, we can read an infinite amount of data and update the model
upon arrival of new data without recomputing everything. Our incremental
learning allows learning from a data stream. The solution can significantly
reduce the storage requirement on updating the ML models without the loss
of model accuracy and enhance computational efficiency. We also studied how
to integrate our smart solution with a data science language, specifically R
but it can be extended to any language supporting API call to C or C++.
We justified why we need C++ and why we use existing analytic functions
to compute models from the summarization matrix without reprogramming
everything. We would like to note that it is not our intention to compete for

26 Sikder Tahsin Al Amin, Carlos Ordonez

the best speed across all the data sets of the proposed approach with those
of existing methods. Rather we proposed a generalized solution that can work
in any data science language. Experimental results proved that our model
computation is more than 99% accurate for original base data sets. We also
achieve remarkably higher speed than R functions and almost the same speed
as Python incremental library.

Our research opens many possibilities. First, we want to extend our solution
for sparse data sets. We want to explore what happens if we add or remove
dimensions from the data set. This is a much harder problem since we have
to read the data set again. Also, we will tackle other ML models, including
SVMs, LDA, HMMs. A good research direction is how to compute the ML
models incrementally in parallel as we have already discussed that this is a
much harder problem to tackle. Finally, we would like to analyze how our
summarization matrix and ML models behave on data streams over sliding
windows.

References

1. Ahmed, M.: Data summarization: a survey. Knowl. Inf. Syst. 58(2), 249–273 (2019)
2. Al-Amin, S.T., Chebolu, S.U.S., Ordonez, C.: Extending the R language with a scalable

matrix summarization operator. In: IEEE International Conference on Big Data, Big
Data 2020. pp. 399–405 (2020)

3. Altiparmak, F., Tuncel, E., Ferhatosmanoglu, H.: Incremental maintenance of online
summaries over multiple streams. IEEE Trans. Knowl. Data Eng. 20(2), 216–229 (2008)

4. Beazley, D.M.: SWIG: an easy to use tool for integrating scripting languages with C
and C++. In: Fourth Annual USENIX Tcl/Tk Workshop (1996)

5. Bradley, P., Fayyad, U., Reina, C.: Scaling clustering algorithms to large databases. In:
Proc. ACM KDD Conference. pp. 9–15 (1998)

6. Cauwenberghs, G., Poggio, T.A.: Incremental and decremental support vector machine
learning. In: Advances in Neural Information Processing Systems 13, Papers from Neural
Information Processing Systems (NIPS) 2000, Denver, CO, USA. pp. 409–415. MIT
Press (2000)

7. Chebolu, S.U.S., Ordonez, C., Al-Amin, S.T.: Scalable machine learning in the R lan-
guage using a summarization matrix. In: Database and Expert Systems Applications
DEXA. pp. 247–262 (2019)

8. Chen, Y., Xiong, J., Xu, W., Zuo, J.: A novel online incremental and decremen-
tal learning algorithm based on variable support vector machine. Cluster Computing
22(Supplement), 7435–7445 (2019)

9. Das, S., Sismanis, Y., Beyer, K., Gemulla, R., Haas, P., McPherson, J.: RICARDO:
integrating R and hadoop. In: Proc. ACM SIGMOD Conference. pp. 987–998 (2010)

10. David, J., Pessemier, T.D., Dekoninck, L., Coensel, B.D., Joseph, W., Botteldooren, D.,
Martens, L.: Detection of road pavement quality using statistical clustering methods. J.
Intell. Inf. Syst. 54, 483–499 (2020)

11. Dua, D., Graff, C.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

12. Eddelbuettel, D.: Seamless R and C++ Integration with Rcpp. Springer, New York
(2013)

13. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: 24th
European Symposium on Artificial Neural Networks, ESANN (2016)

14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer,
New York, 1st edn. (2001)

15. He, H., Chen, S., Li, K., Xu, X.: Incremental learning from stream data. IEEE Trans.
Neural Networks 22(12), 1901–1914 (2011)

Title Suppressed Due to Excessive Length 27

16. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning,
vol. 112. Springer (2013)

17. Karasuyama, M., Takeuchi, I.: Multiple incremental decremental learning of support
vector machines. In: 23rd Annual Conference on Neural Information Processing Systems
2009. pp. 907–915 (2009)

18. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015)
19. Levatic, J., Ceci, M., Kocev, D., Dzeroski, S.: Semi-supervised classification trees. J.

Intell. Inf. Syst. 49, 461–486 (2017)
20. Ordonez, C., Zhang, Y., Cabrera, W.: The Gamma matrix to summarize dense and

sparse data sets for big data analytics. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 28(7), 1906–1918 (2016)

21. Ordonez, C., Zhang, Y., Johnsson, S.L.: Scalable machine learning computing a data
summarization matrix with a parallel array DBMS. Distributed and Parallel Databases
37(3), 329–350 (2019)

22. Osojnik, A., Panov, P., Dzeroski, S.: Tree-based methods for online multi-target regres-
sion. J. Intell. Inf. Syst. 50, 315–339 (2018)

23. Patra, B.K., Nandi, S.: Effective data summarization for hierarchical clustering in large
datasets. Knowl. Inf. Syst. 42(1), 1–20 (2015)

24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.: Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

25. Polikar, R., Upda, L., Upda, S.S., Honavar, V.G.: Learn++: an incremental learning
algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C 31(4),
497–508 (2001)

26. Ross, D.A., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking.
Int. J. Comput. Vis. 77, 125–141 (2008)

27. Rumsey, D.: Statistics For Dummies. –For dummies, Wiley (2011)
28. Spokoiny, A., Shahar, Y.: Incremental application of knowledge to continuously arriving

time-oriented data. J. Intell. Inf. Syst. pp. 1–33 (2008)
29. Tari, L., Tu, P.H., Hakenberg, J., Chen, Y., Son, T.C., Gonzalez, G., Baral, C.: In-

cremental information extraction using relational databases. IEEE Trans. Knowl. Data
Eng. 24(1), 86–99 (2012)

30. Totad, S.G., Geeta, R.B., Reddy, P.V.G.D.P.: Batch incremental processing for fp-tree
construction using fp-growth algorithm. Knowl. Inf. Syst. 33(2), 475–490 (2012)

31. Zakai, A.: Emscripten: an llvm-to-javascript compiler. In: Lopes, C.V., Fisher, K. (eds.)
Companion to the 26th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA. pp. 301–312. ACM (2011)

32. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method
for very large databases. In: Proc. ACM SIGMOD Conference. pp. 103–114 (1996)

33. Zhang, Y., Zhang, W., Yang, J.: I/O-efficient statistical computing with RIOT. In: Proc.
ICDE (2010)

