
FLOWER: Viewing Data Flow in ER Diagrams

Elijah Mitchell 1, Nabila Berkani2, Ladjel Bellatreche3, Carlos Ordonez1

1 University of Houston, USA
2 Ecole nationale Supérieure d’Informatique, Algiers, Algeria

3 ISAE-ENSMA, Poitiers, France

Abstract. In data science, data pre-processing and data exploration
require various convoluted steps such as creating variables, merging
data sets, filtering records, value transformation, value replacement and
normalization. By analyzing the source code behind analytic pipelines, it
is possible to infer the nature of how data objects are used and related
to each other. To the best of our knowledge, there is scarce research on
analyzing data science source code to provide a data-centric view. On the
other hand, two important diagrams have proven to be essential to manage
database and software development projects: (1) Entity-Relationship
(ER) diagrams (to understand data structure and data interrelationships)
and (2) flow diagrams (to capture the main processing steps). These
two diagrams have historically been used separately, complementing
each other. In this work, we defend the idea that these two diagrams
should be combined in a unified view of data pre-processing and data
exploration. Heeding such motivation, we propose a hybrid diagram called
FLOWER (FLOW+ER) that combines modern UML notation with data
flow symbols, in order to understand complex data pipelines embedded
in source code (most commonly Python). The goal of FLOWER is to
assist data scientists by providing a reverse-engineered analytic view,
with a data-centric angle. We present a preliminary demonstration of
the concept of FLOWER, where it is incorporated into a prototype that
traces a representative data pipeline and automatically builds a diagram
capturing data relationships and data flow.

1 Introduction

Data pre-processing is a time-consuming and difficult step in Big Data Analytics
(BDA); However, it remains essential in cleaning and normalizing data in order to
make analysis possible. The difficulties of this step arise from both the data and the
processes transforming them. It is important to mention that in BDA, data often
comes from diverse sources with different structures and formats. The accuracy
of the final analysis strongly depends on the processes applied to this data, which
include data cleaning, transformation, normalization, and so on. These processes
conducted by the data analyst typically generate many intermediate files and
tables in an often disorganized manner. By deeply analyzing these processes from
an explainability point of view, we realize that easy understanding is limited to
whatever documentation exists and the memory of the analyst authoring them.
This represents a real obstacle to deobfuscating BDA systems.

https://orcid.org/0009-0006-6786-2555

In the context of BDA, data entities and transformations must be considered
together to facilitate the understanding of the whole pre-processing pipeline.
Several closely related works on ER diagrams [1], [2], Flow diagrams [3], and
data transformation [4], [5] have been done by other researchers. In this work,
we propose a hybrid diagram called FLOWER (FLOW + ER) which combines
data structure and the flows of a given BDA project. The goal is to assist big
data analysts in data pre-processing by examining existing pipelines for data
flow relationships. We illustrate its utility by demonstrating real tools that can
automatically generate FLOWER diagrams from existing pipelines. Engineers
and analysts leveraging these automated methods will be capable of describing
and presenting complex code bases and data pipelines with minimal human input.

2 Our Proposed Hybrid Diagram

Before detailing FLOWER, we give fundamental concepts, definitions, and hy-
potheses related to the ER model, databases, and data sets.

Let E be a set of entities (objects), linked by relationships (references). We
follow modern UML notation, where entities are represented by rectangles and
relationships are shown by lines, with crowfeet on the “many” side. There exists
an identifying set of attributes for each entity (i.e. a primary key or PK, an
object identifier). A small (non-disruptive), but powerful change to ER notation
is that relationships will have a direction, representing data flow.

Our diagram considers two primary kinds of entity: Source (stateful) entities
containing raw data, such as SQL tables, files or other data sources, and trans-
formation (flowing) entities representing intermediate steps in the data pipeline,
such as scripts or partially merged tables. We assume that the input entities can
be a bag, without a PK. However, when interpreting non-tabular information, it
is common to vectorize or otherwise transform it into a tabular representation.
Therefore, a line number or feature index for a text file may act as the primary
key. In the case of images, the image file name is commonly a PK as well.

Our hypothesis: Not all files used for data analysis have PKs or attributes,
as in traditional databases. However, we presuppose that data pre-processing
programs do produce entity names, keys, attributes, and relationships that can
be captured from source code (i.e. file name, feature variables, columns, and
other names). We extend the term “primary key” or PK from the relational
model to refer more generally to object identifiers, the set of attributes uniquely
identifying particular instances of an entity in some data pipeline. Considering
these and provided source code, inferred attributes (like the sentiment features
of text data, or the formation components extracted from a decomposed image)
for FLOWER can be reverse-engineered through automated analysis.

3 Capturing Data Flow with Generated ER Diagrams

In this section, we discuss the specific notation of FLOWER along with consider-
ations to be made when modeling real-world data systems.

2

3.1 Extending ER diagram notation

We allow the relationship lines of ER to include an arrow indicating data flow
direction. This direction can also be interpreted as input and output, going
from input entities to output entities. The arrow is shown only for relating
transformation entities to others. That is, in the case of “raw” source data sets
that can be represented as normalized tables, there is no arrow between entities.
The arrow represents (1) a processing dependence between two entities, and (2)
data flow direction that indicates one entity is used as input.

This is a minor yet powerful change that enables navigating all data elements
in the system under consideration (such as a Data Lake), providing a flow-
aware view of big data processing. We emphasize that the entities remain linked
by “keys”, or identifying attributes for records. A FLOWER diagram retains
traditional keys, and also considers keys derived from attributes used to link
entities under transformation in order to unify relational and non-relational data
entities.

3.2 Entities beyond Databases

An entity in FLOWER is broad in the sense that it can represent any object
used in the context of BDA in various formats. An entity may be a file, matrix,
relational table, dataframe, or more depending on what the analyst chooses to
consider. Entities are broadly classified as:

– Source (raw, stateful) entities, representing raw data, loaded into the Data
Lake or other system.

– Transformation (flowing, data pre-processing) entities being the output of
some system (e.g., Hadoop), tool (statistics or machine learning), or some
programming languages used in data science (e.g., Python, R, SQL).

We focus on representing data transformations for BDA, including machine
learning, graphs, and text documents. Our diagram does not yet include the
“analytic output” such as the parameters of the ML model, IR metrics like
precision/recall, and graph metrics, which would be the subject of further work.
FLOWER considers three major categories of data transformations:

1. Merge, which splices (”joins” in database terms) multiple entities by one or
more attributes, which is a weakly typed relational join operator.

2. GroupBy, which partitions and aggregates records based on some key. We
emphasize that Data Science languages (Python, R) provide operators or
functions highly similar to the SQL GROUP BY clause.

3. Derived expressions, which represent derived attributes coming from a com-
bination of functions and value-level operators (e.g. equations, string manip-
ulation, arithmetic expression, nested function calls). These can be grouped
together, or be separately categorized as same-type and different-type opera-
tions depending on the types of the inputs and outputs.

3

A FLOWER diagram encompassing these transformations may contain far
more than simple table data sources. Many heterogeneous data types used in a
pipeline may be considered as entity candidates for the purposes of FLOWER.
Information on these entities can be retrieved either by the analyst or through
the use of automated tools. We provide an (inexhaustive) list of potential sources:

– Importing ER diagrams available from existing transactional or analytical
databases. We assume ER diagrams are available for a relational database
DDL or exported from an ER diagram tool as CSV files.

– Automatic entity and attribute identification from metadata embedded in
the file itself. We assume CSV files are the typical file format for spreadsheet
data, logs and mathematical software. Other popular formats such as JSON
can capture non-tabular but nonetheless interesting data.

– For text files like documents or source code, there may be statistics on strings
for words, numbers, symbols, and so on, as well as text features computed
from NLP techniques. In this case, we assume an IR library or tool pre-
processes the file and converts the useful data into tables, matrices or data
frames. We propose that the “keys” and attributes of these files be identified
by their real-world usage, and so can be discovered by examining how they
are used by the pipeline.

– Automatic data set and attribute name identification for data sets built by
Python, R, or SQL code, generalizing a previous approach with SQL queries
[6]. In our section on validation, we explore applications of this approach
with a prototypical diagramming tool.

In the process of diagram generation, we may also define the transformation
type and create new transformed entities either manually or as informed by
automated observation. Data scientists may perform several transformations
discussed above, generating temporary entities which we may also wish to capture.
In the case of a “Merge,” the entity structure may change, but the attribute values
remain the same. A “Group by” may use one or more grouping attributes along
with or without aggregations (sum, count, avg). In general, aggregations return
numbers, but using only “Group by” will return the attribute values as their types.
Mathematical transformations will mostly return derived attributes, though there
are some analogs. We discuss in Section 3.3 a number of transformations that
may be considered analogous to these operations.

Following these considerations, the new transformed entities are linked to
and from the original entities using an arrow. Keys can be preserved or intuited
based on the kind of operation performed. This FLOWER diagram may have
applications leading to new insights for analysts in navigating source code, reusing
functions, and avoiding the creation of redundant data sets.

We show in Figure 1 a FLOWER diagram example enriched with UML
notation provided from a hypothetical store data processing pipeline. Arrows
show the direction of flow and are compatible with other ER extensions such as
those describing attributes and cardinality. We can see the flow of the transformed
entities as from the source entities by following the direction of the arrow.

4

Fig. 1: Example FLOWER diagram: ER diagram enriched with UML notation.

Following a data-oriented approach, the model underlying a FLOWER diagram
can be stored as JSON files or in metadata management systems for later updates
and analysis.

3.3 Equivalent Operations

The exact relationship between software entities and the data pipeline will be
application dependent; However, tools created to support FLOWER can be
designed with the most common design practices in mind, and be supplied with
extensions to support alternative workflows. The concept of equivalent operations
greatly simplifies this task, as we can map the behavior of program code to
transformations analogous to relational databases in certain contexts.

Because FLOWER is an extension to the concept of ER diagrams, we start
from ER entities (SQL tables, generally) and extend the concept of “Entity” to
describe any of the source entity types we choose to consider. In this way, we
can map many kinds of data-bearing objects into source entities, together with
SQL-equivalent operations (Table 1).

The usefulness of FLOWER is somewhat complicated by a well-known obstacle
to static analysis: Many popular data analysis languages, in particular Python
and R, are dynamically or “weakly” typed, meaning that many operations and
attributes do not have known behavior or values until runtime. Static analysis
of weakly typed languages is therefore limited to the attributes we can infer
from program semantics. By leveraging the notion of equivalent operations, we
argue that programs made to analyze data pipelines for FLOWER therefore can
assume certain behaviors for a subset of program statements such as documented
APIs (pandas, numpy), and adopt general policies for statements with unknown
(or inaccessible, at the time of parsing) behavior.

Equivalent operations present a novel perspective in understanding data
relationships by broadening of the scope of our understanding of a system as

5

Table 1: Examples of entity candidates and their SQL-equivalent operations
Entity Type Constructed

From
Transforms Merges Group Bys PK

SQL Table SQL SQL operations MERGE, JOIN GROUP BY PK

pandas
DataFrame

from csv,
from sql

vectorized opera-
tions

merge(), join() groupby() index or column

numpy array/ma-
trix

np.array() np.sin() @, np.matmul() projection to
lower dimen-
sional space

row or column in-
dex

image open color shifting pasting aggregate chan-
nel statistics

row or column in-
dex

text file text feature ex-
traction

feature biasing data set combina-
tion

word, character,
token summariza-
tion

label

we evaluate more objects as entities. Because entity operations can be roughly
grouped together into equivalences, we can make more consistent inferences while
developing our FLOWER diagram, and more easily account for these functions
when describing patterns for automated tools to search for.

3.4 Data Flow Analysis

In this section, we introduce a method suitable for data flow analysis of source
code. The primary languages for data analysis today tend to be imperative and
object-oriented, therefore we focus on these paradigms in describing how the
implementation of an analysis tool may be achieved.

Conceptually, this method transforms imperative statements into stateful
operations that may be parsed into directed provenance graphs. These graphs
can then be easily analyzed and transformed for presentation, which in our case
leads to the creation of a FLOWER diagram. We define Flow and State objects,
from which relationships may be observed:

Given : States, where a State is an object containing data representing the
conceptual state of an entity in the ER model at a specific phase within the
pipeline.

State := {name, operation, parents, writes, reads, attributes}

Where name is the text of the code statement producing it, operation is the name
of the operation (such as a function call) that produces it, parents is the set of the
parent states the State is derived from, reads := {R1, R2...} is the set of resources
(such as file name strings) read in its construction, writes := {W1,W2...} is the
set of resources that it may be written to, and attributes := {A1, A2, ...} is a
list of inferred attributes. A State can only be derived from a read operation or
another State, so there will not exist any state that does not have an external
resource in its ancestry.

Given : A Flow, containing a set of statements := {T1, T2...} in a given
imperative language, a set of initial := {S1, S2...} States, and initially empty
sets of reads and writes

6

Flow := {initial, statements, reads := {}, writes := {}}

Where a Flow can be used to describe anywhere a sequence of statements may
exist with an optional set of initial states. In Python or R, scopes like modules
and function calls are Flows, where a function’s arguments form its initial states.
For object methods, the owning object itself may be an initial state, as might be
(separately) its attributes. The following operations are available on a State in a
Flow:

– Read: A State may be constructed from one or more read operations in a
single statement, which are put in its list of reads. This is the only type of
State which might have no parent States. The operation for constructing this
state will be a read.

– Update: States cannot be modified directly by operations within a Flow;
Instead, each modification to a state results in a new State whose parents are
the modified state along with any other states included in the modification
operation. The operation for this state will be the operation used in the
update. The new State replaces the old State within the controlling Flow.

– Assign: A State may be Assigned to another State label while retaining
its own, without modification. Anywhere the original or assigned label is
updated, the state referred to by both is updated and replaced according to
the update operation above. This includes States belonging to other Flows: If
a State in a Flow’s initial state is assigned or updated, the State is updated
and replaced there as well as in the current Flow. For languages with copy
operations, copying is treated as an update, not an assignment.

– Write: A State may be written out to one or more resources. These resources
are added to the write list in the State.

We also define opaque and transparent operations. An opaque operation is
one that does not have behavior known to the program. A transparent operation
is one that does have known behavior, such as behaviors referenced from available
source code or otherwise making the operation known to the program ahead of
time. Reads and writes are necessarily transparent, as they must be known to
the program to be defined as read or write.

A Flow must first have its statements normalized into a list of assignment
expressions of the form

Expr := {{S1, S2...}, operation, {E1, E2...}}

where S is one or more labels of a state to be updated (or created, if the state is
not already present in the Flow), operation is the name of the operation used in
this statement, and E is one or more expressions that may be parent States or
non-State values. This process requires flattening each statement into an atomic
assignment operation and recursively tracing the execution of nested flows to
determine transformation relationships. We can extract information pertaining
to data relationships between entities and flow states as follows:

7

1. Define and collect information on data sources and data transformations
(imperative/OO language source code, in this case) under consideration.

2. Define a Flow for each data transformation with the relevant initial States.
3. For each Flow, pre-process its statements into basic assignment expressions.
4. Sequentially analyze each Flow’s expressions to form a directed graph of State

nodes. Nested Flows like transparent function calls are processed recursively
and may modify the containing Flow’s States. calls are ignored.

5. For each Flow, either: Treat the Flow as a transformation entity under
FLOWER (considered as a single transformation) with its inputs and outputs
based on all reads and writes; Or, collapse the State graph into a number of
transformation nodes based on ancestry, preserving attributes and PKs. In
both cases, reads and in the Flow with no linked write in the graph and vice
versa are dropped as extraneous.

Because we only care about general data flow and cannot necessarily determine
runtime behavior, control flow structures such as conditionals and loops are
treated as inline statements. Assuming code correctness, all branches of the
code are anticipated to be reached at some point, so we assume that State
transformations in a branch should be captured regardless of whether conditions
would cause it to be so. Recursive function calls are also treated as opaque
operations. This approach sacrifices some accuracy but allows for linear time
complexity O(n) and lets us avoid the halting problem.

3.5 FLOWER Diagram

We formalize the construction of the FLOWER diagram as follows:

Entities := {E1, E2, ..., En}, a list of ER model entity objects
Ei := {identifier, attributes, entity type}, where

identifier is a unique identifier such as a string specifying the entity name.
attributes := {A1, A2, ..., Am} is a list of entity attributes. If (through ob-

servation or prior knowledge) it is determined that an attribute (or set of
attributes) uniquely identifies a given instance of an entity, it is marked as a
primary key (PK). More importantly, attributes that make references across
different data structures are labeled as foreign keys (FK) and are similarly
marked.

entity type is a type specifier for whether this is a source or transforma-
tion/derived entity.

Relationships := {R1, R2, ..., Rk}, a list of relationship description objects. The
relationships among entities are represented by foreign keys. Cardinalities of
entities in each relationship are defined: 1:1 relationships can be merged into one
entity because they share the same primary key. Relations having cardinalities 1:N
or N:1 (1 to many, many to 1) exist between distinct entities. M:N relationships
(many to many) connect both entities, taking their respective foreign keys as
its primary key. Relations are defined in the form {Ei, Ej , Reltype, cardinality},
where

8

Ei and Ej are identifiers referencing entities in the ER model.

rel type is a type specifier as to whether this is a normal or arrow relation. If
this is an arrow relation, Ei must be the source and Ej must be the entity
pointed to.

cardinality is the specifier for the cardinality of the relation from Ei to Ej :
one-to-one (1:1), many-to-one (M:1), one-to-many (1:M), or many-to-many
(M:N).

In order to derive the FLOWER diagram, we use the output from the source
code parsing/analysis as input for a diagram program reading two complementary
files describing entities and relationships. In our example, we output these files
as JSON files, from which we generate the model. The following excerpt explains
the structure of these files:

entities.json

[// Source entities

{ key: "Product",

items: [

{ name: "Product_ID",

iskey: true ,

figure: "Decision",

color: "red" }, ...],

colorate: "# fff9ff" },

// Transformation entities

{ key: "DepartmentProductInfo(GroupBy)",

items: [

{ name: "DepartmentProductInfo_ID *",

iskey :true , ... },

{ name: "FK -Product_ID",

iskey: true , figure: "", ... }, ...],

colorate: "#82 E0AA" }, ...

]

relationships.json

[// Source - Source (line)

{ from: "Sale", to: "Product",

color: "black", dash: [3, 2], arr:" Standard",

width :"1", text: "1..1" , toText: "" },

// Transformation - Any (arrow)

{ from: "Product_Data_Set",

to: "DepartmentProduct(Merge)",

color: "black", dash: [3, 2], arr:" LineFork",

width :"1", text: "1..1" , toText: "n..1" }, ...

]

For example, the Product entity given above may have its attributes inferred
from corresponding source code like this Python snippet:

9

import pandas as pd

...

Product = pd.read_csv (" products.csv")

Sale = pd.read_csv ("sales.csv")

Analysis observes pattern of use suggesting primary key:

ProductSales = Product.merge(Sales , how="left",

left_on =" Product_ID", right_on =" Product_ID_fk ")

...

Given two JSON files following this arrangement, a FLOWER model is
derived portraying an ER representation of the observed pipeline. For each
JSON object from the entities file, an entity Ei ∈ Entities is created with its
attributes described in the elements of the item. The primary keys are defined.
Likewise, for each JSON object from the relations JSON file, a relationship such
as relation =< (Ei, Cardi, F lowi), .., (Ej , Cardj , F lowj) > is created. Foreign
keys are defined from source to target relation. Cardinalities are associated with
each entity-relation. The flow direction is also defined, if applicable.

3.6 Strengths and Limitations of our Approach

FLOWER’s greatest strength lies in its compatibility with the ER diagram. By
adding a single symbol, an arrow, FLOWER unlocks an entire paradigm of data
inter-connectivity where previously only static relationships were considered.
Importantly, the arrow shows dependence and data flow while preserving ER
structure. The simplicity of the arrow does not correspond to its utility: by
introducing the concept of flow to ER, the worlds of Data Warehousing and
Data Pre-processing can be reconciled with minimal modification. Not only are
we able to see where data goes and how it is transformed, we are also able to
combine it with many other extensions to ER which is meant to be compatible.
In particular, we are able to treat UML diagrams as a specialized form of ER
diagram in this manner, as we show in our prototype. While the depiction of flow
in a data pipeline is far from a novel concept, we believe the notion of extending
ER for the purpose of looking backward at existing or proposed pipelines as
opposed to a domain-specific or ad-hoc representation is. Other approaches also
exist for the management of existing metadata, but do not yet specify the nature
of actual data used ([7]: structured, unstructured, programs, etc.), or analyze the
way the information is actually structured and extracted [8].

FLOWER excels particularly as the output of automated reverse engineer-
ing. Potentially complex or undocumented data pipelines can be observed and
explained in part or whole in moments. In practice, days to weeks of analyst
time might be saved when approaching problems such as documenting legacy
systems. While ER is traditionally used in describing a relational schema before
implementation, it can also be leveraged through use of FLOWER to help explain
existing schemas using the same kind of diagram that would be used in their
creation. There is an additional advantage in FLOWER being descriptive instead
of prescriptive, as it can also enable the user to connect additional attributes to

10

the ER diagram that traditionally do not (and in non-diagnostic cases, should
not) be present, such as specific PF/FK relations to entities inside and outside
the database.

Implementation of automated FLOWER diagramming will not be without its
challenges. Real-world software supporting FLOWER must include some or all of
the properties of modularity, nested analysis, some measure of attribute and type
inference (as with linters and IDEs), and auxiliary source inspection. [9] gives
methods of observing and describing data exchange in heterogenous schemas; We
propose extending this knowledge in further work to include observed flowing
data entities and describing these schemas with FLOWER. Our prototype only
considers a subset of Python and known library transformations, which could be
improved with the outlined capabilities to be robust enough for real-world use.

4 Validation

FLOWER is only useful if it is possible to procure data sufficient to generate
an accurate diagram. As discussed above, weak typing and other obstacles to
static analysis make finding the relationships between nodes in a real-world data
pipeline challenging. In this section, we demonstrate the possibility of a sufficient
analysis tool by presenting the results of an actual prototype implementation.
This prototype performs a subset of the automated reverse engineering techniques
described to inspect and explain real-world code.

4.1 Hardware and Software

The specifications of the computer used to implement and test our prototype are
as follows: , Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz; Memory: 48.0 GB;
Operating System: Linux (Ubuntu 18.04.4 LTS). Our prototype runs on pure
CPython 3.10.10, with no other requirements. The primary modules from Python
3.10 used were ast for traversing Python’s abstract syntax tree, and JSON for
output. Other modules utilized were typing, dataclasses, functools, uuid, glob and
argparse. Our diagram generator was developed using HTML, Bootstrap, CSS,
JavaScript (JS), and the GoJS library. Git was used for versioning this project.4

4.2 Input Data

We validated the efficacy of our approach by building a prototype implementation
for analyzing Python data pipelines. Our prototype focuses on the read and
write patterns of pandas’ read * and to * functions. All other functions are
considered opaque, so no nested flow analysis is performed. The prototype also
only inspects string literals when collecting resource information. We listed
methods of succeeding these limitations in future work in Section 3.6.

4 Full code is available on GitHub at https://github.com/Big-Data-Systems/

FLOWERPrototype.

11

https://github.com/Big-Data-Systems/FLOWERPrototype
https://github.com/Big-Data-Systems/FLOWERPrototype

We provided the software with a path pointing to a collection of scripts used
in prior research. These scripts used hard-coded resource path strings, which is
what our prototype looks for in defining reads and writes. We consider the source
code as fragments, absent their context or files they interact with, to simulate a
complicated or disparate system of legacy code.

4.3 Parsed and Inferred Metadata

The default output of our prototype parser is a JSON file describing each Flow
node together with its inputs and outputs, along with “interesting” internal State
nodes forming the graph inside the given Flow. An interesting node is a State
with a read operation, a write operation, or having more than one ancestors
or descendant. It includes a list of all operations on non-interesting ancestors
leading up to and including the current node. This approach summarizes States
such that each line of non-interesting States followed by an interesting State form
a single transformation entity within FLOWER.

For the diagram itself, a command flag causes the software to output entity
and relationship JSON files suited to our FLOWER diagram generating program.
This instructs the program to output the Flows and any files they connect to as
Entities, and their connections as relationships. Optionally, it may also output
more detailed files containing the interesting node summaries as entities.

4.4 Results: Diagram Output

We developed a basic graph visualization tool in JavaScript for the purpose of
demonstrating automated FLOWER diagram generation. The tool reads the
formatted data, in the form of JSON files for entities and relations, and generates
a visualization of the complete system in FLOWER format. The end result of
this process is a diagram very similar to one that might have been used on the
reverse side to plan such a system.

In Figure. 1 we displayed a FLOWER diagram generated from source and
entity files describing a hypothetical data set. This data set would be a wide
range of files and processes dealing in statistics about stores, customers, products,
and sales, which would be extracted from external and internal sources relating
history sales data, customer information and buyers’ opinions. The green entities
represent transformation objects such as data scripts, AWS Lambda, etc. that
would be detected or declared by the analyst and added to the model. This
fully-featured graph illustrates FLOWER’s capabilities.

The GUI presented to the user allows them to view the FLOWER model
displayed as a dynamic graph. The user can navigate between and interact with
the entities to examine their relationships. Further, the PK and FK columns are
labeled and the cardinalities are displayed above the arrow link. The transfor-
mation entities are shown in color green and ER entities in white. The arrows
represent the data flow. An analyst working in combination with these tools can
fine tune the parameters of the intermediate files and inputs to create a more
accurate diagram.

12

Fig. 2: Results diagram for real BDA source code

We provided the results of our analysis prototype to our visualizer, producing
Fig. 2. As expected, the pipelines do not connect between unrelated data sources,
only their related fragments. The Python scripts are expressed as green boxes,
showing them as intermediate steps in the process of data transformation.

4.5 Efficiency Considerations

Because we statically analyze source code (text data), the processing time is
negligible. All our source code analyses and diagram generation ran in a fraction
of a second. Data sets are not loaded into memory: the system only needs to
scan the source code. The version of Python analyzed, 3.10, uses a PEG (parsing
expression grammar) in parsing the tree. This grammar has an exponential
worst-case parsing time complexity, which Python handles by loading the entire
program into memory and allowing for arbitrary backtracking and caching. Our
analysis leverages Python’s existing parser (the ast module) to parse code into
machine-readable syntax trees, then runs over each statement linearly to inspect
behavior. The parsing step is no less efficient than the parsing done when the
program is actually run, and our own inspection algorithm runs in O(n) time
thereafter.

5 Related Work

In closely related research, [10] proposed an extension of ER diagram by adding
“data transformation” entities in order to visualize tasks of data mining projects
developed in the context of relational database warehouses. Two types of trans-
formations were considered: denormalization and aggregation. Lanasri et al. [6]
proposed a tool, ER4ML, that assists data scientists to visualize and understand
the different data transformations in pre-processing data for a Machine Learning

13

system. In a similar manner to [10], the authors focused only on transforma-
tions (denormalization and aggregations) that can be handled by SQL queries.
This advanced work is state-of-the-art, but does not elaborate on understanding
transformations performed by common data science languages like Python, and
it does not capture flows beyond databases. In an alternative line of work, [5]
solved data normalization with minimal human interaction. A layout algorithm
for automatic drawing of the data flow diagram was presented in [3]. This layout
algorithm receives an abstract graph specifying connectivity relations between the
elements as input and produces a corresponding diagram as output. The authors
of [1] presented a method for entity resolution that infers relationships between
observed entities, and uses those relationships to aid in mapping identities to
underlying entities.

In a similar context and in order to prevent data lakes from being invisible and
inaccessible to users, there exist various solutions for data lake management [11],
including data lake modeling, metadata management, and data lake governance.
Other works focused only on generating a graph-based model to describe intra-
object, inter-object, and global metadata [12] or assessing the Data Vault model’s
suitability for modeling a zoned data lake [13].

There is work on the detection of relationships among different data sets in
data lakes [13,12]. However, a data lake contains diverse sources, therefore the
description of the process of extracting information (including images, documents,
programs; and so on) and identifying relationships between them is required. In
addition, these works propose their own models for the representation of metadata.
This stands in contrast to our approach, which is based on a common standard for
data lake metadata representation, the ER model which is enriched with modern
UML notation. Until now, no tools currently exist to explore data pre-processing
in data lakes. Our vision for FLOWER seeks to unify data warehousing, database
design, and data pre-processing.

6 Conclusions

Data science needs innovative techniques to capture data structure and interrela-
tionships, following and extending proven database design techniques with respect
to ER diagrams and relational databases. We believe this diagram proposal is a
step in the right direction.

Evidently, there is a lot of work to be done. Our prototype examines top-level
code, not processing nested flows. Additionally, it only inspects relationships
between objects, not considering inherited attributes or keys. Extending to a
more mathematically secure and functionally capable tool that can encompass
Python as well as other languages, as well as incorporating previous work in
SQL, will be the next big task in developing FLOWER. This includes executing
portions of the code on input files and tracking values in order to understand data
types, dependencies, and provenance. We also must study how to represent data
filters, similar to the relational selection operator, in order to define a complete
algebra and capture the whole data flow accurately. A complete platform would

14

furthermore include parsing database query scripts [10] (e.g. SQL, SPARQL,
MongoDB) and combining such outputs with existing UML diagram information
to get a full data picture. Collecting opinions and observations from real data
scientists will also be necessary to evaluate the usefulness, ease of use, and
flexibility.

References

1. J. Mugan, R. Chari, L. Hitt, E. McDermid, M. Sowell, Y. Qu, and T. Coffman,
“Entity resolution using inferred relationships and behavior,” in IEEE International
Conference on Big Data. IEEE Computer Society, 2014, pp. 555–560.

2. G. Guo, “An active workflow method for entity-oriented data collection,” in Ad-
vances in Conceptual Modeling - ER 2018 Workshops Emp-ER, MoBiD, MREBA,
QMMQ, SCME, Xi’an, China, October 22-25, 2018, Proceedings.

3. C. Batini, E. Nardelli, and R. Tamassia, “A layout algorithm for data flow diagrams,”
IEEE Trans. Software Eng., vol. 12, no. 4, pp. 538–546, 1986.

4. M. Sebrechts, S. Borny, T. Vanhove, G. van Seghbroeck, T. Wauters, B. Volckaert,
and F. D. Turck, “Model-driven deployment and management of workflows on
analytics frameworks,” in IEEE International Conference on Big Data, 2016, pp.
2819–2826.

5. M. Pham, C. A. Knoblock, and J. Pujara, “Learning data transformations with
minimal user effort,” in IEEE International Conference on Big Data (BigData),
2019, pp. 657–664.

6. D. Lanasri, C. Ordonez, L. Bellatreche, and S. Khouri, “ER4ML: an ER modeling
tool to represent data transformations in data science,” in Proceedings of the ER
Forum and Poster & Demos Session 2019, vol. 2469, pp. 123–127.

7. R. Eichler, C. Giebler, C. Gröger, H. Schwarz, and B. Mitschang, “Handle-a generic
metadata model for data lakes,” in DaWaK. Springer, 2020, pp. 73–88.

8. C. Quix, R. Hai, and I. Vatov, “Metadata extraction and management in data lakes
with gemms,” Complex Systems Informatics and Modeling Quarterly, no. 9, pp.
67–83, 2016.

9. R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and
Y. Velegrakis, Clio: Schema Mapping Creation and Data Exchange. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 198–236. [Online]. Available:
https://doi.org/10.1007/978-3-642-02463-4 12

10. C. Ordonez, S. Maabout, D. S. Matusevich, and W. Cabrera, “Extending ER
models to capture database transformations to build data sets for data mining,”
Data & Knowledge Engineering, 2013.

11. C. Giebler, C. Gröger, E. Hoos, H. Schwarz, and B. Mitschang, “Leveraging the
data lake: Current state and challenges,” in DaWaK. Springer, 2019, pp. 179–188.

12. É. Scholly, P. N. Sawadogo, P. Liu, J. Espinosa-Oviedo, C. Favre, S. Loudcher,
J. Darmont, and C. Noûs, “Coining goldmedal: A new contribution to data lake
generic metadata modeling,” in DOLAP, vol. 2840, 2021, pp. 31–40.

13. C. Giebler, C. Gröger, E. Hoos, H. Schwarz, and B. Mitschang, “Modeling data
lakes with data vault: practical experiences, assessment, and lessons learned,” in
ER 2019. Springer, 2019, pp. 63–77.

15

https://doi.org/10.1007/978-3-642-02463-4_12

	FLOWER: Viewing Data Flow in ER Diagrams

