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Abstract—Analytic processing systems have been traditionally
designed to optimize time performance, leaving energy as a
secondary aspect. More recently, during the past decade, there
has been a growing interest in addressing the energy efficiency
of analytics and in particular query processing (QP), our focus
in this article. Numerous solutions, spanning both software and
hardware approaches, have been proposed in database systems,
but they have important limitations: (i) They were designed for
old QP architectures, (ii) they do not consider emerging QP
AI trends, such as learned query plans and hybrid QP, and
(iii) they lack a well-defined framework with clear steps, which
can be applied in a modern data science ecosystem. With such
reasons in mind, we introduce a general framework that will
help researchers and industry practitioners in addressing energy-
efficiency challenges.

Our framework, named SATM2V , integrates five major steps:
(1) assessing public sentiment and alerting analysts on the real
impact of data science on decarbonization, (2) conducting “under
the hood” energy consumption audits to identify energy-hungry
components, (3) turning on/off and tuning parameters of com-
ponents to understand their contribution to energy savings. (4)
developing models and measurement techniques for quantifying
energy consumption, (5) developing and executing tactics for
energy saving. We then turn our attention to database systems
and identify relational join processing as a representative energy
consumption example. QP becomes particularly difficult when
dealing with queries involving multiple join operations since join
ordering is known to be an NP-hard problem, whose optimal solu-
tion remains an open problem. We apply our solution framework
to the specific case of hybrid QPs, studying the impact of various
join ordering optimization techniques on energy efficiency.

Extensive experiments are conducted using the well-known
Join Order Benchmark dataset to evaluate the effectiveness and
tradeoffs of several query optimization techniques on time and
energy consumption.

I. INTRODUCTION

The international climate goals established by COP (Con-
ference of the Parties) and the International Energy Agency
(IEA) mandate the achievement of net-zero global carbon
dioxide (CO2) emissions by approximately mid-century1. Ad-
ditionally, these objectives require the realization of net-zero
greenhouse gas emissions by the close of this century. Substan-
tial reductions in emissions, which are becoming increasingly
attainable and cost-effective, can be achieved through the
enhancement of energy efficiency (EE), the electrification
of energy consumption, and the transition to emission-free
energy sources. This decarbonization effort encompasses var-

1https://www.iea.org/commentaries/the-iea-at-cop26

ious sectors of our lives, including transportation, buildings,
agriculture, and digitalization.

Intensive research initiatives and efforts have been under-
taken to study EE across various objects of different sectors.
EE emphasizes the goal of using the same power to provide
better performance or the same service with less energy [1].
Unfortunately, these studies are imbalanced. The building
sector has made significant strides in scientific research and the
accessibility of tools for achieving energy savings, especially
when compared to other sectors, such as digitalization. A
search on Google Scholar using the query ”energy efficiency
in buildings” yielded a staggering 3,790,000 entries.

To promote research in digitalization, it is highly recom-
mended to leverage existing initiatives for energy saving in
other sectors. This can be achieved by providing a compre-
hensive framework with well-identified phases for academia
and industry to follow. Therefore, we should outline the key
dimensions of energy saving in major sectors and adapt them
to digitalization, with a particular focus on data science. This
will allow us to evaluate and address any aspects that need
improvement or refinement.

A. SATM2V framework

From our in-depth analysis of major publications, our take-
aways from the Improvement Project funded by the Sudoe
Interreg program, which addresses the challenge of Near Zero
Energy Buildings (NZEBs) [2], and our recent studies related
to designing green query data processors [3]–[5], we have de-
termined that the EE of an object in a given sector is typically
studied from a combination of the following dimensions2:
(1) Public sentiment on the real impact of the object on
decarbonisation vary greatly based on factors such as loca-
tion, demographics, education, and personal beliefs, spanning
from optimism to skepticism. Governments and organizations
must conduct effective communication campaigns to convince
people of the urgent need for decarbonization.
(2) Audis entail a comprehensive evaluation of an object’s
energy performance and efficiency. Their primary objective is
to identify opportunities for energy conservation, cost reduc-
tion, and environmental enhancement. Conducting precise and

2Ladjel Bellatreche and Fouad Dejhalli were supported by the European
Regional Development Fund (ERDF), under the program Interreg SUDOE
SOE3/P3/E0901 (Project IMPROVEMENT). Any questions about the project
can be sent to: bellatreche@ensma.fr



thorough audits can be instrumental in addressing the ques-
tions and concerns raised by skeptical individuals regarding
the object’s impact on decarbonization.
(3) Tactics are essential techniques used by professionals to
control quality of service (QoS) aspects like performance,
energy efficiency, and security [6].
(4) Modeling and Measurements

of consumed energy of the object involves creating a for-
mal representation of real objects using equations, graphical
models, rules, decision trees, examples, neural networks, etc
[7]–[10]. This is crucial for building analytical and predictive
models, especially for energy consumption. These models are
essential for simulating [11] and measuring energy usage in
various components of an object [12].

(5) Variability plays a significant role in reducing energy
consumption. The EE of an object is profoundly influenced
by variations in its components and external factors [13].

Inspired by the above-depicted factors, we propose a frame-
work called SATM2V for studying the EE of objects, encom-
passing five closely related dimensions (Figure 1). This frame-
work forms the basis for more sustainable and EE solutions.
One notable aspect of this framework is its adaptability to
object components. For instance, when using the SATM2V
framework to address EE in a building, the same tools can
effectively be applied to data science. In the literature, these
five dimensions are not commonly studied in an integrated
manner.

EE
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Fig. 1. Dimensions of EE of an object

In the field of data science, the dimensions described in our
framework have been extensively explored, especially in the
development of environmentally friendly query processors for
use in traditional database servers and data centers. However,
the dimension related to the role of variability in object
components and external factors in energy efficiency has
not received the same level of scrutiny. Some components
have been thoroughly analyzed, while others, despite their
recognized impact on query processor quality of service, have
been disregarded.

In this paper, we investigate the energy efficiency of
join ordering. The join operation is a critical component
for advanced analytics, techniques like machine learning and

predictive modeling. This operation allows the creation of
feature-rich datasets for training machine learning algorithms,
enhancing predictive model accuracy. In the context of data
science applications, the role of join has become even more
significant. This heightened importance stems from the re-
quirements of data quality, data integration, and data prepa-
ration. Join ordering becomes crucial when query processors
employ numerous join operations.

B. Join ordering

Query Processors (QP) have been the subject of exten-
sive research for many decades, primarily focusing on their
performance QoS. One critical component of QP is the
query optimizer, which is responsible for identifying the most
efficient query execution plans, whether for a single query
or multiple queries. This optimization process often leads to
the generation of numerous query plans, driven by different
strategies for joining various tables or entities.

Numerous existing solutions have been implemented within
open-source datastores, demonstrating their efficiency in sav-
ing energy and their practicality [14]. However, despite these
advancements, these solutions exhibit several shortcomings: (i)
any of these solutions were primarily designed for traditional
QPs that rely on analytical cost models. (ii) They often do
not take into account emerging QP , such as learned QP
[15] and hybrid QP [16], which require different optimization
strategies. (iii) These solutions lack a comprehensive and
well-established framework with clearly defined steps that
are tailored to the unique characteristics of the data science
ecosystem. (iv) They may not deeply analyze the role of
variability in QP elements, such as the choice of join order
techniques, in terms of energy conservation.

However, it is noteworthy that, to our knowledge, no exist-
ing work has comprehensively investigated the variability of
join ordering techniques and their influence on energy savings
in a hybrid QP such as HybridQP system [16].

C. Paper contribution and structure

The contribution of the paper is as follows:
(1) We present a practical application of the SATM2V

framework within the broader data science sector, specifically
focusing on data processors (QPs) widely used for data-
intensive and workflow applications (Figure 2).

(2) We consider the variability in SATM2V by analyzing
join ordering techniques and their influence on energy savings
in data processors. To achieve this, we undertake an in-depth
investigation into five distinct join ordering techniques, which
include iterative methods, genetic algorithms, PostgreSQL
join ordering technique, simulated annealing, and RTOS.
These techniques are integrated into the HybridQP system,
and we assess their respective energy-saving capabilities
using the Join Order Benchmark (JOB). To the best of our
knowledge, it is the first paper that addresses energy
efficiency in hybrid query processors.



Our paper is organized as follows: Section II describes
the five pillars of STM2V framework in the context of
data science. In section III, we present key concepts of
the join operation and join ordering solutions. Section IV
incorporates the query processors into the framework. We
focus on join ordering as an essential and energy-conscious
operation. Section V is dedicated to presenting the results
of our experimental evaluation. Finally, in Section VI, draw
conclusions about our work and provide insights into potential
future research directions.

II. STM2V FRAMEWORK IN DATA SCIENCE

The IEA recognizes the transformative potential of digital-
ization in the world’s energy systems. This sector encompasses
various components (Fig. 2) such as Cloud computing, Big
Data management, the Internet of Things (IoT), Artificial
Intelligence (AI), network technologies, blockchains, and com-
puting power. Given the diversity and heterogeneity of these
components, conducting an in-depth analysis is challenging. In
this section, we apply the STM2V framework to data science,
an interdisciplinary field that requires various digitalization
components.

Several definitions of data science exist; we favor the one
provided by Tamer Özsu in his keynote speech at IEEE Big
Data Conference 2022 [17].

Definition 1: Data Science is a data-based approach to
problem-solving by analyzing and exploring large volumes
of possibly multi-modal data, extracting from it knowledge
and insight that is used for better decision-making. It involves
the process of collecting, preparing, managing, analyzing, and
explaining the data and analysis results [17].
This definition emphasizes two crucial elements of data sci-
ence: data and the processes (Figure 2).
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Fig. 2. Digitalisation World

The objective of this section is to describe STM2V frame-
work from the data science perspective.

A. Public sentiment

Digitalization, in general, and its sub-sector data science, in
particular, are sectors that frequently spark contentious debates

regarding their role in the process of decarbonization.

a) Data science skepticism

It is essential to note that there is no universally accepted
benchmark for monitoring the carbon footprint of elements
constituting data science. However, valuable statistics are
provided by international organizations. Cloud data centers in
charge of storing and processing data, for instance, consumed
approximately 205 terawatt-hours (TWh) of electricity in
2020, equivalent to roughly 1% of the world’s total electricity
consumption3. Projections indicate that this consumption is
poised to increase to 359 TWh by 2025, signifying a 75%
surge from 2020. Network infrastructure components, includ-
ing routers, switches, and wireless access points, also con-
tribute to energy consumption, as they remain powered on and
necessitate cooling to maintain peak performance. Heating,
ventilation, and air conditioning (HVAC) are responsible for a
significant percentage of global CO2 emissions [18].

AI workflow applications that employ extensive machine
learning and deep learning models with a high number of
features are energy-intensive, covering training, building, and
deploying models [19]. Table I provides a concise summary
of a recent study investigating the environmental implications
of AI workflow applications [19].

The alarming statistics regarding AI energy consumption are
compelling the scientific community to develop measurement
tools and propose hardware, software, and software-defined
hardware infrastructure solutions4 to mitigate this issue. An
urgent area of study that needs to be conducted to mitigate
these statistics involves proposing methods for measuring the
Return on Investment (ROI) of AI solutions5.

b) Data science optimism

The defenders of this perspective emphasize the significant
positive impact of data-driven tactics in enhancing EE and
reducing maintenance costs across various domains. Here are
two notable examples: (i) Microsoft’s report, published in
2018, highlights the potential of AI in addressing climate
change. By using AI to optimize energy consumption, it
is estimated that emissions could be reduced by 1.5% to
4.4%, while also boosting global GDP by 3.1% to 4.4% by
2030. (ii) In 2022, Google’s DeepMind team introduced the
BCOOLER reinforcement learning agent [18]. BCOOLER is
designed to enhance the efficiency of cooling systems in data
centers. Through AI-driven optimization, BCOOLER achieved
remarkable energy savings of 12.7%. This showcases the
potential of AI in making existing infrastructure more energy-
efficient.

These two examples are indeed intriguing as they provide
quantifiable data that highlights the impact of workflow ap-
plications on energy savings. For the sake of transparency, it
is crucial that such studies incorporate the energy consump-

3https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
4https://semiengineering.com/software-defined-hardware-gains-ground-again/
5https://www.oracle.com/a/ocom/docs/artificial-intelligence/

idc-ai-ebook-business-transformation.pdf



TABLE I
SOME EXAMPLES ENERGY DEMAND OF AI MODELS: LUCCIONI ET AL. [19]

Model Number of Features Data Center PUE Power Consumption Changes CO2 equivalent emissions
Gopher 280B 1.08 1,066 MWh 352 tonnes
BLOOM 176B 1.2 433 MWh 26 tonnes
GPT-3 175B 1.1 1,287 MWh 502 tonnes
OPT 175B 1.09 324 MWh 70 tonnes

tion associated with the training process. The evaluation of
energy consumption for any AI solution should encompass
not only the ongoing energy usage by the target object after
deploying the AI models but also the energy expended during
the training phase. Several initiatives have been launched to
implement machine learning (ML) in ultra-low power systems
like TinyML6.

B. Audits

Conducting a thorough audit of data science requires a
comprehensive understanding of its ecosystem. Tamer Özsu
identifies the four components of data science ecosystem [17]
(Figure 3): (1) Big Data Engineering that involves recurring
activities for ETL/ELT, data quality, data enrichment, pro-
filing, integration, managing data changes over time, data
processing using hundreds of thousands of periodic data-
intensive queries. (2) data analytics that includes workflow
based techniques such as data mining, machine/deep learning,
visualizations. (3) data protection (security and privacy issues),
and (4) data ethics. The life cycle model and its variants may
appear to be linear, but in reality, they are cyclical and can
be repeated multiple times over the lifetime of a project. The
cyclical nature of this life cycle contributes to an increase in
the energy consumption of data science applications.

The audit underscores three primary components of data
science that are sensitive to energy consumption: data storage,
data-intensive applications, and workflow-based applications.
These components revolve around data processors, which are
at the core of EE considerations and also have an impact
on cooling systems. The join operation stands out from
other operations applicable to datasets because it is utilized
in various stages, including data preparation, data quality
assessment, and model building. As a result, the way the
join operation is employed can have a substantial impact
on energy savings, particularly if it is not used effectively [20].

C. Tactics

Here we will review important hardware and software
tactics for data science components.

a) Hardware tactics

Our review has identified several hardware tactics to con-
serve energy during data processing. These include: (a) em-
ploying microprocessors with lower power consumption (b)

6https://www.eetimes.com/ai-at-the-very-very-edge/
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Fig. 3. A data science Lifecycle

utilizing multi-core processors to improve workload distribu-
tion and parallelism, (c) incorporating low-power components
such as low-power RAM, SSDs, and graphics, (d) optimizing
cooling systems, like fans and heat sinks, to reduce power
consumption, (e) employing high-efficiency power supplies,
(f) utilizing energy-efficient processors dedicated to workflow
applications, such as the NVIDIA A100 Tensor Core GPU
and Google TPU (Tensor Processing Unit), as well as Edge
AI Accelerators (g) implementing energy-saving measures in
network devices like routers, switches, network interface cards,
dynamic power management, packet routing, communication
protocols, network resource scheduling, and Dynamic Voltage
and Frequency Scaling (DVFS) [21].

b) Software tactics

Several software tactics are available to achieve energy
savings. Here are some illustrative examples: (a) query/job
scheduling [22], (b) caching strategies [23], (c) data compres-
sion [24], [25], (d) parallelism and multithreading [11], (e)
optimisation of network communication [26], (f) virtualization
and dockerization [27], (g) energy-aware algorithms [28],
(h) predictive analysis [5], (i) efficient data processing by
optimizing data processing pipelines and reducing unnecessary
data transfers citeKatalDC23, (j) energy profiling and moni-
toring, achieved through software tools that track and analyze
energy usage, aiding developers in identifying energy-intensive
sections of their applications for targeted optimizations [8],
(k) scaling down, particularly in cloud environments, where
dynamically scaling down virtual machines and resources



during periods of reduced demand conserves energy [29], (l)
energy brokering, involving the use of energy brokers in multi-
cloud environments to choose the most energy-efficient service
before task assignment, promoting efficient resource utilization
[30], (m) employing energy-efficient cooling tools, such as
BCOOLER [18].

D. Modeling and Measurements

There has been a wide body of research on energy efficiency
modeling of data science components such as data centers,
data query processing. The abundance of published papers
contributes to having several surveys related to six main topics
[7], [9], [31], [32]: computing, storage and data management,
network, infrastructures, interdisciplinary, and software and
hardware modeling and energy consumption prediction.

As an example, a comprehensive strategy for managing
data center energy consumption typically involves four key
steps: feature extraction, model construction, model validation,
and applying the model to a task like prediction. Feature
extraction is the initial step in minimizing a data center’s
energy usage. It involves quantifying the energy consumption
of its components and pinpointing the areas where the most
energy is utilized. The next step, model construction, involves
utilizing the chosen input features to create an energy con-
sumption model. This is achieved through analysis techniques
like regression, machine learning, and more. Following model
construction, the next crucial step is model validation, ensuring
that the model is suitable for its intended purposes. Finally, the
established model can serve as the foundation for predicting
the energy consumption of components or systems. These
predictions can be leveraged to enhance data center energy
efficiency.

E. Variabilitiy

Variability, in the context of software systems or compo-
nents, is commonly understood as the capacity to adapt to
specific contexts [33]. This adaptation may involve making
adjustments to the software’s structure, behavior, or underlying
processes. When examining the energy efficiency (EE) of a
query processor, it becomes evident that certain factors of
variability, like the join order and the methods used for joining
(e.g., hash join, sort-merge join, nested loop join), can have a
substantial impact on its energy consumption. Consequently,
assessing the energy consumption of query processors requires
a departure from conventional software approaches, as these
typically treat the data store hosting the query processor as
static, without varying its critical elements.

III. JOIN ORDERING IN QUERY PROCESSING

In this section, we introduce the join considered as one of
the fundamental operations in data science. The primary goal
of a join operation is to combine two entities or tables based on
common attributes. Crucial aspects of join operations include
their commutative and associative properties. This means that
individual joins can be evaluated in any order, enabling the
formation of join trees. It is important to notice that different
join trees may show very different evaluation performances.

A sequence of join operations can easily represented by a
join tree that helps in selecting the order in which joins are
executed. These trees can take on different shapes, such as
deep left trees, deep right trees, bushy trees, and more. The
choice of join tree can significantly impact query evaluation
performance. The number of possible join trees grows rapidly
as the number of join relations increases. The number of binary
trees with n leaf nodes is given by C(n− 1), where C(n) is
the Catalan Number and it is defined as:

C(n) =
1

n+ 1

Ç
2n

n

å
(1)

To illustrate this complexity, consider a scenario in which the
query processor receives a query involving 21 tables within
the context of the Join Order Benchmark. If it employs a
left deep tree for query optimization, it must contend with
an astonishing 21! (5.1090942e+19) potential join orders.

This exponential growth poses a challenge in query op-
timization since assessing all potential join trees is often
infeasible. Determining the ”most efficient” join tree and join
implementation is a complex and challenging problem. The
exponential increase in possible join trees as the number of
join relations grows makes this problem NP-hard. On the other
hand, there are several implementations of join operations,
each with its own advantages and trade-offs depending on the
size of the involved tables and their data distribution. Common
join implementations include nested loop joins, sort-merge
joins, and hash joins.

In general, QPs are responsible for the critical task of
identifying optimal join strategies and join implementations.
This optimization aims to minimize both query execution time
and resource consumption.

The problem of join order selection has been widely studied
for decades [34]–[36]. Several techniques and algorithms have
been proposed in the literature to tackle the problem of join
ordering. Three tendencies emerge: (i) some studies used
dynamic programming and branch and bound to prune the
search space of the join order problem. (ii) the usage of
approximate algorithms such as greedy, randomized, genetic
strategies [36], Monte Carlos tree search [37] are used, (iii)
recently machine learning and deep learning algorithms have
been proposed such as RTOS [35], and Rejoin [34]. This
interest in join order techniques is entirely justified due to
their crucial role in query optimization. The fundamental
question that arises is as follows: Does the join order technique
employed by a datastore effectively optimize queries while also
conserving energy resources? To answer this question, let us
consider the following example:

Example 1: Let us consider the following query extracted
from the Join Order Benchmark [38]. It involves 9 joins.
SELECT MIN(n.name)
FROM cast_info ci, company_name cn,
keyword k, movie_companies mc,
movie_keyword mk, name n, title AS t
WHERE k.keyword =’character-name-in-title’
AND n.id = ci.person_id



AND ci.movie_id = t.id
AND t.id = mk.movie_id
AND mk.keyword_id = k.id
AND t.id = mc.movie_id
AND mc.company_id = cn.id
AND ci.movie_id = mc.movie_id
AND ci.movie_id = mk.movie_id
AND mc.movie_id = mk.movie_id
AND n.name like ’%S%’;
We executed this query with two different join orders: one
utilized by the PostgreSQL DBMS and another selected from
our exhaustive enumeration of all possible join orders. With
the first join order, the query executed in 17 seconds and 606
milliseconds, consuming 0.074 Joules. However, when using
the second join order, the query executed much faster, taking
only 2 seconds and 104 milliseconds and consuming only
0.044 Joule. This example underscores the significant impact
of choosing the right join order on the performance and energy
consumption of a query processor.

IV. QUERY PROCESSING OF DATA SCIENCE IN STM2V
FRAMEWORK

In this section, we provide a practical approach for imple-
menting data science query processors within the STM2V
framework. We focus on two crucial aspects of STM2V :
auditing and variability.

A. Auditing of query processors

Four main types of query processors exist: rule-based,
cost-based, learned-based, and hybrid (Figure 4). A rule-
based query processor applies a set of predefined rules and
transformations to the query. These rules are designed to
generate an optimized query execution plan that retrieves the
desired results in the most efficient way possible [39]. A
cost-based query processor relies on the usage of analytical
cost estimation models to evaluate different query execution
plans. Thanks to heuristics, they choose the one with the
lowest estimated cost. These processors have been widely
used in traditional databases for decades. They are efficient
and provide stable query plans but do not learn from past
mistakes [16]. Learned-based query processors have been more
recently proposed and leverage machine learning techniques to
make query optimization decisions. They learn from historical
query performance data and adapt their strategies over time to
improve query execution.

Query Processors

Rule-Based Query 
Processors

Cost-Based Query 
Processors

Learned-Based 
Query Processors

Hybrid-based Query 
Processors

Fig. 4. Taxonomy of Query Processors

It is essential to note that the term ”learned query processor”
is applied to any QP that incorporates machine learning or
deep learning techniques in at least one of its optimization

steps. Several notable examples of learned-based query pro-
cessors include: Neo System [15] utilizes a learning-based
query optimizer that relies on deep neural networks to generate
query execution plans. QuickSel adopts query-driven mixture
models as an alternative to traditional methods like histograms
and samples for adaptive selectivity learning [40]. ReJOIN:
ReJOIN introduces a deep reinforcement learning approach
to tackle the problem of join order enumeration in query
optimization [34]. These processors are effective for static
workloads, as they use training data to optimize query plans.
However, they may struggle with dynamic workloads [16].
Hybrid query processors have been proposed to overcome the
limitations of learned-based processors. They take advantage
of both cost-based and learned-based query processors to han-
dle dynamic workloads effectively. HYBRIDQ0 is an example
of a hybrid query processor that combines PostgreSQL’s cost
model with a learning model that predicts execution time and
uncertainty [16].

B. Variability of query processors

To investigate the impact of join order variability on query
processors, we propose a methodology built upon the system
framework of HybridQO. HybridQO is a unique hybrid query
processor that merges learned-based and cost-based query
(PostgreSQL) processors to determine the best query execution
plan.

Its functioning is summarized as follows. When a query is
issued, HybridQO encodes it using three vectors: a selection
vector, a projection vector, and a join vector. To efficiently
manage the join order, HybridQO introduces the concept of
join order prefixes. Instead of considering the entire join order,
it focuses on a join order prefix (with a length greater than 2).
This prefix is important for left-deep plans. These best prefixes
can then be recommended to generate alternative join orders.

To illustrate the idea of a prefix, let us take Example 1,
which involves 8 joins. A prefix with a length of 2, including
two tables from this query, can be implemented in PostgreSQL
using a leading hint, as follows:

postgres=# /*+ Leading (r t) */ SELECT...

HybridQO chooses a join order from the multitude of possible
options. Given the high computational cost of evaluating
all possible join orders exhaustively, HybridQO employs a
learning-based selection approach using the Monte Carlo Tree
Search algorithm to select prefixes. Following this, it leverages
PostgreSQL to generate complete plans as candidate plans
and subsequently utilizes a learning model to select the best
candidate plan.

Notably, this model does not only predict plan performance;
it also computes the uncertainty associated with the prediction.
This uncertainty metric gauges the model’s confidence in its
prediction. Consequently, the model selects the optimal plan
that exhibits high performance and low uncertainty. Once the
plan is chosen, the query is executed with the selected plan,
and the resulting data is employed as a training example to
iteratively enhance the model.



The key takeaways from the operation of HybridQO are
as follows: (i) the quality of service is primarily tied to
query performance and does not take energy consumption
into account. (ii) The join order remains static and does not
vary because it relies solely on the Monte Carlo Tree Search
algorithm [37].

Our methodology leverages the HybridQO system architec-
ture to tackle these shortcomings. It introduces the energy con-
sumption dimension and variability in the join order selection
process. Specifically, we explore four different join order algo-
rithms: Iterative Improvement (II), Simulated Annealing (SA),
PostgreSQL’s built-in algorithm, and Minimum Selectivity (It
consists in building a left linear tree starting from the smallest
relationship and joining at each level with the remaining
relationship according to the smallest join selectivity factor.).

To support this variability, the initial architecture of Hy-
bridQO is extended by two modules: (1) a join order module
that contains a library of join ordering techniques that substi-
tute the initial join order of HybdridQO, and (2) a rewriting
module, whose role is to rewrite the initial query according
to the selected join order proposed by our algorithms. This
rewriting is ensured by PostgreSQL hints (Figure 12).

To accommodate this variability, the initial architecture of
HybridQO is expanded with the addition of three modules
(Figure 5): (1) Join Order Module: it houses a library of
join ordering techniques that replace the original join order
used by HybridQO. (2) Rewriting Module: it is responsible
for rewriting the initial query based on the selected join order
suggested by the chosen algorithm belonging to the join order
library. This rewriting process is facilitated through the use of
PostgreSQL hints. (3) Measurement Module: it is dedicated
to the measurement of our used quality of service, namely,
query execution time and energy consumption.

Our primary objective in exploring join order variation is
twofold: firstly, to analyze and characterize the influence of
varying join order on energy savings, and secondly, to question
the suitability of using prefixes as a means of achieving energy
efficiency.
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V. EXPERIMENTAL STUDY

This section details the experimental studies conducted to
evaluate our proposal and to assess the initial decisions made
by HybridQO, including the use of prefixes. We begin by

outlining the evaluation environment and the measurement
tools employed.

Evaluation Environment and Tools: The experiments
were performed on a machine equipped with an Intel Core
i7 2.8 GHz Quad-Core CPU and 16GB of RAM, running
on a 64-bit architecture and MACOS Ventura V13.3.1. All
algorithms were implemented using Python v3.7. To measure
energy consumption, we utilized the ijoules library, which
leverages the Intel Power Gadget API to gather energy data
for specific processes. For machine learning modeling, we
employed the Scikit-learn library. PostgreSQL DBMS and
HybridQO system framework are available at https://github.
com/yxfish13/HyperQO.
Datasets: We use the IMDB dataset of JOB having 21
tables and 114 queries available at https://github.com/gregrahn/
join-order-benchmark, where several queries contain more
than ten (10) joins. This benchmark is the only one that is
adapted for join ordering evaluation.

We consider two Quality of Service (QoS) metrics in our
evaluation: the execution time of the employed join order
algorithms and the energy consumption associated with these
algorithms. Additionally, we assess the energy consumed by
the queries themselves.

a) Energy consumed by each join order algorithm

We executed our join order algorithms and meticulously
measured their energy consumption for each run. It is impor-
tant to note that in this study, our objective is to incorporate
the training cost into the comprehensive energy calculation.
This allows us to assess the return on investment associated
with the training within the entire workload. Consequently,
when evaluating the RTOS join order, we take into account
the energy consumption in both the training and execution
phases.

Figure 6 presents a summarized overview of the results,
highlighting the significant energy consumption during the
training phase of RTOS. These results show also a remarkable
stability of PostgreSQL, and Minimum Selectivity in response
to an increasing number of joins in queries. However, dispar-
ities become evident when considering the iterative improve-
ment and simulated annealing methods, both of which exhibit
a noticeable uptick in energy consumption as the number of
joins grows.
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Fig. 6. Energy consumed (by considering training of RTOS) by each join
order algorithm



b) Execution time for each join order algorithm

When evaluating the performance of different algorithms
in terms of execution time, including training time, we gain
additional insights into their efficiency in query processing
(Figure 7). Algorithms such as PostgreSQL and Minimum
Selectivity continue to outperform others in terms of stabil-
ity, particularly with regard to execution time. Their ability
to maintain relatively consistent execution times despite an
increase in the number of joins suggests adaptability to varying
workloads. On the other hand, both iterative enhancement and
simulated annealing exhibit a trend similar to that observed
in energy consumption, where execution time increases as
the number of joins escalates. Finally, RTOS stands out as
the most time-intensive technique due to the time needed for
model training.
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Fig. 7. Execution time (including the training time) of each join order
algorithm

c) Consumed energy and execution time for the JOB
Workload

In this experiment, we systematically vary the join order
algorithms and measure the energy consumption for the JOB
workload. For each algorithm, we execute all JOB queries
and calculate both the cumulative energy consumption and
the cumulative execution time (Figures 8, 9, and 10). This
experiment shows a comprehensive and balanced perspective
on the performance of each algorithm, taking into account
both energy efficiency and execution speed. In terms of
energy consumption, the ranking of the best techniques is as
follows: 1. RTOS by excluding the training, 2. PostgreSQL,
3. Iterative Improvement, 4. Simulated Annealing, and 5.
Minimal Selectivity. PostgreSQL’s good performance can be
attributed to its use of an exhaustive search when the number
of tables is less than 12, and a genetic algorithm when
the number of tables exceeds 12. The fact that the number
of relations in each query ranges from 4 to 17 positions
PostgreSQL’s join order technique as a strong candidate for
optimizing data manipulation and reducing CPU usage. The
obtained results illustrate the return on investment of the RTOS
join order technique concerning execution time and energy
savings. While it is time and energy-consuming during the
training phase, it emerges as the most efficient technique for
both energy savings and query optimization. Figures 8 and 9

present the energy consumption and the execution time of the
workload, respectively.
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Figure 10 shows the behavior of the studied join order
techniques regarding their energy consumption and execution
time for all queries of the workload.
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Fig. 10. Energy consumption and execution time of workload by varying join
order algorithm

In the upcoming experiment, we aim to measure energy
consumption for both CPU and RAM. Figure 11 provides an
overview of the results. The primary insight gained from this
experiment is that the queries used in our study exhibit a
significant level of CPU intensity. These results are consis-
tent with previous research on query processors, which has
consistently emphasized the energy-intensive nature of CPU
usage.
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d) Substitution of Monte Carlos Tree Search by RTOS

Recall that HybridQO uses prefixes generated by the Monte
Carlos Tree Search technique. We perform an experiment to
evaluate the replacement of Monte Carlo Tree Search with
RTOS, with the aim of assessing whether the best global join
order is also optimal for generating prefixes. To do so, we
select a subset of queries where the join order generated by
RTOS outperforms PostgreSQL. We then extract the prefixes
used by RTOS and execute the queries accordingly on Post-
greSQL. The obtained results show that having an efficient join
order does not necessarily guarantee the quality of an optimal
prefix. Based on the results obtained, we recommend the usage
of the complete join order generated by RTOS, instead of using
prefixes.

Since our experiments clearly identify the superiority and
competitiveness of RTOS and PostgreSQL join order tech-
niques, we attempt to evaluate their confrontation of all
queries, in order to avoid a join order technique per default.
Then we try to evaluate the energy consummated for doing
this confrontation. To achieve this, we follow these steps:
(1) capture both PostgreSQL and RTOS join orders, (2)
generate an execution plan for each join order, and (3) predict
the execution time and associated uncertainty for each plan.
However, it’s worth mentioning that this approach may lead to
poorer results in terms of energy consumption since generating
and evaluating two execution plans is energy-intensive (Figure
13).

RTOS Join 
Order

Query execution on PostgreSQL 
(with  Leading Hint)

Extract 
Prefix

Join Order 
for the Query

QoS 
Measures

A SQL Query

Fig. 12. Substitution of Monto Carlos Tree Search by RTOS

VI. CONCLUSIONS

This paper underscored a significant gap resulting from
the lack of a comprehensive framework for studying energy
efficiency within the digitalization sector, with a particular
focus on query processors. These processors play a pivotal
role in the development of data science projects, and ad-
dressing their energy efficiency is of paramount importance.
The creation of such a framework holds the potential to
provide invaluable guidance to young researchers and industry
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Fig. 13. Effect of confrontation of PostgreSQL (PG) and RTOS

professionals. It promotes the idea that energy efficiency in
digitalization should concern everyone, and every effort, no
matter how small, to save energy should be both undertaken
and quantified. This framework enables the categorization of
existing research efforts, offers a clearer understanding of
ongoing initiatives, and simplifies the initiation and funding
of projects related to energy efficiency in digitalization.

To this end, drawing from our experience in participating
in the European Project Improvement dealing with the de-
ployment of Nearly Zero Energy Buildings, and by analyzing
existing work in various sectors, we introduced a compre-
hensive framework known as SATM2V . It integrates five
key dimensions: (1) assessing public sentiment regarding the
real impact of data science on decarbonization, (2) conducting
audits of that sector, (3) implementing tactics for enhancing
energy efficiency, (4) modeling and measuring the energy
consumption of each component of data science, and (5)
accounting for the variability of data science components
and external factors affecting energy efficiency. Through the
application of this framework within the realm of data science,
we have unearthed a substantial disparity in public sentiment
concerning the role of data science in decarbonization. Our
analysis of this dimension underscores the critical need for
quantifying this role using comprehensive measurement tools.
Moreover, our audit of the data science sector has brought
to light the energy-intensive nature of query processors—a
crucial insight often overlooked in previous studies that pre-
dominantly concentrated on traditional data stores. Further-
more, it is evident that there is a notable lack of diversity
in join ordering techniques, even as recent advancements
in machine learning-driven approaches to query optimization
have emerged.

In response to this, we took decisive steps by considering
a hybrid query processing system known as HYBRIDQO.
Through the application of various techniques designed to
address the join order problem, our experiments challenge the
conventional wisdom of using query optimizers without any
variation. This approach stands in contrast to previous research
on the energy efficiency of query processors, which often ne-
glects the energy costs associated with training machine learn-
ing techniques. In our experiments, we meticulously account
for and integrate all energy-sensitive components, yielding a
comprehensive perspective on the potential for energy savings.



Our approach not only questions existing practices but also
strives to provide a more thorough understanding of the energy
efficiency of query processors.

Currently, we are developing predictive models to estimate
and evaluate energy consumption, along with varying hard-
ware components such as the number of cores and processor
frequencies.
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