1 Course Contents

This is a "systems" + "data science" graduate course, which covers theory and programming to store and analyze big data, covering all available platforms and technologies today: parallel database systems, data science languages, NoSQL and Hadoop. Past data mining research has been expanded to analyze big data, mixing structured and semi-structured content, with more complex statistical and machine learning models and exploiting parallel processing.

1. Big Data overview: Evolution from 3 Vs to 5 Vs (3+2), Data Lakes vs Data Warehouses vs Data Swamps, Data integration, pre-processing and cleaning, Parallel and Distributed Computing, Big Data Analytics problems: machine learning, graphs, streams.

3. Data Science programming languages: programming language definition and philosophy. Tasks: exploring data, data pre-processing and data cleaning, functional constructs, runtime in the OS, parallel processing in multicore CPUs and GPUs, main data structures (data frames, matrices).

4. Parallel DBMSs: parallel processing in multicore CPUs, parallel processing in a cluster with distributed storage, OLTP versus cubes, Data warehousing and denormalization, advanced SQL queries (pivoting, horizontal aggregation, keyword search, recursive queries), advanced programming (embedded SQL, UDFs, internal C), row/column/tile storage, indexing versus row ordering, ETL and pre-processing, machine learning and graph algorithms.

5. Hadoop ecosystem: file systems (HDFS, Linux Posix, Google), subsystems (Yarn, Storm, Zookeeper), storage (Hive, SPARQL, Parquet), containers vs virtual machines, text versus numeric processing, NoSQL and non-DBMS (MapReduce, Spark, MongoDB), Graph analytic systems, Search Engines (mainly Google and Yahoo, IR models, architecture, keywords, page rank, web spider). programming language definition and philosophy.

The course will require reading CS research papers, mainly from Big Data and Database systems conferences and journals, available on DBLP, IEEE and ACM digital libraries. There is no textbook, but [2] and [1] are recommended.

2 Academic Background

Pre-requisites: None. It is encouraged, but not required, that the equivalent of COSC2430 (basic data structures and algorithms), COSC3380 (Database Systems), COSC3360 (Operating Systems), Machine Learning, were taken before. This is a course combining "systems", "machine learning" and "data science".
3 Grading

This is a tentative plan, which may change, depending on students CS background, performance, interests and COVID complications. Keep in mind that this course will require a significant programming effort, which may be harder and will take more time than a test-based course.

- 80%: 3 programming homeworks (team-based):

 HW1 (30%): efficient machine learning in a Data Science language. Potential projects: data summarization, correlation, gradient descent, regression, classification, time series and deep neural networks. Programming language: Python, R and C++. System: your own computer with minimal hardware (multicore CPU, at least 4 GB RAM, 256 GBs storage); using a more powerful computer is acceptable, but will not produce any significant change in programming effort. OS: Windows, Linux or MacOs are fine.

 HW2 (25%): parallel DBMS (parallel query processing in the Vertica DBMS). Potential projects include: graphs, cubes, summarization, time series. Programming language: SQL and Python. System: a parallel DBMS using columnar storage; this Linux system will be provided by UH. OS: Linux.

 HW3 (25%): Hadoop Big Data Systems. Potential projects: document search, querying JSON data, gradient descent. Programming language: Java, Python. System: a Big Data system with data stored on HDFS; MongoDB or Spark; this Linux system will be provided by UH. OS: Linux.

- 20%: midterm exam around 10th week of classes. The exam will be in the classroom during official lecture time and will last 80 minutes, unless COVID guidelines prevent it. This exam will have 10 questions, which require a short answer or writing a few lines of source code (Python, C++, SQL). There is no final exam. The exam will be closed-everything (no computer, notes or textbook allowed). Attending class, solving HWs and reading about 10 papers throughout the semester will be enough preparation.

- up to 5%: extra credit, with in-class participation: answering instructor theory or programming questions.

Homework details: There will be a total of 3 different analytic problems for each approach. In general, each analytic problem will be solved in the typical language or system used today. That is, there will be about 9 programming homeworks, where each team will solve 3. The homeworks will be proposed by the instructor, including analytic goal, programming language and target system. The instructor will randomly assign each homework to each team.

HW grading: homeworks will be graded in 2 ways. TAs will run each program to verify results and each team will prepare a 5-minute video. Each submission should have comments and instructions to run from the command line (no GUI).

Exam topics: parallel efficiency, external algorithms, distributed architectures, memory management, I/O optimization, efficient linear algebra, accelerating numerical methods and graph algorithms.

Data: This course edition will emphasize biomedical data, in text, tabular, binary or web form. However, we may use traditional data sets coming from the UCI machine learning repository or the web.

Teams: Programs for each HW will be developed in teams of 3 or 4 students. Students can choose their team, but the instructor can assign students to teams if needed.

Final grade: all programs must be submitted and work in order to get at least C+. The scale to assign letter grades will be standard (A is 90, B is 80, and so on).

References