
1/6

LLLLLLLLLeeeeeeeeeccccccccc 555555555::::::::: GGGGGGGGGrrrrrrrrreeeeeeeeeeeeeeeeeedddddddddyyyyyyyyy AAAAAAAAAlllllllllgggggggggooooooooorrrrrrrrriiiiiiiiittttttttthhhhhhhhhmmmmmmmmmsssssssss
UH COSC3320, Spring 2021

References:

• Algorithms, Jeff Erickson, Chapter 4

• Introduction to Algorithms, 3rd Ed, Chapter 16.

Storing Files on Tape 2/6

Suppose we have n files stored on a magnetic tape. To read
a file, a user must fast-forward past all previous files, which
takes significant time.

Let L[1. . .n] be an array of the lengths of the files 1..n . (file i
has length L[i]. Then the cost of accessing file k is

cost[k] =∑
i =1

k

L[i]

Different files have different accessing cost. Suppose that each
file equally likely to be accessed, then the eeeeeeeeexxxxxxxxxpppppppppeeeeeeeeecccccccccttttttttteeeeeeeeeddddddddd cost of

accessing a random file is

E[cost] = 1
n∑
k=1

n

∑
i =1

k

L[i]

If we change the order of files on the tape, we change the
cost of accessing; some files will be faster and some slower.
Specifically, let π [i] denote the index of file stored at position
i on the tape. Then the expected cost of accessing random
file is

E[cost(π)] = 1
n∑
k=1

n

∑
i =1

k

L[π [i]]

Different order (π) gives differentE[cost(π)]. What π minimizes
the expected cost?

Intuitively, it seems placing shorter files first would be better,
because

Files in front is more osten getting in the way.

We can order the files on tape in increasing file sizes. Does
this gives us the minimum expected cost of accesing random
file?

It's easy to come up with greedy algorithms, but most of them
won't work. For any greedy algorithm, we must prove it rigor-
ously!

Let's try to prove it:
LLLLLLLLLeeeeeeeeemmmmmmmmmmmmmmmmmmaaaaaaaaa......... E[cost(π)] is minimized when L[π [i]]� L[π [i +1]] for all i.

Sketch proof: if π [i] > π [i + 1], swap them and show that the
expected cost decreases. □

This is a successful gggggggggrrrrrrrrreeeeeeeeeeeeeeeeeedddddddddyyyyyyyyy algorithm. There is no systemat-
ically visiting all possibilities, no recursion or dynamic program-
ming. It makes decision based on what seems to be the best
next move (picking the shortest file next), and blindly plowing
ahead.

The cost is O (n log n) for the sorting step.

Scheduling Classes 3/6

Suppose we are given n classes with potentially overlapping
lecture time. Class i starts at time S [i] and finishes at F [i].
Find the maximum number of non-overlapping classes.

We can visualize the class as blocks on time axis. The goal is
to find the largest subset of blocks with no vertical overlap.

To put the non-overlapping rule in other words, we are looking
for subset of the indices X ⊂ {1. . .n} such that if i , j ∈ X , then
either S [i] >F [j] or S [j] >F [i].
RRRRRRRRReeeeeeeeecccccccccuuuuuuuuurrrrrrrrrsssssssssiiiiiiiiivvvvvvvvveeeeeeeee sssssssssooooooooollllllllluuuuuuuuutttttttttiiiiiiiiiooooooooonnnnnnnnn:
To solve the class scheduling, we could try recursion (reduc-
tion). Let's look at class 1. It's either in optimal schedule, or
not. If class 1 is in the optimal schedule, then we divide the rest
of classes into two groups (ends before class 1 and starts aster
class 1 ends)

B ≔ {i : 2� i � n and F [i] <S [1]}
A ≔ {i : 2� i � n and S [i] >F [1]}

The rest of classes must be scheduled optimally in their own
group (recurse!). If class 1 is not in optimal schedule, then we
recursively schedule class 2..n .

What's the cost? Can we turn it into DP?

(Hint: Look at the recursion tree. Is there any duplicated nodes?
You should be able to find an evaluation order that completes
in O (n3))

Now let's try to come up with greedy algorithm. We pick class
one by one. Which one do we pick? An intuition is that we'd
pick the ccccccccclllllllllaaaaaaaaassssssssssssssssss ttttttttthhhhhhhhhaaaaaaaaattttttttt fififififififififinnnnnnnnniiiiiiiiissssssssshhhhhhhhheeeeeeeeesssssssss ttttttttthhhhhhhhheeeeeeeee eeeeeeeeeaaaaaaaaarrrrrrrrrllllllllliiiiiiiiieeeeeeeeesssssssssttttttttt, so it's more likely
to schedule more other courses.

We sort the classes by the finishing time.

Now to prove that this greedy algorithm actually gives the
optimal (globally) solution, we'll need to prove two properties:
• GGGGGGGGGrrrrrrrrreeeeeeeeeeeeeeeeeedddddddddyyyyyyyyy ccccccccchhhhhhhhhoooooooooiiiiiiiiiccccccccceeeeeeeee ppppppppprrrrrrrrrooooooooopppppppppeeeeeeeeerrrrrrrrrtttttttttyyyyyyyyy: we can assemble a globally

optimal solution by making locally optimal (greedy) choices.
(This property is NOT required for Dynamic Programming!)

• OOOOOOOOOppppppppptttttttttiiiiiiiiimmmmmmmmmaaaaaaaaalllllllll sssssssssuuuuuuuuubbbbbbbbbssssssssstttttttttrrrrrrrrruuuuuuuuuccccccccctttttttttuuuuuuuuurrrrrrrrreeeeeeeee: an optimal solution to a problem
contains within it a optimal solution to subproblems. (This
property is also required for Dynamic Programming.)

The first property for our particular greedy algorithm translates
into the following lemma:
LLLLLLLLLeeeeeeeeemmmmmmmmmmmmmmmmmmaaaaaaaaa......... At least one maximum conflict-free schedule include the class
that finishes first.

Sketch proof: Let f be the class that finishes first. Suppose a
maximum conflict-free schedule X does not contain f . Replace
the first finishing class in X with f . □

The second property, optimal substructure, is translated into
the following lemma:

LLLLLLLLLeeeeeeeeemmmmmmmmmmmmmmmmmmaaaaaaaaa......... The best schedule that contains class f (the first finishing class)
also contains an optimal schedule for the classes that does not conflict
with f.

Proof hint: by contradiction. □

With these two properties (lemmas), we can prove the greedy
solution to be globally optimal by mathematical induction:

Assume that the subproblem is solved optimally by the greedy
algorithm. Now argue that adding the current greedy choice is
still optimal.

A failed greedy algorithm: what if we pick the earliest starting
class as our greedy choice? Can you construct a simple
example that such greedy algorithm does not lead to globally
optimal schedule? Why does it not (which property does it vio-
late)?

General Patterns 4/6

The basic structure of the correctness proof is based on induc-
tive exchange argument.

• Assume there is an optimal solution that's different from the
greedy solution.

• Find the “first” difference between the two solutions.

• Argue that we can exchange the optimal choice for the
greedy choice, without making the solution worse .

This argument implies that sssssssssooooooooommmmmmmmmeeeeeeeee optimal solution cccccccccooooooooonnnnnnnnntttttttttaaaaaaaaaiiiiiiiiinnnnnnnnnsssssssss
the entire greedy solution, and therefore eeeeeeeeeqqqqqqqqquuuuuuuuuaaaaaaaaalllllllll the greedy
solution.

Huffman Codes 5/6

Suppose we are encoding alphabet into binary strings (0s and
1s) of varying lengths. A binary code is prefix-free , if no code is
a prefix of any other (otherwise it's hard to decode). E.g.: 7 bit
ASCII and UTF-8 are both prefix-free binary coes. Morse code
is NOT prefix-free, because the code for E(⋅) is prefix for I(⋅⋅),
S(⋅⋅⋅), and H(⋅⋅⋅⋅).

VVVVVVVVViiiiiiiiisssssssssuuuuuuuuuaaaaaaaaallllllllliiiiiiiiizzzzzzzzzaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn......... Any prefix-free binary code can be visual-
ized as a binary tree with the encoded characters stored at
the leaves. The code word for any symbol is the path from root
to the corresponding leaf; 0 for lest, 1 for right. The length of
the codeword for any symbol is the depth in the tree of the leaf.

A B

C ED

In this example we have 5 symbols ABCDE, and their code
words are 000,001,01,10,11, respectively. Note that it's prefix-
free, with minimum code length 2 and maximum lenght 3.

Suppose we have a message written in n-character alphabet
and we want to encode the message as short as possible.
Specifically, given any frequency counts f [1. . .n], we want
to compute a prefix-free binary code that minimizes the total

encoded length:

∑
i =1

n

f [i] ×depth[i]

This problem has a surprisingly simple solution given by a PhD
student at MIT David Huffman:

Merge the two least frequently used letters and recurse.

To illustrate, we look at an example. We have the following
message:
This sentence contains three a's, three c's,
two d's, twenty-six e's, five f's, three g's,
eight h's, thirteen i's, two l's, sixteen n's,
nine o's, six r's, twenty-seven s's, twenty-two
t's, two u's, five v's, eight w's, four x's,
five y's, and only one z.

Here's the frequency table for the letters (ignoring symbols
other than English letters):

Huffman's algorithm picks the two least frequently used letters:
Z andD, and merge them into a single character called ZD with
frequency 3 (the total frequency of Z and D). Now we have a
table with 1 less letter:

And then pick the two least frequent, which are U and L, and
merge them. And so on. To illustrate the merging, we have the
tree:

Encoding the message we have with the Huffman codes yield
bit string like this:

Here is a list of costs for encoding each character in the mes-
sage, along with their contributions to the total length.

In total, it costs 649 bits to encode the message.
Given the simplicity of the Huffman code, it might be surprising
to hear that the Huffman code is optimal—there is no prefix-
free binary encoding for the message that is shorter than 649!
Why? Let's prove it. Again we need to prove the two proper-
ties.
LLLLLLLLLeeeeeeeeemmmmmmmmmmmmmmmmmmaaaaaaaaa......... (GGGGGGGGGrrrrrrrrreeeeeeeeeeeeeeeeeedddddddddyyyyyyyyy ccccccccchhhhhhhhhoooooooooiiiiiiiiiccccccccceeeeeeeee ppppppppprrrrrrrrrooooooooopppppppppeeeeeeeeerrrrrrrrrtttttttttyyyyyyyyy))))))))) Let x and y be the two least
frequent characters (breaking ties arbitrarily). There is a optimal binary tree
in which x and y are siblings.

Schetch proof: we can prove a stronger statement: there is an
optimal binary code tree inwhich x and y are siblings, and have
the longest length.

• Assume a, b are the longest two siblings (must have 2!) in
an optimal code tree

• Swap x and a, and prove that the tree is no worse.

• Similarly, swap y and b.

LLLLLLLLLeeeeeeeeemmmmmmmmmmmmmmmmmmaaaaaaaaa......... (OOOOOOOOOppppppppptttttttttiiiiiiiiimmmmmmmmmaaaaaaaaalllllllll sssssssssuuuuuuuuubbbbbbbbbssssssssstttttttttrrrrrrrrruuuuuuuuuccccccccctttttttttuuuuuuuuurrrrrrrrreeeeeeeee))))))))) For a optimal code tree with two
least frequent characters x,y as deepest leaves. Combine the two leaves
gives the optimal code tree for the new table with x,y combined.

Hint:

To efficiently contruct Huffman code: we represent the binary
code tree with three arrays: L[i], R [i], P [i] are the left/right
child and parent of node i ; the leaves are nodes at indices
1..n , root is with index 2n −1

BuildHuffman(f [1. . .n]):
for i ←1 to n

L[i]←0;R [i] ←0
Q .insert(i , f [i])

for i ← n +1 to 2n −1
x ←Q .ExtractMin()
y ←Q .ExtractMin()
f [i]← f [x] + f [y]
Q .insert(i , f [i])
L[i]← x ;P [x] ← i ;
R [i]← y ;P [y]← i ;

P [2n −1] ←0

BuildHuffman() performs 2n − 1 Q .insert and 2n − 2
Q .ExtractMin. What is a good data structure to use for the con-
tainer Q? Priority queue with binary heap underneath , for which both
Insert and ExtractMin costs O (log n). In total, the building of
Huffman tree costs O (n log n). Here's an example C++ imple-
mentation with Standart Template Library:

Stable Matching 6/6

