
Bitwise Algorithms to Compute the Transitive
Closure of Graphs in Python

Xiantian Zhou1, Abir Farouzi2, Ladjel Bellatreche2, and Carlos Ordonez1

1 University of Houston, USA
2 LIAS/ISAE-ENSMA, France

Abstract. The transitive closure (TC) of a graph is a core problem in
graph analytics. There exists many High Performance Computing (HPC)
and database solutions to solve the TC problem for big graphs. How-
ever, they generally require the graph to fit in main memory and they
require converting into specific binary file formats. To solve such limita-
tions, this paper presents a novel solution to solve TC within the Python
library ecosystem, combining HPC techniques and database system al-
gorithms. We introduce two complementary algorithms removing HPC
memory limitations: (1) an algorithm that efficiently converts edges into
bit vectors and (2) a database-oriented, bit-vector, highly parallel matrix
algorithm, which processes the graph in blocks. An experimental evalu-
ation shows our solution provides better performance than state of the
art Python libraries.

1 Introduction

Transitive closure (TC) is one of the most computationally intensive tasks in data
science research, primarily due to the large size and complex structure of graphs.
It plays a crucial role in various graph problems. For instance, triangle enumer-
ation represents the initial two steps in TC [4]. Consequently, several solutions
leveraging HPC technologies have been proposed, including graph engine solu-
tions, SQL-based solutions, and Python libraries [5]. SQL-based solutions offer
elegance and memory limitations freedom, while Python is a popular language for
data analysis, offering numerous libraries and packages for graph analysis such
as GraphBLAS, Scikit-network, and NetworkX. These libraries provide state-of-
the-art graph algorithms [2, 3]. However, Python may be slow when analyzing
large graphs, particularly those that cannot fit in RAM. Moreover, significant
research progress has been made on efficient analytic algorithms for TC, some of
which are based on relational algebra operations. For example, some algorithms
employ hash-based fragmentation or fragmentation based on the semantic con-
tent of data. [7] explored a double-hash data fragmentation scheme. Another
class of parallel TC algorithms is based on matrix manipulation. [1] presented
parallel algorithms for computing the transitive closure of a database relation,
applicable on both shared-memory and message-passing architectures. Generally,
these parallel transitive closure algorithms operate directly on the adjacency list.
However, parallel TC algorithms that work on a matrix representation can be

2 Xiantian Zhou et al.

more efficient. In fact, our experiments with different input graphs have shown
that the TC graph density can exceed 70%, even if the input graph density is
below 10%.

In this paper, we introduce disk-based distributed TC solutions that operate
on the bit-matrix. We study how to develop TC algorithms within the Python
ecosystem while adhering to principles of database systems. Our ultimate aim
is to enable efficient processing of large graphs without memory limitations and
with acceptable response times. Our implementations are suitable for reachabil-
ity and path problems, and our experimental study shows the superiority of our
solutions over existing popular analysis systems, suggesting potential advance-
ments in bridging high-performance computing and Python.

2 Background

2.1 Graph

Let G = (V,E) be a directed graph with n = |V | vertices (V is the set of
vertices) and m = |E| edges (E is the set of edges). An edge in E links two
vertices in V , and has a direction. The adjacency matrix of G is a n× n matrix
where a 1 is stored in the entry (i, j) if there exists an edge from vertex i to
vertex j. Storing the adjacency matrix in this sparse form helps conserve space
and CPU resources. In our work, we do not use weight sice we are solving TC
prolbem. Thus, the input graph is represented as an edge list E(i, j) and can be
sorted either by i (Ei) or j (Ej). Since only existing edges are stored, the space
complexity is O(m). In sparse matrices, we assume m = O(n).

The TC graph G∗ compute all vertices reachable from each vertex in G. It
is defined as: G∗ = (V,E∗), where E∗ = {(i, j) s.t. there is a path between i
and j}. TC graph is stored as an adjacency matrix, because TC graph is much
denser than the sparse input graph. The entries of TC matrix can be stored in
one bit. In our paper, we use a 64-bits integer in C to store 64 edges.

2.2 Classical Algorithms in Main Memory

Warshall’s algorithm is recognized as the best algorithm for computing TC.
It performs perfectly with HPC in main memory. However, when dealing with
large graphs that cannot fit in main memory, it fetches random edges from disk
and reads the entire matrix into memory at least N times. To address this
issue, Warren proposed an improvement of Warshall’s algorithm that reduces
the number of I/O for large graphs by processing the matrix elements in a row
order in two passes [6].So we think Warren is better for large graphs because it
has lower I/O: it requires loading block less times from disk into RAM. Thus, it
is chosen as the base algorithm for developing our solution.

3 TC solved in Python with Database Algorithms

Inspired by database systems, our solutions process the input graph by blocks
instead of reading the entire graph into main memory.

Bitwise Algorithm to compute TC 3

Input: E
Output: E∗

1 for i← 2 to n do
2 for j ← 1 to i− 1 do
3 if E[i, j] = 1 then
4 set E[i, ∗] = E[i, ∗] ∨ E[j, ∗]
5 end

6 end

7 end
8 for i← 1 to n− 1 do
9 for j ← i + 1 to n do

10 if E[i, j] = 1 then
11 set E[i, ∗] = E[i, ∗] ∨ E[j, ∗]
12 end

13 end

14 end
Algorithm 1: Warren’s Algorithm

3.1 Transforming the Edge Data Set into a Bit Matrix

Storing TC graph in a matrix has many advantages such as using one bit to store
each edge, and doing a world-parallel ”OR” instruction by storing the matrix
in packed row-major order. Therefore, our solution will pre-process the input
graph by transforming it into a bit-matrix.

For large graphs, we read and process the input graph by blocks in the main
memory. We summarize the conversion of a block into a bit-matrix block below.

1. Initialize a bit-matrix block to zero.
2. For each neighbor j of a source vertex i, find the position of j bit in row i.
3. Set the bit entry (i, j) to 1.

We call the vector of bits performing OR together as a bit-vector. A bitmask
will be used to extract or set a bit in the bit-vector. In our solution, each block
is read from disk, converted to a bit-matrix, and written back to disk. Fig. 1
shows the workflow of converting the input data into a bit-matrix, whose size is
n/8 bytes instead of n ∗ 4 bytes (edges are stored with integer values).

3.2 Our Scalable Warren’s Algorithm

We choose Warren’s algorithm as the base algorithm to develop our solution
for parallel systems, and we use Numpy library in Python to implement this
algorithm. The bit-matrix is stored on disk in a row-wise manner, allowing for
continuous access during bitwise OR operations, which promotes bit-level par-
allelism. In our solution, we employ parallel processing to read a bit-vector,
thereby enhancing computational speed. The size of the vector is determined by
the processor word size, which is dictated by the CPU. The parallel processes
reduce the number of instructions that the system must execute.

4 Xiantian Zhou et al.

Fig. 1. Converting the input graph into a bit-matrix.

Input: Eb, nv, jstart, jend

Output: E∗
b

1 while not end of bit-matrix do
2 read a block, blockend ← min(blockstart + blocksize, n)
3 for i← blockstart to blockend do
4 bitmask ← 1
5 for j ← jstart to jend do
6 bitmask ← (bitmask shift left by 1) | (shift right by (nv − 1))

7 if Eb(i,
j

bsize
) & bitmask = 1 then

8 for k ← 1 to n
nv

do

9 Eb[i, k] = Eb[i, k] ∨Eb[j, k]
10 end

11 end

12 end

13 end
14 write the block to disk; blockstart ← blockend + 1

15 end
Algorithm 2: block tc algorithm.

Furthermore, we read and process a block once, since the entire input graph
can be too large to fit in main memory. A block that contains several continuous
rows is a plainly array of bits. When one block finishes processing, a new block
will replaces the old one. At anytime during execution, there are two blocks
in main memory, so the memory space needed is much smaller than O(n2).
Algorithm 3 shows our improved TC algorithm. A variable bitmask which has
the same bit size of bitvector will be used and initialized as 1 (the left most bit
is 1). Note that TC will be dense for any connected graph, since each iteration
makes the partial result denser. That is why a pure sparse solution becomes
slow. If we use dense matrix format from the beginning, the competing time for
each loop is related to the number of vertices which is a constant.

3.3 Time, Space and I/O Cost Analysis

Let us consider the limiting cases of a complete graph and a totally disconnected
graph. That means the bit-matrix is an all-one matrix and an all-zero matrix.

Bitwise Algorithm to compute TC 5

Input: Eb, bitvector, blocksize
Output: E∗

b

1 n← |V |, bitmask ← 1, nv ← |bitvector| , blockstart ← 2
2 bloc tc(Eb, nv, 1, i− 1)
3 blockstart ← 1,
4 bloc tc(Eb, nv, i + 1, n)

Algorithm 3: Our block-based TC system.

The time complexity of our solution is between O(n2/(nv)) and O(n3/(n2
v)),

where nv is the size of bit-vector. We can perform ’or’ operation on vector size
(nv) bits at a time, which is the size of the bitvector. Then limiting cases can give
n2/nv to n3/n2

v number of ’Or’ operations. Our solution is easy to be paralleled
for Numpy library in Python, the time complexity can be O(n2/(nv ∗ P)) to
O(n3/(n2

v ∗ P)) for the limiting cases where p is the number of processors. For
large graphs, it will be processed by blocks. Note that the entire graph will be
read to main memory once, even our solution processes by blocks. Suppose a
block contains nb rows, the numbers of I/O is n/nb.

For space complexity, since TC computes whether a vertex i can reach an-
other vertex j (i, j ∈ V), each entry of the TC bit matrix is represented by one
bit. The size of the TC bit matrix is n2/8 bytes since each bytes contains 8 bits.
When processing by blocks, there are at most two blocks in main memory at the
same time. Thus, the space complexity of our solution is O(2 ∗ nb ∗ n/8).

4 Performance Evaluation

4.1 Experimental Setup

Software and Hardware For the competing system, we choose Python Net-
workX; a popular graph analytics in Python. It is used for the creation, manipu-
lation, and study of the complex graphs. We execute each experiment five times
on a virtual machine which has 8 cores, 20 GB RAM, 1 TB disk. The size of
the bit-vector is 64 to match the number of bits of CPU registers (a 64 bit int)..
The computing time of our solutions includes I/O, transforming the input table
to a binary matrix, and computing TC.

Data Sets The used data sets are summarized in Table 1, obtained from the
konect network data collection3. We chose graphs with different number of ver-
tices and edges. Moreover, we use the density to indicate the graph structure,
where graph density is m

n∗n . We choose graphs with different density to evaluate
our algorithm.

4.2 Comparing with Python NetworkX Graph library

The NetworkX library in Python has a function transitive closure() that returns
TC of a directed graph. Table 1 shows the average time measures. Our solution

3 http://konect.cc/

6 Xiantian Zhou et al.

demonstrates significant performance advantages over NetworkX across various
types of graphs. Particularly for large graphs like Marvel and Gnutella, our
solution successfully completes the execution while NetworkX fails. Notably, our
solution exhibits efficiency not only for dense graphs but also for sparse graphs.
It is important to note that the running time is influenced by the density of the
graph, as observed during the analysis of WekiLinks and Marvel’s execution.

Table 1. Comparing with NetworkX, time in seconds.

Data set Competitor Our solution

n m density NetworkX block tc

Hamster 1859 12K <0.36% 191 4
WekiLinks 6K 439K <0.67% Stop 1200
Gnutella 10K 39K <0.034% Stop 112
Marvel 19K 96K <0.025% Fail 439

”Stop” when computation is more than 30 minutes.

5 Conclusions and Future Work

In this paper, we explore bitwise algorithms to study TC with Python libraries.
We believe Python language is more feasible, even other tools are efficient. In-
spired by the database processing and HPC, We presented a disk-based solution
to compute the TC of graphs. Our experiments show that it consistently out-
performed popular analytic platforms, NetworkX library in Python. For future
work, we will explore the logarithmic algorithm, and exploit more HPC tech-
niques, such as, multicore CPUs and GPUs to solve graph path problems.

References

1. Agrawal, R., Dar, S., Jagadish, H.V.: Direct transitive closure algorithms: Design
and performance evaluation. ACM Trans. Database Syst. (1990)

2. Bonald, T., de Lara, N., Lutz, Q., Charpentier, B.: Scikit-network: Graph analysis
in Python. J. Mach. Learn. Res. 21, 185:1–185:6 (2020)

3. Chamberlin, J., Zalewski, M., McMillan, S., Lumsdaine, A.: PyGB: GraphBLAS
DSL in Python with dynamic compilation into efficient C++. In: IPDPS (2018)

4. Farouzi, A., Bellatreche, L., Ordonez, C., Pandurangan, G., Malki, M.: A scalable
randomized algorithm for triangle enumeration on graphs based on SQL queries. In:
The 22nd of DaWaK (2020)

5. Ordonez, C.: Optimization of linear recursive queries in SQL. IEEE Trans. Knowl.
Data Eng. (2010)

6. Warren, H.S.: A modification of warshall’s algorithm for the transitive closure of
binary relations. Commun. ACM (1975)

7. Zhou, X., Zhang, Y., Orlowska, M.E.: Parallel transitive closure computation in
relational databases. Inf. Sci. (1996)

