
Understanding Data Pre-processing with a Hybrid
Diagram Integrating ER and Data Flow Notation

Robin Varghese
University of Houston§

USA

Carlos Ordonez
University of Houston

USA

Abstract—In a data science project, a significant effort is
spent pre-processing databases, text and image data sets, before
a machine learning model can be computed. Moreover, the
analytic process is iterative, requiring a team of data scientists
to add and remove features (attributes) from the target data
set going all the way back to data sources. However, such
programming effort is carried out without a data model behind,
which results in redundant and inconsistent data sets and source
code difficult to extend and maintain. On the other hand, the
ER model has a proven track record to design databases before
developing source code. Heeding the importance of data-centric
models to store and analyze data, we propose a hybrid diagram
(FLOWER=FLOW+ER) mixing data objects and processing flow,
under the CRISP standard. Specifically, our novel diagram mixes
ER entities (data objects) and processing steps (function calls).
We explain how diagram creation can be partially automated by
parsing source code. We present two case studies illustrating
how our proposed hybrid diagram works in two challenging
problems from biomedical engineering and computer vision: (1)
detecting and classifying spikes in biomedical signals and (2)
labeling identified objects in images. We argue our diagram
can reduce code development time, enhance team collaboration
and eliminate redundant data. We hope our work will motivate
research bridging database design, project management and
machine learning.

I. INTRODUCTION

In most data science projects most code development time
is spent pre-processing data sets because data sets come from
diverse sources, they have different structure, they come in
different file formats and they are not integrated. Hence data
data scientists need to collect, integrate, clean, merge, aggregate,
and transform data files before they can perform analysis. This
is achieved using many powerful libraries (mainly in Python
these days), but the programming effort remains significant.
Such data transformations create many intermediate files,
tables, even matrices, in a disorganized manner. This problem
becomes more difficult when pre-processing big data beyond
alphanumeric data sets (i.e. traditional statistical or data mining
analysis). Today the AI analytic challenge generally involves
a combination of plain data files, databases, text, images and
even video.

ER diagrams have a proven track record to represent data
structure and relationships, beyond databases. The ER diagram

§Contact: rsvarghese99@gmail.com, Department of Computer Science,
University of Houston, Houston TX 77204, USA

strengths are generality, flexibility, and intuitive visual repre-
sentation. On the other hand, flow diagrams [8], [12], despite
being old, remain the main mechanism to visualize major
components or main processing steps of a software system, but
they are less useful to understand complex algorithms. Several
closely related works on ER diagrams [7], [4], flow diagrams
[2], [13], and data transformations [12], [10] have been done
by other researchers.

This work proposes combining them, but with a “data-centric”
angle. We propose a hybrid diagram (FLOWER), to assist data
scientists in big data pre-processing in a broad “Variety” sense,
the 3rd V in Big Data [3].

II. DEFINITIONS

Let E = {E1, ..., En}, be a set of n entities, linked by
relationships. Thinking of entities as vertices in a graph G,
G must be connected. Given the evolution of ER and ER
design tools we follow modern UML notation, where entities
are represented by rectangles and relationships are shown by
lines, with crowfeet on the “many” side (also called :N side);
We assume there exists an identifying set of attributes for each
entity (i.e. a primary key, a file name, a variable name, an
object id). Intuitively, entities correspond to nouns (real-life
objects or items) and relationships to verbs (actions).

Diagram notation extension: We extend relationships with
an arrow in the middle, indicating direction of data flow. Such
arrow is labeled with function names or expressions parsed
from the source code, instead of verbs like traditional ER design.
This flow direction is interpreted as input and output, going
from source entities going to destination entities (transformed
somehow). We argue this is a minor, yet powerful, change that
enables navigating data sets in a data lake or complex program,
providing a data-oriented flow.

III. RELATED WORK

We are not the first to propose diagrams to understand data
pre-processing, but to the best of our knowledge we are the first
to attempt to extend modern UML diagram notation for ER with
a minor flow symbol, instead of proposing alternative notations.
Previous work proposed a framework (analytic component
architecture) and a method (steps) to generate diagrams from
source working on databases and plain big data files (logs,
csv, SQL files) [9]. Furthermore, this idea has been expanded
to include typical database processing in Python (Pandas) as979-8-3503-2445-7/23/$31.00 c©2023 IEEE

Fig. 1: CRISP-DM main steps.

detailed in [6]. This integration with Python is important given
the significant research in the field of data science today. Our
contribution builds upon this foundation by extending the
work to biomedical signals and image data sets. We manually
generate the diagrams to serve as a roadmap for future research.

IV. PROPOSED FLOW+ER=FLOWER DIAGRAM

A. Cross Industry Standard Process for Data Mining (CRISP-
DM)

The Cross Industry Standard Process for Data Mining
(CRISP-DM) has been gaining significant attention as the
process model designed to provide a structured framework for
planning and executing large data mining projects across many
domains [11]. As Big Data continues to grow, many businesses
are placing greater emphasis on effective project management.
CRISP-DM stands out as a leading methodology in this regard.

The CRISP-DM standard, shown in Figure 1, comprises of
six major iterative phases:

1) Business Understanding: Focuses on understanding the
project objectives and requirements from a business
perspective. Furthermore, converting this understanding
into defining a data mining problem and producing a
preliminary plan.

2) Data Understanding: Encompasses gathering, describ-
ing, and exploring data, understanding its properties, and
identifying data quality issues.

3) Data Preparation: Here, data is cleaned, transformed,
and enriched for modeling. Data preparation is crucial
because it can improve model accuracy, efficiency, and
scalability.

4) Modeling: Different modeling techniques can be applied
that most align with the nature of the problem

5) Evaluation: The model is evaluated to ensure proper
alignment with the predefined business objectives.

Fig. 2: Example FLOWER Diagram.

6) Deployment: This step involves integrating the model
into an business or operational environment. The results
of the data mining process are made accessible to its
respective users.

Our contributions focuses on Data Understanding and especially
Data Preparation. We believe providing an intuitive visual
understanding of these two phases can greatly aid in the process
of CRISP-DM. More importantly, we extend a ”data-centric”
perspective on Data Understanding and Preparation in general,
benefiting all project managers in Big Data.

B. Building Diagram

First, our solution generates a preliminary ER-Flow diagram
as follows. This diagram can be polished and customized by
the data scientist. We show this example process in Fig 2.

1) For text files like documents, source code we assume
they contain strings for words, numbers, symbols and so
on. In this case, we utilize a Information Retrieval (IR)
library to parse the code or document. This will then
allow us to identify the entities such as classes, functions,
and variables, along with their attributes including data
types and parameters. These elements are then organized
into tables or matrices for further analysis.

2) For images we assume the file name is unique and the
image has some metadata describing its content (e.g. a
jpg file).

3) Automatic data set name and attribute name identification
computed and created by Python, R, or SQL code.

The diagram data is stored in two JSON files, where the
first file contains the relationships and the second one contains
the entities and their attributes. In the transformation module,
we define the transformation type and create new transformed
entities. Data scientists may perform several transformations
discussed above in the source code that generates a temporary
entity. In the case of “Merge”, the entity structure may change
but the attribute values remain the same, and the ”Aggregation”
may use one or more grouping attributes along with or without
aggregations (sum, count, avg). In general, aggregations will
return numbers, but using only “Group by” will return the
attribute values as their types. Mathematical transformations
will mostly return derived attributes. Now, the new transformed

2

Fig. 3: FLOW+ER diagram for a typical database example.

entities are linked with the original entities using an arrow.
After each valid transformation step, we can store the newly
generated ER-Flow diagram in JSON files. This ER-Flow
diagram can help data scientists to have data-oriented view of
the program, navigate source code, reuse functions, and avoid
creating redundant data sets.

We generally follow these phases when creating FLOWER
based on practical case studies.

1) Source Entities: Using a filename as a primary key
is valid because filenames are unique identifiers for
files within a directory. This ensures that each record
associated with a particular filename remains distinct and
easily retrievable.

2) Transformations Entities: Our case studies examine
applications in AI. AI is full of data transformations and
often inherit attributes from the data source.

3) Linking and Relationships: We link entities together
with relationships and are described by the Python
functions that perform the transformations.

4) Draw Diagram: Given the Source/Transformation enti-
ties and their respective relationships, we generate the
UML and ER hybrid diagram.

5) Finalized Data Set: AI/ML data sets are often written
as one final data set and fed through a training loop. We
offer two case studies involving one or multiple finalized
data sets.

6) Human In The Loop: While prior steps can be auto-
mated, there are scenarios where human intervention is
essential. For instance, in our image-based case study [5],
dentists must first annotate the panoramic radiographs
using the VGG Image Annotator (VIA).

C. Diagram Elements

Our entity concept is broad: entities can represent a file,
matrix, relational table, or dataframe. A file can contain an
image, a document or data records. Objects in main memory

can be simple data types (integers, reals, string, dates), lists,
multidimensional arrays and data frames. In short, our data
scope goes well beyond previous analytic approaches focusing
only on records with alphanumeric attributes (SQL tables, plain
CSV files).

Entities are classified as source (raw) entities, representing
raw data, loaded into the Data Lake and Transformation
(pre-processing) entities being the output of some tool or
programming language (Python, R, SQL).

In our generalized diagram entities represent a set of data
elements. In turn, data elements can be records, SQL rows,
image pixels, text keywords, video frames. Moreover, data
elements can be aggregated bottom up to obtain more abstract
entities.

D. Data Transformations

We focus on representing data transformations for big data
analytics, including machine learning, graphs, and even text
files (documents). However, our diagram does not represent the
”analytic output” such as the parameters of the ML model, IR
metrics like precision/recall, graph metrics. We propose these
major categories of data transformations:

1) Merge, which splices (joins) multiple entities. We can
think of it as a generalized relational join operator (1).

2) Aggregation, which partitions data elements and com-
putes some aggregate function.

3) Mathematical, which represent derived attributes coming
from a combination of functions and value-level operators
(e.g. equations, arithmetic expression, nested function
calls).

4) Filter, which do not transform the data sert, but which
is key to focus on the right data.

E. Example

We show an example in Figure 3 where we show our
final ER-Flow diagram. We consider an example of a store

3

Fig. 4: FLOWER diagram for biomedical signal pre-processing.

for which we show the ER-Flow diagram. In our example
the target analytic is a predictive model of product sales
considering history sales data, customer information and buyers’
opinions. The goal is to produce a data set, which can be
used as input for a predictive model like regression, decision
trees, SVMs or deep neural networks. Each entity from the
original data has an identifying attribute (primary key) and
other attributes. From these entities, data scientists can generate
new entities by doing data transformations as mentioned above.
Popular analytic languages like Python and R, both support
data transformations (ex: “Merge”, “Group by”) in pandas
and dpylr libraries respectively. Each of the transformations
generates a new entity which is named from the input entities
and the transformation type is shown inside the parenthesis
as “(TYPE)”. The source entities are colored white and the
transformed entities are colored green for better understanding.
We can see the flow of the transformed entities as they are
linked with an arrow from the source entities.

V. CASE STUDIES

To highlight the distinct features of this FLOWER implemen-
tation compared to the previous version in Figure 3, we observe
the following key differences: The arrows are now labeled with
specific function names or expressions, extracted directly from
the source code. This contrasts with the traditional ER design,
which typically uses verbs. Additionally, the direction of these
arrows indicates the flow of data, representing input and output
processes. This flow moves from the source entities towards
the transformed entities.

We feature two AI/ML examples with FLOWER diagram-
ming. For credibility, we opted for these case studies because
they have publicly available source code (APPENDIX) and
corresponding published research. In the presented case studies,
the source entities are colored white and the transformed entities
are colored grey. The data flow of the transformed entities are
linked with an arrows and the corresponding Python functions
performing the transformations.

A. Biomedical Signals

In this section we present a practical example illustrating
how to pre-process a set of biomedical signal data for clustering.
[1]. This paper delves into the challenges and advancements
in identifying similar patterns in physiological nerve signals
collected from micro electrical sensors in animal organs.
The primary challenge is discerning these patterns, which
appear as spikes within millisecond time-windows amidst
high-dimensional data sets, especially with the interference
of background electrical noise.

• Objective: The main aim is to detect similar patterns in
high throughput nerve signal data.

• Previous Systems: Earlier methods combined PCA (Prin-
cipal Component Analysis) and K-means clustering but
were slow and required multiple tools.

• Proposed System: The paper introduces an integrated
system that combines signal filtering, feature engineering,
and multidimensional data summarization for a more
effective integration of PCA and K-means clustering.

4

Fig. 5: FLOWER diagram for image pre-processing.

• Applications: The ultimate goal is to associate signal
patterns with specific physiological functions, potentially
leading to innovative medical treatments via nerve stimu-
lation.

• Contribution: The research offers an efficient method
to analyze multiple continuous signals over time, detect-
ing signal patterns across them using machine learning
techniques.

• Implementation: The entire system is implemented in
Python, a popular language in Big Data and Data Science.

The transformations applied source (raw) images are as follows:
1) Computing Correlations Between Channels:

• Correlations are computed based on split raw data
sets ({D1, D2, ..., DM}).

• An incremental algorithm computes the correlation
matrix using a summarization matrix formed by
multiplying the combined raw data set with its
transpose (e.g. D1D

T
1 , ..., DMDT

M).
2) Filter Noise And Detect Spikes: Noise is filtered and

spikes are detected from the correlated channels.
3) Reduce Dimensions to d̂ Dimensions: Original variable

values are retained instead of using principal components.

B. Images

This section presents an example illustrating how to pre-
process image files for a computer vision problem, aiming at
identifying and labeling objects [5]. The paper presents a novel
method for the automated diagnosis of periodontitis bone loss

using panoramic radiographs. Addressing the current challenges
in diagnostic accuracy with these radiographs, the authors
introduce a two-stage convolutional neural network named
PDCNN. Their approach, tested on a comprehensive data set,
achieves superior accuracy compared to other contemporary
models, promising a more efficient and accurate diagnostic
tool for this prevalent oral disease.
• Objective: The primary goal is to automate the diagnosis

of radiographic bone loss (RBL) in panoramic radiographs.
• Previous Systems: Existing deep learning methods for

this task faced challenges in diagnosis accuracy and
implementation.

• Proposed System: The paper introduces the PDCNN,
a two-stage periodontitis detection convolutional neural
network.

• Applications: The developed system is intended for use in
medical settings to make RBL diagnosis using panoramic
radiographs more efficient and accurate.

• Contribution: The research introduces a novel method for
RBL detection that outperforms existing state-of-the-art
models, providing more accurate and efficient results.

• Implementation: The proposed PDCNN and associated
techniques, is implemented in Python.

The transformations applied to the source (raw) images are as
follows:

1) Data Splitting:
• The data set is divided into training, validation, and

5

test sets in a 7:1:2 ratio.

2) Data Augmentation:
• Images from the training set are randomly resized.
• Images are offset.
• Images are horizontally flipped.
• These augmented images are then placed onto a

gray background of size 512 × 512 to counteract
overfitting.

ACKNOWLEDGMENT

We would like to acknowledge Elijah Mitchell, Nabila
Berkani, and Ladjel Bellatreche for their contributions in
preliminary efforts and research that laid the groundwork for
this study.

REFERENCES

[1] Sikder Tahsin Al-Amin, Robin Varghese, David Lloyd, Maria A.
Gonzalez-Gonzalez, Mario I. Romero-Ortega, and Carlos Ordonez.
Discovering similar spike patterns in high dimensional biomedical signals.
In 2022 IEEE International Conference on Big Data (Big Data), pages
4337–4345, 2022.

[2] Carlo Batini, Enrico Nardelli, and Roberto Tamassia. A layout algorithm
for data flow diagrams. IEEE Trans. Software Eng., 12(4):538–546,
1986.

[3] Xin Luna Dong and Divesh Srivastava. Big data integration. In Data
Engineering (ICDE), 2013 IEEE 29th International Conference on, pages
1245–1248. IEEE, 2013.

[4] Gaoyang Guo. An active workflow method for entity-oriented data
collection. In Advances in Conceptual Modeling - ER 2018 Workshops
Emp-ER, MoBiD, MREBA, QMMQ, SCME, Xi’an, China, October 22-25,
2018, Proceedings, 2018.

[5] Zhengmin Kong, Hui Ouyang, Yiyuan Cao, Tao Huang, Euijoon Ahn,
Maoqi Zhang, and Huan Liu. Automated periodontitis bone loss diagnosis
in panoramic radiographs using a bespoke two-stage detector. Computers
in Biology and Medicine, 152:106374, 2023.

[6] Elijah Mitchell, Nabila Berkani, Ladjel Bellatreche, and Carlos Ordonez.
Flower: Viewing data flow in er diagrams. In Big Data Analytics and
Knowledge Discovery: 25th International Conference, DaWaK 2023,
Penang, Malaysia, August 28–30, 2023, Proceedings, page 356–371.
Springer-Verlag, 2023.

[7] Jonathan Mugan, Ranga Chari, Laura Hitt, Eric McDermid, Marsha
Sowell, Yuan Qu, and Thayne Coffman. Entity resolution using inferred
relationships and behavior. In IEEE International Conference on Big
Data, pages 555–560. IEEE Computer Society, 2014.

[8] C. Ordonez and J. Garcı́a-Garcı́a. Managing big data analytics workflows
with a database system. In IEEE/ACM CCGrid, pages 649–655, 2016.

[9] Carlos Ordonez, Sikder Tahsin Al-Amin, and Ladjel Bellatreche. An
er-flow diagram for big data. In 2020 IEEE International Conference on
Big Data (Big Data), pages 5795–5797, 2020.

[10] Minh Pham, Craig A. Knoblock, and Jay Pujara. Learning data
transformations with minimal user effort. In IEEE International
Conference on Big Data (BigData), pages 657–664, 2019.

[11] Christoph Schröer, Felix Kruse, and Jorge Marx Gómez. A systematic
literature review on applying crisp-dm process model. Procedia Computer
Science, 181:526–534, 2021.

[12] Merlijn Sebrechts, Sander Borny, Thomas Vanhove, Gregory van Segh-
broeck, Tim Wauters, Bruno Volckaert, and Filip De Turck. Model-driven
deployment and management of workflows on analytics frameworks. In
IEEE International Conference on Big Data, pages 2819–2826, 2016.

[13] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter
Hofstede, and Nick Russell. Pattern-based analysis of the control-flow
perspective of UML activity diagrams. In Conceptual Modeling - ER
2005, volume 3716, pages 63–78, 2005.

APPENDIX

The source code for each case study can be found at the
following github repositories:
• Biomedical Signals

https://github.com/RobinVar/pygammasignal
• Images

https://github.com/PuckBlink/PDCNN

6

