Homework 1: Recursion and Backtracking.
DUE: 8pm Mon, Feb 8, 2021

- Please type and submit PDF file to Blackboard. No late submissions will be accepted.
- **Academic honesty:** at the beginning of your paper, please include: “I understand and agree to abide by the provisions in the University of Houston Undergraduate Academic Honesty Policy” and “This is my own work.”
- Discussion is encouraged. In each problem solution, list the names of persons that you have discussed with about that problem, except for large group discussion such as in MS Teams where a note of “group discussion” suffices. If an online source helped you, list the URL.

Solving Recurrence:

P0 (10pt): Solve the following recurrences. Give the answer in terms of Big-Theta notation. Assume base case has cost $T(1)=T(0)=1$. Ignore ceilings and floors.

1. $T(n) = 3T(n/2) + n$
2. $T(n) = T(n/2) + T(n/3) + n$
3. $T(n) = 2T(n-1) + 2$
4. $T(n) = 3T(n/3) + n^2$
5. $T(n) = T(3n/4) + T(n/3) + n$

Recursion: Reduce/Divide and Conquer:

P1 (20pt): (a) Given two sorted arrays $A[1...n]$ and $B[1...n]$. Describe an algorithm to find the median element in the union of A and B in $\Theta(\log n)$ time.

(b) Given two sorted arrays $A[1...m]$ and $B[1...n]$ and an integer k. Describe an algorithm to find the k-th smallest element in the union of A and B (i.e. $A \cup B$) in $\Theta(\log (m+n))$ time. [Hint: use your solution in part (a)].

P2 (15pt): Most graphics hardware includes support for a low-level operation called *blit*, or block transfer, which quickly copies a rectangular chunk of a pixel map (a two-dimensional array of pixel values) from one location to another. This is a two-dimensional version of the standard C library function `memcpy()`.

Suppose we want to rotate an $n \times n$ pixel map 90° clockwise. One way to do this, at least when n is a power of two, is to split the pixel map into four $\frac{n}{2} \times \frac{n}{2}$ blocks, move each block to its proper position using a sequence of five blits, and then recursively rotate each block. (Why five? For the same reason the Tower of Hanoi puzzle needs a third peg.) Alternately, we could first recursive rotate the blocks and then blit them into place.
(a) Prove that both versions of the algorithm are correct when \(n \) is a power of 2.
(b) Exactly how many blits does the algorithm perform when \(n \) is a power of 2?
(c) Describe how to modify the algorithm so that it works for arbitrary \(n \), not just powers of 2. How many blits does your modified algorithm perform?
(d) What is your algorithm’s running time if a \(k \times k \) blit takes \(O(k^2) \) time?
(e) What if a \(k \times k \) blit takes only \(O(k) \) time?

P3 (20pt): You are a contestant on the hit game show "Beat Your Neighbors!" You are presented with an length \(n \) array of boxes, each containing a unique number. It costs $100 to open a box. Your goal is to find a box whose number is larger than its neighbors in the array (left and right). Describe an \(O(\log n) \) algorithm that finds a number that is bigger than either of its neighbors.

P4 (20pt): You are given an \(n \times n \) matrix represented as a 2-dimensional array \(A[1..n][1..n] \) (there are totally \(n^2 \) elements). Each row of \(A \) is sorted in increasing order and each column is sorted in increasing order. Your goal is to find whether some given element \(x \) is in \(A \) or not. Note that you can do only comparisons between elements (no hash table, or any other set data structures). Give an algorithm that takes \(O(n) \) comparisons. [Hint: try to start on one some corner, and eliminate one row/column per move].

Backtracking:

P5 (15pt): An addition chain for an integer \(n \) is an increasing sequence of integers that starts with 1 and ends with \(n \), such that each entry after the first is the sum of two earlier entries. More formally, the integer sequence \(x_0 < x_1 < \cdots < x_l \) is an addition chain for \(n \) if and only if

- \(x_0 = 1, x_l = n \)
- For every index \(k \), there are indices \(i \leq j < k \) such that \(x_k = x_i + x_j \).

The length of an addition chain is the number of elements minus 1; we don’t bother to count the first entry. For example, \(<1,2,3,5,10,20,23,46,92,184,187,374> \) is an addition chain for 374 of length 11.

Describe a recursive backtracking algorithm to compute a minimum length addition chain for a given positive integer \(n \). Don’t analyze or optimize your algorithm’s running time, except to satisfy your own curiosity. A correct algorithm whose running time is exponential in \(n \) is sufficient for full credit. [Hint: This problem is a lot more like N-Queens than text segmentation.]