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Abstract. Graphlet enumeration is a fundamental task in graph explo-
ration and analysis. It has many real-life applications including biology
and Chemistry. In this paper, we presents a novel approach to extract-
ing these patterns with queries, in a distributed fashion. Our solution
underlies an efficient partitioning strategy based on vertex coloring, that
guarantees perfect load balancing and an exact graphlet enumeration. To
the best of our knowledge, this is the first paper to provide a short and
abstract solution with queries to enumerate both 3-vertex and 4-vertex
patterns at a billion scales in a reasonable time.

1 Introduction

In graph analytics, finding small structures is crucial to studying the relation-
ships between a set of individuals/objects. These structures are called graphlets
or patterns, which are defined as small induced subgraphs. The problem of
graphlet enumeration is involved in many fields. In biology for example, [13] stud-
ied the interaction and the function of proteins in the entire proteome, which is
based on protein-protein interaction (PPI) natworks. For that, [13] developed a
graph-based technique that condenses a protein’s nearby topology within a PPI
network by using a vector of graphlet degrees known as the protein’s signature.
It then determines the similarity between the signatures of all pairs of proteins.
Another relevant example would be in chemistry, where [6] have studied the
chemical compounds classification by developing a method based on two steps:
(1) sub-structure discovery process which includes the graphlet enumeration,
and (2) the classification process allowing an intelligent chemical compounds
classification using the graphlets. Other applications can be found in [4,5].

On the other hand, it is well-known that the graphlets beyond three ver-
tices are complicated to enumerate since the number of instances can rapidly
grow with O(nα), where α is the order of the graphlet. Indeed, we enumerate
2 structures for the 3-vertex graphlets, 6 structures for the 4-vertex graphlets,
21 for 5-vertex graphlets, and so on. In practice, it is typical for both the list of
graphlets and the time required for their enumeration to increase quickly as the
size of the graph increases, resulting in a computationally expensive task [11].

In this context, we presented in a previous work [7] a distributed solution
with queries, to enumerate efficiently all the embedded triangles in large graphs.
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The triangles constitute a special case of graphlets, where α = 3. However, it
is not as hard as larger graphlets, particularly those of 4 vertices. Indeed, enu-
merating 4-vertex graphlets is more challenging, since it requires checking and
outputting 6 instances with different structures. Our focus in this work is to
present an efficient parallel solution to enumerate all the 4-vertex graphlets. Our
solution underlines an efficient partitioning strategy based on vertex-coloring and
inspired by our previous work [7] on triangles. Furthermore, 4-vertex graphlet
enumeration requires more join operations compared to the triangles. Thus, in
the present work, we developed a staged enumeration strategy, where the simple
graphlets of 3 and 4 order are used to reveal larger or complex subgraphs dy-
namically. This reduce memory usage and accelerate the running time. To the
best of our knowledge, this is the first paper that presents an integrated solution
to discover both 3-vertex and 4-vertex graphlets (graph patterns) with queries.

Our contributions are :

(1) We provide a distributed algorithm for staged graphlet enumeration. Our
approach can be implemented on any parallel system including DBMS.

(2) We propose a vertex cut partitioning strategy based on coloring that guar-
antees a perfect load balancing, and a local enumeration.

(3) We present the computational model optimization for an efficient and opti-
mized execution of our solution.

(4) We study the partitioning strategy, the result correctness, and the isomor-
phism between the resulting graphlets.

(6) We finally present an experimental validation of our findings and compare
our results with a competing graphlet enumeration solution.

Our paper is organized as follows. Preliminaries are described in Section 2.
In Section 3, we explain our data partitioning strategy, the computational model
optimization, and our solution for graphlet enumeration. In Section 4, we study
the partitioning strategy, the graph isomorphism, and the load balancing. We
present an experimental validation in Section 5. Section 6 explains closely related
work and Section 7 concludes the paper with general remarks.

2 Preliminaries

2.1 Graph

Let G = (V,E) be an undirected unweighted graph with n = |V | (V is the set
of vertices) and m = |E| (E is the set of edges). For our algorithm, we read the
input graph G as an edge list E(u, v), where an edge goes from u to v. We define
H = (VH , EH) as a subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E, and as an
induced subgraph of G = (V,E) if ∀u, v ∈ VH and (u, v) ∈ EH then (u, v) ∈ E.

2.2 Graphlets (Patterns in Connected Subgraphs)

A graphlet H is a connected induced subgraph of G. We denote two types of 3-
vertex graphlets: (1) Wedges (W) that are paths of two edges, and (2) Triangles
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(TR) which are cycles with three connected edges. Moreover, there are six types
of 4-vertex graphets: (3) 3-Path (P), (4) 3-Star (S), (5) Rectangle (R), (6) Tailed
Triangle (T), (7) Diamond (D), (8) 4-vertex Clique (C) (see Fig. 1).

Fig. 1: 3 and 4-vertex graphlets.

2.3 Computational model

In order to run our algorithm, we use the k −machine model (a.k.a Big Data
model), introduced by [9]. It consists of a set of k ≥ 2 machines built on a shared-
nothing architecture. Each machine can communicate directly with the other
machines via message passing (no shared memory) while running an instance
of the distributed algorithm. Since there is no shared memory, an efficient data
partitioning strategy is mandatory. It aims to minimize the data communication
between machine during the distributed algorithm execution. Note that the data
communication is a time and space consuming task.

3 Our Approach for Pattern Enumeration

3.1 Data partitioning

The key idea underlying our partitioning approach is to perform a vertex-cut
partitioning based on coloring, so that each vertex and its incident edges are sent
to the same machine (see Fig. 2). Our partitioning strategy aims to partition the
vertex set V into c subsets of O(n/c) vertex each, where c is the number of color
subsets (c ≥ 2). Then, each edge between two subsets of colors is sent to one
random machine from the k−machine model called the proxy machine. Finally,
each local machine collects its required edges according to its quadruplet of colors
(hard-coded in the algorithm) to perform locally the graphlet enumeration.

In practice, we create table V_s(u, u_color) to store each vertex color. In-
deed, each entry in the table V_s is a couple of a vertex and its color cho-
sen uniformly and independently at random from the c colors. Then, the table
E_s_proxy(u, v, u_color, v_color) is created to send edges to proxies. It holds
the end-vertices color of each edge. Finally, the small table quadruplet(machine,
c1, c2, c3, c4) is created and replicated on each machine of the k−machine. This
small table is used by each local machine to collect its required edges and stores
them in the table E_s_local(machine, u, v, u_color, v_color). The edges stored



4 A. Farouzi et al.

in E_s_local table depends on the type of graphlets to generate. Hence, we
need to recreate this table according to the required edges to form the graphlets.
Notice that each entry in the table quadruplet consists of one of the possible
permutation of the c colors. Suppose we have two colors: black (b) and white
(w). We can generate (b,b,b,b), (b,b,b,w), · · · etc. We can generate c4 quadruplets
using these c colors.

Fig. 2: Data partitioning for graphlet enumeration.

3.2 k − machine distributed model optimization

The ideal execution of our algorithm requires one machine for each color quadru-
plet. This means we need a k −machine model of size:

k = c4 (1)

However, with larger number of c, the size of the k −machine model can grow
rapidly. Hence, we propose k −machine model optimization without impacting
our algorithm functions. For that, we need to allow each machine to manage
more than one quadruplet. Generally, we can use the following equation:

k = cl where 1 ≤ l ≤ 4 (2)

Here, each machine needs to manage c4−l quadruplets of colors. For example,
with c = 2 and k = 8, each machine manages 2 color quadruplets.

3.3 Graphlet enumeration

Enumerating graphlets of order O(nα) results in many instance. Suppose we
have a graph with n vertices, enumerating all its embedded graphlets requires
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studying and checking Cαn = n!
α!∗(n−α)! possible combinations. Hence, we need

to generate 6 instances of 4-vertex graphlets. Moreover, each graphlet of order
4 outputs 4! = 24 permutations. These permutations represent repetitions, and
their elimination is a hard task in most cases. Thus, only some configurations of
the graphlets must be considered, and a redundancy elimination process need to
be integrated into our algorithm. Fig. 4 summarizes the graphlets configuration
to consider for each 4-vertex graphlet type. Note that each graphlet is made of
4 vertices {u, v, w, z} where u < v < w < z.

In order to accelerate the graphlet enumeration, we allow an enumeration by
stage (see Fig. 3). Thus, we classify the 4-vertex graphlets into two categories:

(1) Intuitive graphlets: it consists of three graphlets: 3-Path, 3-Star, and rect-
angle; that we can reuse to generate the other graphlets.

(2) Derived graphlets: represented by the complex graphlets that can be derived
from the intuitive graphlets: tailed triangle, diamond, and clique.

Fig. 3: Graphlet enumeration by stage.

Wedge enumeration The main idea behind our approach is to enumerate
graphlets by stage. Thus, we enumerate wedges to output intuitive graphlets,
that will be used to list derived graphlets. Wedges are graphlets consisting
of 3 vertices and 2 edges. We compute them using one self join on the table
E_s_local. We enumerate four types of wedges according to color quadruplets.
Precisely, the wedges of type 1 (Wedge_T1) correspond to the first three colors
({c1, c2, c3}) in the table quadruplet. This wedge is involved in the enumeration
of all the intuitive graphlets. Then, we enumerate wedges of type 2 (Wedge_T2)
with ({c2, c3, c4}) colors to output paths, and wedges of type 3 (Wedge_T3)
with ({c1, c2, c4}) colors to list 3-stars. Finally, we output wedges of type 4
(Wedge_T4) with ({c1, c3, c4}) colors to enumerate rectangles. For example
and without loss of generality, on machine M1 with (c1, c2, c3, c4) as quadru-
plet of colors, we generate {Wedge_T1,Wedge_T2,Wedge_T3,Wedge_T4}
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Fig. 4: Graphlets configuration to output.

whose vertex colors are in {(c1, c2, c3), (c2, c3, c4), (c1, c2, c4), (c1, c3, c4)} respec-
tively. We create the following tables to store the generated wedges for each
machine.

Wedge_T1(machine, u, v, w, u_color, v_color, w_color)
Wedge_T2(machine, u, v, w, u_color, v_color, w_color)
Wedge_T3(machine, u, v, w, u_color, v_color, w_color)
Wedge_T4(machine, u, v, w, u_color, v_color, w_color)

Furthermore, triangles can easily be extracted using the wedges of type 1. Indeed,
triangles are a specific case of wedges with an edge connecting each couple of
vertices of the wedge (3-vertex clique). The triangle enumeration problem is
largely discussed in our previous paper [7].

Intuitive 4-vertex graphlet enumeration Wedges are the building blocks of
intuitive graphlets, wherein we generate the required wedges to enumerate each
variant of these graphlets. Subsequently, we carry out joins between them. Fig.
5 summarizes this process.

3-Path consist of two wedges (u, v, w) and (v, w, z). It mainly depends on its end-
vertices order, in such a way that u < z. Hence, we enumerate

(
4
2

)
= 12 permuta-

tions (by symmetry elimination). For that, we create table Path(machine, u, v,
w, z) that holds the 3-Paths resulting of a local join between the tableWedge_T1
and the table Wedges_T2. The query Q(P ) summarizes this computation:
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Fig. 5: Intuitive 4-vertex graphlet enumeration process.

Q(P): INSERT INTO Path SELECT T1.machine as machine , T1.u as u, T1.v as v,
T1.w as w, T2.w as z

FROM Wedge_T1 T1 JOIN Wedge_T2 T2
ON T1.machine=T2.machine AND T1.v=T2.u AND T1.w=T2.v

WHERE T1.u<T2.w;

3-Star is formed by two wedges (u, v, w) and (u, v, z) connected with the common
edge (u, v) of the wedges. The generation of this graphlet depends on the outer
vertices of the star. Hence, we need to enumerate

(
4
3

)
= 4 permutations. To save

the results, we create table Star(machine, u, v, w, z). Then, we join the table
Wedge_T1 with table Wedge_T3 considering u < w < z to remove all the
repetitions. The query Q(S) bellow summarises the 3-Star graphlet enumeration:
Q(S): INSERT INTO Star SELECT T1.machine as machine , T1.u as u, T1.v as v,

T1.w as w, T3.w as z
FROM Wedge_T1 T1 Join Wedge_T3 T3

ON T1.machine=T3.machine AND T1.u=T3.u AND T1.v=T3.v
WHERE T1.u<T1.w AND T1.w<T3.w;

Rectangle is represented by two opposite wedges {(u, v, w), (u, z, w)} with v! = z.
For this graphlet, we can have 4 configurations for the cyclic symmetry and 2
configurations for each clockwise counter-clockwise symmetry. As a result, we
need to generate one configuration of each of them, so we generate 24

4×2 = 3
permutations. Hence, we create the table Rectangle(machine, u, v, w, z) and we
perform a local join between the table Wedge_T1 and the table Wedge_T4 for
each case (u < v < w < z, u < v < z < w and u < w < v < z) and we union
the results together, as presented in the query Q(R):
Q(R): INSERT INTO Rectangle SELECT T1.machine as machine , T1.u as u,

T1.v as v, T1.w as w, T4.v as z
FROM Wedge_T1 T1 join Wedge_T4 T4
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ON T1.machine=T4.machine AND T1.u=T4.w AND T1.w=T4.u
WHERE T1.u<T1.v AND T1.v<T1.w AND T1.w<T4.v

UNION SELECT T1.machine as machine , T1.u as u, T1.v as v, T1.w as w,
T4.v as z

FROM Wedge_T1 T1 join Wedge_T4 T4
ON T1.machine=T4.machine AND T1.u=T4.w AND T1.w=T4.u

WHERE T1.u<T1.v AND T1.v<T4.v AND T4.v<T1.w
UNION SELECT T1.machine as machine , T1.u as u, T1.v as v, T1.w as w,
T4.v as z

FROM Wedge_T1 T1 join Wedge_T4 T4
ON T1.machine=T4.machine AND T1.u=T4.w AND T1.w=T4.u

WHERE T1.u<T1.w AND T1.w<T1.v AND T1.v<T4.v;

Derived 4-vertex graphlet enumeration The graphlets of this class are
generated using the intuitive graphlets class.

Tailed Triangle can be seen as a 3-Star (u, v, w, z) with v at the center, and
an edge (u,w), (w, z) or (u, z) connecting two of its endpoints. Its enumera-
tion relies on the vertex at the center and the vertex at the end of its tail,
for that we consider

(
4
2

)
= 12 permutations. To list them, we create table

Tailed(type,machine, u, v, w, z), where type distinguish whether the connecting
edge is between {u,w}, {u, z} or {w, z}. Than we recreate table E_s_local to
have, on each machine all the edges that endpoints are of colors (c1, c3), (c1, c4),
or (c3, c4) of each color quadruplet. Finally, we perform a local join between the
table Star and the table E_s_local, as mentioned in the query Q(T ):

/*1=T(u,v,w),2=T(u,v,z),3=T(v,w,z), T=Triangle */
Q(T): INSERT INTO Tailed SELECT 1, E1.machine as machine , u, v, w, z

FROM Star E1 Join E_s_local E2
ON E1.machine=E2.machine AND E1.u=E2.i AND E1.w=E2.j

UNION SELECT 2, E1.machine as machine , u, v, w, z
FROM Star E1 Join E_s_local E2

ON E1.machine=E2.machine AND E1.u=E2.i AND E1.z=E2.j
UNION SELECT 3, E1.machine as machine , u, v, w, z

FROM Star E1 Join E_s_local E2
ON E1.machine=E2.machine AND E1.w=E2.i AND E1.z=E2.j;

Diamond can be recognized as a rectangle with an edge on one of its diag-
onals. Since only 3 configurations are needed for the rectangles, each rectan-
gle with one of it diagonal can be output as diamond. So, we need to output
3 × 2 = 6 permutations for this graphlet. To enumerate them, we create table
Diamond(machine, u, v, w, z). Then, we recreate the table E_s_local to have
edges whose end-vertices are of colors (c1, c3) and (c2, c4) of each color quadru-
plet. We finally join locally the table Rectangle with the table E_s_local ac-
cording to the query Q(D) :

Q(D): INSERT INTO Diamond SELECT E1.machine as machine , u, v, w, z
FROM Rectangle E1 Join E_s_local E2

ON E1.machine=E2.machine AND E1.u=E2.i AND E1.w=E2.j
UNION SELECT E1.machine as machine , u, v, w, z

FROM Rectangle E1 Join E_s_local E2
ON E1.machine=E2.machine AND E1.v=E2.i AND E1.z=E2.j;
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Clique is a complete subgraph of four vertices with an edge between each couple
of vertices, hence only one configuration should be output, which is made of the
lexicographical order between the vertices. This graphlet is a rectangle with its
both diagonals. Hence, we create table Clique(machine, u, v, w, z) to hold all the
4-vertex cliques. For that, we recreate the table E_s_local to have the edges
whose end-vertices are of colors (c1, c3) ans (c2, c4) of each color quadruplet.
Then, we join locally the table Rectangle with the table E_s_local twice, as
presented in the following query (Q(C)):
Q(C): INSERT INTO Clique SELECT E1.machine as machine , u, v, w, z

FROM Rectangle E1 JOIN E_s_local E2
ON E1.machine=E2.machine AND E1.u=E2.i AND E1.w=E2.j

JOIN E_s_local E3
ON E1.machine=E3.machine AND E1.v=E3.i AND E1.z=E3.j

WHERE E1.u<E1.v AND E1.v<E1.w AND E1.w<E1.z;

4 Graphlet enumeration theoretical analysis

4.1 Partitioning strategy effectiveness

Our partitioning strategy aims to send an induced subgraph to each machine of
the k −machine model. It performs a vertex-cut partitioning using a coloring
method. First, we partition the vertex set V into c color subsets. After that, each
machine receives c4−l quadruplets of colors, which is used to collect its required
edges to form an induced subgraph of size O(m/k).

Results correctness To study the correctness of our results, we define the
following lemmas:

Lemma 1. Consistency: all the graphlets are output once.

Proof. The enumeration of each of the four vertex graphlets is local without any
data communication between machines. Hence, we need to be sure that each
graphlet is enumerated once.

1. Wedges: wedges of type 1 are output once on the model following the equa-
tion 2 with l ≤ 3. Without loss of generality, suppose we have two quadruplet
q1 = {c1, c1, c1, c1} and q2 = {c1, c1, c1, c2} on machine M1. Notice that the
first color triplet in q1 and q2 is the same. This color triplet is used to output
the wedges of type 1 involved in all the intuitive graphlets. In our quadru-
plet assignment, we ensure that each machine from the k −machine model
acquires the same first triplet of color, hence each machine will exclusively
output the wedges corresponding to its triplet of color.

2. Intuitive graphlets: Suppose on machineM , we have the quadruplet (c1, c2, c3,
c4). The wedges with colors (c1, c2, c3), (c2, c3, c4), (c1, c2, c4) and (c1, c3, c4)
are held by the tablesWedge_T1,Wedge_T2,Wedge_T3 andWedge_T4
resp. on machine M without local repetitions. When we generate 3-Path
(3-Star or rectangle) graphlets on M , we compute Wedge_T1 on T1.u = T2.v

&T1.w = T2.v
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Wedge_T2 (Wedge_T1 on T1.u = T3.v
&T1.w = T3.v

Wedge_T3 orWedge_T1on T1.u = T4.v
&T1.w = T4.v

Wedge_T4). Each wedge is unique on M , thus the generated paths (stars
or rectangles) are unique on M because they consist of unique wedges on
M . Furthermore, depending on the cluster size, each machine defines 4 − l
quadruplet of colors that are uniquely and specifically assigned to it. Hence,
the order of the colors of each quadruplet is unique on each machine (there
is no repetition). As a result, the generated intuitive graphlets are output
once, since their enumeration depends on the colors and the order of their
corresponding quadruplet on each machine.

3. Derived graphlet: we proved above that each intuitive graphlet is output
once, and since the output of the derived graphlets is based on the intuitive
ones, then each derived graphlet is output once.

Lemma 2. Completeness: There is no missing graphlet in the output.

Proof. In our partitioning strategy, each vertex choose independently and uni-
formly a color from the c colors, in the same time, we create color quadruplets
consisting of the different permutations of the c colors. As a result, each edge with
its colored end-vertices involved in one or more 3-vertex or 4-vertex graphlets,
its end-vertices colors are in one or more color quadruplets. Without loss of
generality, suppose the vertex u chose color c1 and the vertex v chose the color
c2. The edge (u, v) will be sent to the machine M defining (c1, c2) in one of its
quadruplets. So, if the edge (u, v) is a part of a wedge or derived graphlet, it
will be on M and according to the quadruplets on M , the wedge defining the
intuitive graphlet or the derived graphlet involving (u, v) will be output. Finally,
there will be no missing wedges or graphlets.

Graph isomorphism We explained previously that we only consider some
permutations when outputting the graphlets. In fact, when we output P =
(u, v, w, z) as a 3-path graphlet, we need to eliminate the opposite direction
P ′ = (z, w, v, u), since P et P ′ are isomorphic. Hence, only the permutation
defining u < z is considered. In addition, we need to consider four permutations
for 3-star graphelets, depending on the vertex at the center. For S = (u, v, w, z)
with v at the center, we need to consider the graphlet where u < w < z. All the
other graphets with v at the center, are isomorphic to S. The rectangles R =
(u, v, w, z) are output in three permutations (u < v < w < z, u < v < z < w,
u < w < v < z). All the remaining configurations are isomorphic to R, since
the rectangle is a cycle of length 4. The tailed triangles T = (u, v, w, z) accept
twelve permutations. For each configuration of 3-star, we can generate three
tailed triangles, considering u < w < z. The other configurations are the same
as T . The diamonds D = (u, v, w, z) need six permutations to be considered.
We output two permutations for each rectangle. Hence, all the 18 remaining
graphlets are isomorphic to D. Finally, for the cliques C = (u, v, w, z) only one
permutation is needed. All the other configurations are isomorphic to C.
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4.2 Complexity and load balancing

Complexity Four graphlet enumeration is more difficult than the triangle enu-
meration. The complexity of triangle enumeration is O(n3), whereas it is O(n4)
for four vertex graphlets. Our algorithm is bounded by O(N2

∠) for the intuitive
graphlets, where N∠ is the number of wedges. On the other hand, since the de-
rived graphlets depends on the intuitive graphlets, their complexity is bounded
byO(max{m×S,m×R}, with S(R) is the number of 3-star (rectangle) graphlets.

Load balancing We mentioned previously that the vertex set V is partitioned
into c subsets of O(n/c) vertex each. Each machine then receives an induced
sub-graph Gx = (Vx, Ex) of G. The number of edges among the sub-graphs
Gx is relatively balanced with high probability. Indeed, each vertex chose a
color in a uniform manner, so it has 1

c to choose one of the c colors. Then,
the edge between a couple of vertices has 1

c ×
1
c = 1

c2 possibility. This balances
the load between the proxies. Each machine then collects the required edges to
enumerate the graphlets, so it holds ( 1c )

4 = 1
c4 of each type of graphlets. As a

result, each machine processes essentially the same number of graphlets, which
leads to balance the workload.

5 Experimental Study

5.1 Hardware and software setup and data set

Hardware: Experiments are conducted on a modest cluster with 9 machines.
Each machine has 4 cores CPU running at 2.2 Ghz on average, 4 GB of main
memory, 500 GB of storage, 32 KB L1 cache, 1MB L2 cache and Linux Ubuntu
server 18.04 as operating system. The machines are connected on 1GB network
cards with 128MB/s as bandwidth. Each machine managed two quadruplets.

Software: We used the columnar DBMS Vertica to execute our queries (the code
is available at https://github.com/lias-laboratory/sqlgraphlet), since it
is 10× faster than the row DBMSs for graph problems. However, any other
parallel system that provides partitioning control can be used, including systems
like SparkSQL and TigerGraph. Moreover, we compared our algorithm against
D4GE [11]; a tool based on Spark for sub-graph enumeration.

Data sets: We used four real data sets from Stanford data set collection (https:
//snap.stanford.edu), summarized in Table 1.

5.2 Graphlet enumeration

Our experiments are presented in two sets : (1) the first concerns the evaluation
of our approach results, including its load balancing and its speedup, and (2) the
second set aims to compare our approach with D4GE[11] which is a distributed
graphlets enumeration solution based on Spark. Each experiment is repeated
three times and the average time measurement is reported.

https://github.com/lias-laboratory/sqlgraphlet
https://snap.stanford.edu
https://snap.stanford.edu
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Table 1: Data sets : order (n), size (m), triangle count (∆) and maximum degree
(d_max).

Data sets n m ∆ d_max
Facebook 4,039 88k 1,612k 1,045
Pennsylvania 1,088k 1,541k 67k 9
Amazon 334k 925k 75k 549
DBLP 317k 1,049k 13k 343

Graphlet enumeration evaluation

Graphlet counting: Table 2 summarizes the wedges and the 4-vertex graphlets
counting for each graph data set. Our partitioning strategy ensures to have
each vertex with its incident edges on the same machine according to its color
quadruplet. Thus, each graphlet is enumerated once on one machine if it exists.

Table 2: Graphlet counting output.
Data sets P S R T D C
Facebook 1,055,326,189 727,318,426 144,023,053 703,783,680 138,773,046 30,004,668
Pennsylvania 7,384,597 1,707,904 157,802 318,190 5,795 21
Amazon 80,983,900 142,823,893 3,125,323 24,485,894 2,702,808 275,961
DBLP 675,637,762 431,568,151 55,107,655 316,232,255 54,904,261 16,713,192

P: 3-Path, S: 3-Star, R: Rectangle, T: Tailed Triangle, D: Diamond, C: Clique.

Our solution speed up: Fig. 6 depicts the local execution time for each
graphlet algorithm on the graph data sets on a cluster of 4 machines, 8 machines
and 9 machines. Notice that the partitioning time is negligible and it happens
once at the beginning, so we didn’t include it. From Fig. 6, we deduce that the
most time consuming graphlet is the tailed triangle, because we classify this
graphlet in three categories depending on the position of the triangle (at the
beginning, in the middle or at the end), then we union the results together.
Moreover, we can notice that the execution time of the queries improves as the
size of the cluster increase. Hence, two conclusions can be drawn: (1) we can get
up to 2× speedup with larger number of colors, and (2) we obtain better running
time on models having less quadruplets managed by each machine. Furthermore,
we notice that the derived graphlets require negligible execution time, since
they are based on the intuitive graphlets. This opens doors for our stepwise
enumeration strategy to list quickly larger graphlets based on smaller ones.

Balanced workload: To evaluate the load balancing of our partitioning strat-
egy, we present Fig. 7, that presents line charts for the output of the graphlets
on each machine, using a cluster with 8 machines. The workload balancing en-
sured by the partitioning strategy results in outputting almost the same count
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Fig. 6: Local running time for graphlet enumeration (sec) with k = {4, 8, 9} and
c = {2, 2, 3} resp.

of graphlets on each machine. The slight variation in counting is due to the ran-
domization in the vertex coloring step. Precisely, the 3-Star query produced a
variation between the machines because of the graph structure. Facebook and
amazon data sets are particularly skewed graphs, that’s why we can enumerate
more 3-Star on only some machines.
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(a) Facebook
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(b) Pennsylvania
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(c) Amazon
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Fig. 7: Load balancing on a cluster with 8 machines (k = 8 and c = 2).

Comparison with D4GE The distributed Spark solution D4GE[11] requires
compressed input graphs, hence the use of graph compression tool like webGraph
library [3] is mandatory. As a result, we compressed all the graph data sets using
webGraph library before performing the experiments. This compression time is
included in our evaluation as the pre-treatment time.

Table 3 provides a comparison between our approach and D4GE on a cluster
of 8 machines using 2 colors. Despite its use of compressed data, D4GE shows
more running time with sparse graphs as Pennsylvania. This data set is the
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largest in our chosen data sets, but also the most sparse. On the other hand,
our solution showed less efficient with dense graphs compared to D4GE. Note
that unlike D4GE that only provide the graphlets count, we list the results. Our
ultimate goal is to provide a tool that works by stage and save the results of each
step. This has two impacts: (1) speed up the enumeration process with larger
graphlets, and (2) provide a base to develop a recursive strategy to enumerate
larger graph structure including the maximum cliques. To sum up, our solution
gives an acceptable running time. It scales well, it does not require any graph
compression or graph preparation beforehand, and it lists clearly and entirely
all the four vertex graphlets in the input graph.

Table 3: Comparison of our solution against D4GE (sec).

Data sets D4GE Our solution
Pre-treatment Enumeration Total Partitioning Enumeration Total

Facebook 8 20 28 1 250 251
Pennsylvania 25 18 43 4 10 14
Amazon 18 16 34 1 26 27
DBLP 16 28 44 2 177 179

6 Related Work

Graph Analytics is becoming a first-class challenge in database research [10].
Subgraph enumeration is among the fundamental problems that have received a
lot of attention recently. It is based on recursive queries and transitive closure;
two main graph problems that are largely and deeply studied in [14,8]. Triangle
enumeration and counting is the simplest sub-graph enumeration problem and
has been discussed in database perspective in many works such [2,7,1]. These
works presented different partitioning strategies to minimize data exchange and
to perform triangle enumeration locally. Moreover, many solutions for 4-vertex
graphlet enumeration have been developed outside DBMS. [11] is a distributed
solution based on Spark to enumerate all the triad and the four vertex graphlets
in large compressed graphs. [11] was inspired by [15], who presented an efficient
partitioning strategy based on coloring, that balances the workload to enumerate
subgraphs but with repetitions. Other works for the induced subgraph enumer-
ation, such as FanMod [16] and Rage [12] have emerged. However, they do not
perform well on million-scale graphs and are less efficient. On the other hand,
we are, to the best of our knowledge, the first to present a distributed solution
for four vertex graphlet enumeration with queries, that can be reprogrammed
using a programming language such as Python and MPI.
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7 Conclusion

We present a novel distributed approach to solve 3-vertex and 4-vertex graphlets
enumeration problem. Our current solution is programmed using SQL, but we
can implement it with a programming language as Python, or a parallel system
like Spark. Moreover, we experimentally proved that our partitioning strategy
provides a perfect load balancing, and our solution scales well with the graph size.
This study is promising and it can be efficiently extended to larger graphlets.

In future work, we will study the impact of the number of colors on query
time. We will also study larger graphlet enumeration (of order α), compressing
the graph using triangles as super-vertices. We plan to extend our algorithms
to multicore CPUs and GPUs. As a longer term goal, we aim to solve clique
enumeration, a significantly harder problem.
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