
Improving Stochastic Gradient Descent
Initializing with Data Summarization

Robin Varghese1 and Carlos Ordonez1

Department of Computer Science
University of Houston, Houston TX 77204, USA

Abstract. Linear Regression (LR) is the prototypical statistical model,
which can be applied on a wide range of predictive problems. Ordi-
nary Least Squares (OLS), is the standard technique for estimating the
parameters of the LR model. However, such computation can be slow
and resource-hungry for large data sets with high dimensionality, due
to heavy matrix operations. More importantly, OLS may be impractical
for large data sets as the entire data set is required to be loaded into
main memory, often exceeding RAM capacity. These limitations empha-
size the need for optimization techniques to compute LR. Two state of
the art algorithms used to compute LR are: Stochastic Gradient Descent
(SGD) and Data Summarization (DS), combined with a matrix factor-
ization. A few decades ago DS was the main technique to accelerate data
mining computations, followed by SGD. Nowadays, SGD has become
the workhorse behind most ML algorithms and deep neural networks.
Merging both techniques, we propose to initialize SGD with a solution
computed via DS on the initial batch of points, leaving SGD computa-
tion on the remaining points “as is”. An experimental evaluation with
several data sets shows our improved SGD algorithm reaches higher qual-
ity solutions (lower MSE error, higher R2) and it converges faster (less
iterations, reduced data usage, less computation time). We believe our
simple SGD change can benefit many more ML models beyond LR.

1 Introduction

Linear Regression is the basis for linear models. LR is highly regarded for its
simplicity and ease of implementation, which makes it accessible to users with
varying levels of technical expertise. This includes researchers, analysts, and
practitioners in various fields, such as finance, healthcare, social sciences, and
engineering. The intuitive nature of LR also makes it useful for educators and
students seeking to understand fundamental concepts in statistics and data anal-
ysis. The need to accelerate the computation of LR arises because it can be
computationally expensive, particularly when dealing with large data sets. This
is because LR involves solving a system of equations to find the optimal values
of the coefficients, that minimize the sum of the squared errors. Furthermore
as the size of the data set increases, the number of calculations required to
solve these equations also increases, leading to long computation times and slow
performance.
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Gradient descent (GD) has been making significant strides in the field of
machine learning (ML) also for its simplicity, but more importantly its ability to
be applied to a wide variety of problems [15]. It can be said to be the definitive
optimization algorithm in ML. Logistic regression builds on the concepts of LR
and is a step towards creating non-linear models. Neural networks, used in both
statistical models, have their quality and speed affected by GD’s initialization.
Many aspects and properties of GD for LR have been extensively researched
including, optimal learning rates, learning rate schedulers, cost functions and
data shuffling [4, 10, 14]. Furthermore from [16], we see how initialization can
have significant impact on model performance. Compared to the traditional base
case initializations of 0 and 1, we can see from [3] how random initialization
can result in better model performance. In this paper we propose using data
summarization as weight initialization. Additionally there are many variations of
GD, most commonly Stochastic Gradient Descent (SGD) and mini-batch SGD.
GD is computed on the entire data set, SGD on a single point, and mini-batch
SGD on a batch of data. Mini-batch SGD is often favored because it is a balance
between GD and SGD. This paper implements mini-batch SGD, but is referred
to throughout the paper as simply SGD.

Gamma (Γ ) is but one form of DS and can be used to integrate sufficient
statistics (SS) of an input data set into a single matrix. Then, the computation of
many ML models and tasks such as Naive Bayes, Principal Component Analysis
(PCA), Linear Discriminant Analysis and Linear Regression can be accelerated
[11]. The authors of [1], compute Γ in Python and have shown to be as fast as
popular Python ML libraries including scikit-learn (sklearn) [13].

Our contributions and experimental findings show that, using data summa-
rization for initialization in gradient descent can result in:

1. Faster convergence with less data
2. Lower model error
3. Higher quality (R2)

The paper is organized as follows: Section 2 presents background informa-
tion, key concepts, definitions, and notations that are mentioned throughout
the paper. Section 3 details the system and theoretical aspects of the underly-
ing related algorithms and our contribution. Section 4 provides an overview of
the experimental setup, implementation details, results, and analysis. In Section
5, we explore related works in gradient descent optimizations and initialization
techniques. Finally, in Section 6 we give concluding remarks and discuss the
potential for future research.

2 Definitions

2.1 Input data set

Each input data set is defined as X. Here, X is a d×n matrix, equivalent to a set
of n column vectors corresponding to each observation in the data set, having d
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dimensions or attributes. In the case of LR, augment X with a row vector of n
ones along the X0 dimension producing the (d+ 1)× n matrix X. Y is a n row
vector corresponding to the output for each n observation.

2.2 LR Model

Given a (d+1)×n input matrix X, and a (d×1) column vector β̂ of coefficients,

compute Ŷ. Ŷ is a n row vector, corresponding to the predicted outputs of each
n observation, produced by the LR model.

Ŷ = β̂TX+ ϵ (1)

To achieve a close approximation of Y the true predicted outputs, fit the
LR model Eq. 1. The model can be fit using many methods most commonly,
Ordinary Least Squares (OLS). This method finds the β̂ that minimizes the

Residual Sum of Squares (RSS), resulting in Ŷ ≈ Y [5].

RSS = (Y− β̂TX)(Y− β̂TX)T (2)

To minimize RSS, differentiate w.r.t. β̂ and set equal to 0, deriving the unique
solution:

β̂ = (XXT )−1XYT (3)

Given the trained coefficients β̂ from fitting the model in Eq. 3, the model can
be utilized to make predictions on new or future observations.

3 System and Algorithms

3.1 Gamma Summarization (Γ )

For computing gamma (Γ ), augmentX withY. In general, this (d+2)×nmatrix
is defined as Z, but in practice is (d+2)× c, where c is equivalent to chunk size.
It should be emphasized that c is considered a hyper-parameter and can vary to
achieve optimal performances. However for our experiments c is held constant
to give a fair comparison between the algorithms, Γ and SGD. The terms XXT

and XYT in Eq. 3 and other sufficient statistics (SS), are contained in the single
matrix Γ . Therefore the computation of Γ becomes a two phase algorithm as
follows, Phase 1: Obtain SS stored in Γ ; Phase 2: Solve β̂ exploiting SS.

Z =


1 1 ... 1
x11 x12 ... x1c

xd1 xd2 ... xdc

y11 y12 ... y1c

 (4)
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Phase 1 Begin by reading one chunk of the input data set of size d×c. Augment
this chunk with a row vector of c ones and Y (dependant variable) also a c row
vector. This will produce Z, a (d+2)×c dense matrix. Compute ZZT to produce
the partial gamma Γi. It should be noted Γ is computed on the entire data set,
but because only the first chunk is used, we utilize partial gamma Γi to initialize
SGD.

Γi = ZZT =

 n LT 1T · Y T

L Q XY T

Y · 1 Y XT Y Y T

 (5)

The sufficient statistics (SS) L, n and Q are defined as follows: n = |X|, L =∑n
i=1 xi, and Q = XXT =

∑n
i=1 xi · xT

i , n is total number of points in the data
set, L is the linear sum of xi and Q is the sum of vector outer products of xi. It
should be noted that Phase 1 takes majority of the computation time, between
the two phases.

Phase 2 Begin Phase 2 by exploiting the sufficient statistics integrated into
the single matrix Γi to further compute a ML model or task. In this case, the
task is to compute the regression coefficients β̂ also seen in Eq. 3. The sufficient
statistic Q is exploited by substituting it into the OLS analytical solution (Eq.
3) as shown in Eq. 6. It should be emphasized that the initial chunk is no longer
needed and is summarized within the significantly smaller matrix Γi. This allows
β̂ to be solved in main memory in O(d3).

β̂ = (XXT )−1XYT = Q−1(XYT ) (6)

3.2 Mini-Batch SGD

The closed-form solution of LR as shown in Eq. 3, is computationally expensive.
An alternative would be to implement gradient descent, where MSE is iteratively
optimized until reaching a local minimum Eq. 7,8. In mini-batch SGD, Mean
Squared Error (MSE) is typically used over RSS because MSE averages the
squared errors, providing normalization that makes training more scalable. As
the number of data points increases, there are more residuals to square and sum,
leading to large RSS values regardless if the errors are relatively small. This
means that even if a model is making relatively good predictions, the RSS value
can still be large simply due to the large number of data points. Mathematically,
MSE is equivalent to: MSE = RSS / c

f = MSE =
1

c
(Y− β̂TX)(Y− β̂TX)T (7)

After each chunk, obtain the gradient ∇f by taking the partial derivative w.r.t
β̂ of Eq. 7, resulting in Eq 8.

∇f =
1

c

c∑
i=1

−2xi(yi − (β̂xi + β̂0)) (8)
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β̂ = β̂ − α∇f (9)

By utilizing the gradient for the processed chunk and scaled by the learning
rate α, update β̂ with its new value. After each update, β̂ iteratively minimizes
the models loss until reaching convergence.

3.3 Mini-Batch SGD Initialization Using Gamma

Our contribution improves SGD by incorporating Γ as initialization. Although
this may seem like a small and simple alteration, it has yielded significant and
impactful results. Depending on the initialization method, the number of updates
required to reach convergence can vary greatly. Therefore, we propose computing
Γ on a chunk and using the computed β̂ to initialize Mini-Batch SGD. In general,
the algorithm will take an input data set X of d features, n observations, and
the corresponding outputs for each observation Y. As output, the trained β̂’s,
R2, and MSE are returned. The outline of our proposed approach, as seen in
Figure 1, is as follows:

1. Read one chunk of data
2. Compute Γi (Phase 1)

3. Exploit SS to compute β̂ (Phase 2)

4. Initialize Mini-Batch SGD weights using the previously computed β̂ from
step 3

5. Begin model training using the initial and remaining chunks

It is important to note that Γ is computed only on the first chunk. Then Mini-
Batch SGD begins training as standard, continuously and sequentially reading
in chunks until convergence. Additionally, Γ can be computed sequentially and
also more favorably, in parallel [11]. This highlights another aspect where Γ can
help aid in Mini-Batch SGD.

Fig. 1: Gamma Initialization System Design
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4 Experiments

4.1 Experimental Setup

The YearPredictionMSD data set was obtained from the publicly available, UCI
machine learning repository [7]. The creators of the YearPredictionMSD data
set [2], created it to serve as a benchmark data set for regression tasks in ML,
particularly for the problem of predicting the release year of a song, given a set of
musical features. The data set was released as part of the Million Song Dataset
project, which aimed to provide a comprehensive data set for music analysis
and recommendation systems. The data set consists of n = 515, 345 songs and
d = 90 features. Each song is represented by a 90-dimensional feature vector,
which includes information such as tempo, timbre, and loudness. The goal of the
regression task is to predict the year in which the song was released, given the
90-dimensional feature vector. Additionally as stated in the original data set,
the following train/test split should be respected to avoid the ’producer effect’
(making sure no song from a given artist ends up in both the train and test set):

1. train: first 463,715 examples
2. test: last 51,630 examples

The California Housing data set can be obtained directly from sklearn
(sklearn.datasets.fetch_california_housing). The data set is also a widely
used LR benchmark in machine learning. It contains information on the median
house prices, the number of households, the median income, and other factors
in various neighborhoods across California. It was collected from the 1990 U.S.
Census, and consists of n = 20, 640 census block groups and d = 10 features [12].
A census block group is the smallest geographical unit the Census Bureau uses
to collect data. The target variable for the model is the median house value (in
units of 100,000 dollars). Since no train/test split is given by the authors, we use
sklearns sklearn.model_selection.train_test_split method:

1. train: 70%
2. test: 30%

Table 1: Data sets
Data set Description n d

YearPredictionMSD Song Year Prediction 515,345 90
California Housing Median House Value 20640 9

Using k-fold cross-validation may not be necessary for comparing different
initialization methods of SGD because cross-validation is typically used to assess
how well a model performs on new, unseen data. However, when testing initial-
ization methods, the main goal is to compare their effects on the optimization
process of SGD, rather than evaluating the model’s performance on unseen data.



4. EXPERIMENTS 7

The system used for the experiments is a Pentium(R) Quadcore CPU run-
ning at 1.60 GHZ, 8 GB RAM, 1TB storage and with Linux Ubuntu as the
operating system. Pre-processing and standardizing the data is important in
gradient descent to prevent under/overflows occurring resulting in inaccurate
results. Standardization is a common pre-processing step used in machine learn-
ing to transform data so that it has a mean of 0 and a standard deviation of
1. We utilize sklearns StandardScaler() on the data set to achieve this. To read
chunks of the .csv, we use the Pandas data frame library [9]. Pandas is a pow-
erful tool for data analysis and manipulation in Python. It provides a fast and
efficient way to handle data in a variety of formats, including CSV, Excel, SQL
databases, and more.

We use sklearn’s SGDRegressor as an honest SGD implementation. Sklearn’s
SGD, internally has many optimizations and automatic hyper-parameter tuning.
Most importantly, the initial learning rate, learning rate scheduler, and early
stopping. For fair comparisons between initialization methods, we keep all hyper-
parameters constant between trials and default to what sklearn provides. This
includes using the default learning rate and default inverse scaling scheduler,
in addition to early stopping. Only the initialization method is changed before
training begins. Early stopping is a regularization technique commonly used
in SGD to prevent overfitting and improving generalization. Overfitting occurs
when the model learns the noise in the training data and fails to generalize well
to new, unseen data. In our experiments, when the model does not achieve a
lower error (MSE) after e steps, we stop training. We tested using 5, 10, and
20 steps however we only include 10 and 20 in this paper as there were little
to no change in accuracy. This highlights one of the main benefits of SGD over
OLS. That is, being able to approximately reach the optimal accuracy without
requiring training on the entire data set. Once the weights are computed by Γ , we
are easily able to initialize the sklearn model using the reg.coef_ attribute. For
0 and 1 initialization, we set the reg.coef_ attribute respectively. For random
initialization, we simply initialize the sklearn SGD object and begin the training
loop. In the case of Γ initialization, we use the first initial chunk to compute
Γ , and then set reg.coef_ using the produced β’s. Additionally, we used 1%
of the total data set as chunk size for both the initial Gamma chunk and SGD
chunks. In the case of the YearPredictionMSD data set, chunk size was 5153, 1%
of 515,345. For the California Housing data set, chunk size was 144 1% of 14,448.
Due to the randomness factor in SGD, the results are taken as the average over
100 trials in addition to the experiment being ran multiple times with identical
averages each time.

4.2 Experimental Results

The YearPredictionMSD data set is a challenging regression problem, as the
relationship between the musical features and the release year is complex and
non-linear. This can be verified by the low R2 value (0.39) produced by com-
puting OLS on the entire data set. The coefficient of determination (R2), is a
commonly used metric in LR because it measures the proportion of variance in
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Table 2: R2 Results For Initialization (YearPredictionMSD: R2 = 0.39, Califor-
nia Housing: R2 = 0.59), e = early stopping steps

Data set e Gamma SGD Random SGD 0 SGD 1 SGD

YearPredictionMSD 10 0.26 0.23 0.23 0.23
California Housing 10 0.60 0.58 0.58 0.56
YearPredictionMSD 20 0.27 0.24 0.23 0.23
California Housing 20 0.60 0.58 0.58 0.56

(a) YearPredictionMSD

(b) California Housing

Fig. 2: Number of chunks used in training

Table 3: Speed Comparisons (Time in seconds)
Data set OLS Gamma SGD Random SGD 0 SGD 1 SGD

YearPredictionMSD 26.517 4.354 5.583 5.694 5.516
California Housing 0.942 1.152 1.174 1.111 1.258
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(a) YearPredictionMSD

(b) California Housing

Fig. 3: Model MSE during training

the dependent variable explained by the independent variables included in the
model. An R2 score of 1.0 indicates that the model perfectly fits the data. On
the contrary, the California Housing data set has a relatively higher R2 value
(.59), indicating much more linearity in comparison.

Discussion Our analysis of the performance of different models on the YearPre-
dictionMSD data set, as shown in Table 2 and Figure 2 (a), demonstrates that
Gamma outperforms other models in terms of R2 value despite using signifi-
cantly less data. Whereas randomization the second best performing model used
30 chunks, Gamma used only 20 showing a 1.5x (30/20) increase in training ef-
ficiency. This can be attributed to Gamma’s better ability to handle non-linear
and noisy data. As previously mentioned, the YearPredictionMSD data set is
challenging due to its low optimal (OLS) R2, which makes it difficult for linear
models to learn effectively. Therefore, the relative improvements in R2 and data
usage achieved by Gamma is noteworthy.
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Conversely our results on the significantly more linear data set California
Housing, across the models are identical. While Gamma does achieve a higher
R2, from Figure 2 (b) it is clear there is no longer a major improvement in
training efficiency. This highlights that while Gamma provides advantages for
non-linear data sets, it also does not perform worse than other methods on linear
data sets.

We also verify SGD’s efficiency over OLS in Table 3. On the YearPrediction-
MSD data set, we can see OLS taking a substantial 26.5 seconds to compute.
Using Gamma initialization, SGD is able to converge in 4.3 seconds, a speed up
of approximately 6x (26.5/4.3). In order to identify potential findings, trends, or
avoiding local minima and to ensure that each initialization technique received
a fair evaluation, we conducted initial experiments with a maximum of 5 steps
for early stopping. However, the resulting accuracy’s were below acceptable lev-
els with all models reaching below R2=0.18. We then increased the maximum
number of steps to 10, which led to a significant improvement in accuracy, ap-
proaching optimality. However, our experimental findings show that increasing
the number of steps further to 20 did not result in any noticeable performance
improvements, as the performance of the initialization techniques remained sim-
ilar. We also did not include the plot for each models MSE when e=20 steps for
this reason, as the trend is same. From Figure 3, the intuition behind Gamma
initialization becomes clear. SGD is able to begin its descent from a smaller peak
and eventually reach convergence.

5 Related Work

In this section, we overview previous work in SGD optimizations and weight
initialization.

SGD Optimizations: Although gradient descent algorithms are widely
used, it is still often viewed as a black-box optimizer. As a result, research in
gradient descent has produced many improvements in the algorithm.

Optimal hyper-parameter tuning is vital during training and can lead to sig-
nificant improvements [16]. Specifically, the authors show the importance of mo-
mentum and initialization in performance. Momentum is a fundamental method
in learning rate scheduling. Intuitively, momentum will accelerate the progress
towards the steepest descent thereby, accelerating convergence in comparison to
a constant learning rate. Additionally ADAGRAD and ADADELTA are first and
second order methods respectively that improve upon momentum and are com-
monly used [8] [17]. ADAGRAD has been shown to be well-suited to sparse data
sets as the learning rate adapts towards the frequency of parameter updates.
Its extension ADADELTA, addresses the problem of ADAGRAD’s aggressive
decreasing of learning rate.

In addition to hyper-parameter tuning, research has also produced many
variants in the overall gradient descent algorithm. Depending on the training
environment, modifications to the algorithm such as batch size, density, or spar-
sity can be leveraged to improve performance [15].
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Initialization: Weight initialization is a vital step before training of a neu-
ral network begins. During training, the weights are repeatedly updated until
the models loss or error converges to a minimum value. Therefore, weight ini-
tialization directly affects the convergence or training time of a model [6]. For
its simplicity and versatility, randomization is a well known technique that can
be found all across machine learning [3].

6 Conclusions

SGD is a building block for complex machine learning algorithms such as neural
networks. Improving initialization of SGD can lead to faster and more accurate
predictions. In this work, we propose a method for using DS to accelerate the
computation of SGD. Our results show that this method can lead to faster con-
vergence with less data, higher R2 values, and lower error (MSE) in LR models.
We provide experimental results on the YearPredictionMSD data set, a chal-
lenging regression problem with a complex and non-linear relationship between
the musical features and the release year. Our analysis demonstrates that Γ
initialization outperforms other models in terms of R2 value, particularly for
non-linear and noisy data. Additionally, our results on the more linear Cali-
fornia Housing data set show that Γ initialization is equally effective as other
methods. Our proposed change can be easily integrated into common Python
SGD implementations. Furthermore, we provide an example in sklearn.

In future work, we plan to improve the quality of sparse SGD for LR im-
plementations, Logistic Regression, and explore Γ as a hyper-parameter. Sparse
SGD offers memory and computational efficiency by focusing only on non-zero
features, leading to faster computation times and reduced memory consumption
compared to dense SGD. In complement to LR, logistic regression is often viewed
as the first step towards a non-linear model. This may broaden the possibilities
for our research to delve into the extensive realm of classification applications.
In this study, we propose the use of DS on a single data chunk to initialize SGD
and subsequently continue with the standard model training. However, further
research might investigate how the number of chunks or the amount of data used
during the initialization stage with DS compares to the number of chunks used
during the SGD model training.
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