
Graph Algorithms

References:

� Algorithms, Jeff Erickson, Chapter 5 Basic Graph Algorithms,
Chapter 6, Depth-First Search

� Algorithm Desgin Manual, Chapter 5.



Language of Graph 2/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A simple and incredibly versatile and useful data structure to repre-
sent pair-wise relationships.

Formally, a (simple) graph is a pair of sets

(V ;E)

where V is the set of vertices (or nodes), and E is set of pairs
of elements in V , which we call edges. In undirected graph, the
edge is unordered pair, i.e. (u; v) = (v ; u), whereas in directed
graph, the pair is ordered. In the textbook, unordered pair is usually
shortened as uv , and ordered pair is u! v .

Depending on context, the book also uses V ;E , as the number of
vertices and edges. E.g. in a statement such as 06E 6V (V ¡ 1)



Without qualification, we usualy mean simple graph which

� No parallel edges: E is a set of pairs

� No loop (undirected edge with self)

In undirected graph, if uv 2 E , then we say v is a neighbor of
u, and u; v are adjacent .The degree of a node is the number of
neighbors.

In directed graph, we distinguish two kind of neighbors: for edge
u! v , we call u the predecessor of v , and v the successor of u.
The in-degree of a node is the number of predecessors, and out-
degree is the number of sucessors.



A graph G 0=(V 0;E 0) is a subgraph of G =(V ;E) if V 0�V and
E 0�E . A proper subgraph is any subgraph that is not G itself.

A walk in an undirected graph G is a sequence of vertices, where
each adjacent pairs in the sequence is also adjacent in the graph.
Also a walk can mean the sequence of edges. A walk is called a path
if it visits each vertex at most once. For any two vertices u;v , we say
v is reachable from u is G contains a walk (and therefore a path)
between u and v . A graph is connected if every vertex is reachable
from every other vertex. Every undirected graph consists of one or
more components , which are maximal connected subgraphs; two
vertices are in the same component iff there is path between them.

A walk is closed if it starts and ends in the same vertex; a cycle is
a closed walk that enters and leaves each vertex at most once. An
undirected graph is acyclic if no subgraph is a cycle; acyclic graphs
are also called forests . A tree is a connected acyclic graph (one
component of a forest). A spanning tree of G is a subgraph that



is a tree and contains every node of G . (Only) A connected graph
contains spanning tree. A spanning forest of G is a collection of
spanning trees, one for each component.

In directed graph the definitions are similar, with the distinction that
the edges, and therefore walk and paths are directed . A directed
graph is strongly connected if every vertex is reachable from every
other vertex; A directed graph is acyclic if it does not contain a
directed cycle. directed acyclic graph are often called DAG .



Representation of Graphs 4/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Adjacency list:

Here the list of neighbors for each vertex is stored in a linked list;
but it does not have to be linked list;

A dynamic array (vector), binary search tree, or hash table could
also be used. Different data structures have different performance
characteristics.



Adjacency matrix: a V �V matrix A of 0s and 1s:

� For undirected graph, A[u; v ] = 1 iff uv 2E
� For directed graph, A[u; v ] = 1 iff u! v 2E
The adjacency matrix for undirected graph is symmetric, and the
diagonal is always 0. For directed graph it's not necessarily sym-
metric, and the diagonal could be non-zero.



Comparison:

Why three representations?

� If the graph is dense E �O(V 2), the adj matrix is both simple
and efficient.

� Adj with linked list is usually good enough

� Many problems have implicit graph representation, and they
can be modeled by either adj list or adj matrix.



Figure. Comparison in cost of adj list/matrix.

From Algorithm Design Manual, Skiena.

We always assume adj list with linked list as the graph represen-
tation, unless explicitly stated otherwise.



Whatever-First Search 5/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reachability problem: given vertex s in undirected graph G ,
which vertices are reachable from s? We must search through the
graph to find out the answer.

The most natural reachability algorithm is (for those of us who are
enchanted by the magic of recursion) depth-first search. This
algorithm can be written either recursively or iteratively:



RecursiveDFS(v): IterativeDFS(s):
if v is unmarked push(s)

mark v while the stack not empty
for each edge vw : v pop stack

RecursiveDFS(w) if v is unmarked
mark v

for each edge vw
push(w)

DFS is just one of the whatever-first-search method. The generic
algorithm stores a set of candidate edges in some data structure
called �bag�. The only important thing about �bag� is that you can
put something in and later get it out. A stack is such a �bag�, and
it leads to DFS (the iterative version).



WhateverFirstSearch(s):
put s into the bag
while the bag is not empty

take v from the bag
if v is unmarked

mark v
for each edge vw

put w into the bag

The generic WhateverFirstSearch algorithm marks every node reach-
able from s, and nothing else. It visits every node in the connected
graph at least once. To help prove it and analyze its performance,
let's consider the slightly modified algorithm (modification in red):



WhateverFirstSearch(s):
put (;; s) into the bag
while the bag is not empty

take (p; v) from the bag (take-out)
if v is unmarked

mark v
parent(v) p
for each edge vw (neighbor-loop)

put (v ;w) into the bag (put-in)

Note that the modified version does exactly the same thing as before,
but additionally records parent node (who put me in the bag the
first time?) along the way. This parent relationship helps us under-
stand and prove the claim that the search algorithm indeed visits
all reachable nodes at least once.



Lemma. WhateverFirstSearch(s) marks every vertex reachable
from s and only those vertices. Moreover, the set of all pairs (v ;
parent(v)) with parent(v)=/ ; defines a spanning tree of the com-
ponent containing s.

Sketch proof:

� First, we argue that the algorithm marks every reachable vertex
v from s.

Prove by induction on the shortest-path length from s to vertex
v .

� Second, we argue that the pairs (v,parent(v)) forms a spanning
tree of the component containing s.

Claim: for every vertex v , the parent path: v! parent(v)!
parent(parent(v))! � � � ! eventually leads to s.

Claim: all the parent edges form a tree



Analysis. The running time of the whatever-first-search depends
on what data structures we use for the �bag�, but we can make a
few general observations.

Suppose putting a node into the �bag� or getting one out takes T
time.

� The (neighbor-loop) is executed exactly once for each marked
vertex v , and therefore at most V times.

� Each edge uv in the component is put into bag exactly twice;
once as (u; v) and once as (v ; u). So the (put-in) statement is
executed at most 2E times.

� For the (take-out) statement, we can't take more out than we
put in, so it's executed at most 2E times.

So, WhateverFirstSearch() takes O (V + ET ) time. (If graph is
represented as adj matrix then it's O(V 2+ET ). Why?



Important Variants:

Stack: Depth-First

Queue: Breadth-First

Priority-queue: Best-First



Flood Fill 6/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



A Concrete Data Structure for Graph 7/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data Structures for Graph.



BFS for undirected graph.



Applications of BFS:

1. Connected components

2. Shortest path from a source s



Depth First Search 8/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DFS has some special properties. It's a variant of Whatever-First-
Search, but it's usually implemented in recursion. And we can modify
the algorithm a bit so that we check the mark of w before we put
into bag, so every reachable vertex w is put in bag exactly once:

DFS(v):
mark v
PreVisit(v)
for each edge vw

if w is unmarked #modified!
parent(w) v
DFS(w)

PostVisit(v)



and we have the two magic unspecified blax-box subroutines called
PreVisit and PostVisit pre/post the recursion. By putting computa-
tions in the two subroutines we can solve many problems.

For undirected graph, we already know that DFS visits the compo-
nent containing v , and the parent() relation defines a spanning tree.

If the graph is not connected, we can wrap around DFS like this to
visit all vertices (two equivalent formulations)

DFSAll(G): DFSAll(G):
Preprocess(G) Preprocess(G)
for all vertices v add vertex s

unmark v for all vertices v
for all vertices v add edge s! v

if v is unmarked unmark v
DFS(v) DFS(s)



Preorder and Postorder

Hopefully you already have some experience with preorder/posorder
traversals of rooted trees, both can be computed with DFS.

Similary traversals can be defined for arbitrary directed graphs

Preprocess(G): PreVisit(v): PostVisit(v):
clock 0 clock clock+1 clock clock+1

v :pre clock v :post clock

Now each vertex is timestamped by two clock readings: v.pre and
v.post.

� v.pre: the time point that DFS �enters� node v

� v.post: the time point that DFS �exits� node v.



The timestamps delineates each node v into three states at any time:

� new: clock<v :pre: DFS(v) has not yet been called.

� active: v :pre6 clock< v :post DFS has entered but not exited
note v.

� finished: v :post6 clock, DFS(v) has returned.

A couple of interesting properties of the pre/post time:

� A node v is active iff v is on the current recursion stack.

� For two nodes u;v , their clock intervals [u:pre;u:post] and [v :pre;
v :post] must either be disjoint or nested. They cannot just
overlap.

� [u:pre;u:post]� [v :pre; v :post] means that v is descendent of u.

� disjoint [u:pre;u:post] and [v :pre;v :post] means u and v are not
descendents of each other.







The edges of the input graph falls into four different classes,
depending on how there active intervals intersect. Fix edge u! v :

� If v is new when DFS(u) starts, then DFS(v) must be called
sometime when u is active (u must be ancestor of v)

i DFS(u) calls DFS(v) directly, in which case the edge u! v
is called tree edge (because it's in the DFS tree).

ii Otherwise, u! v is called forward edge.

� If v is active when DFS(u) starts, then v is already on the
recursion stack, which implies [u:pre;u:post]� [v :pre; v :post] (v
is ancestor of u). Edge u! v is called back edge.

� If v is finished when DFS(u) starts, we immediately have [u:pre;
u:post]> [v :pre;v :post] (disjoint interval; v is first). Edge u!v
is called cross edge.



The following statements are equivalent:

� u is an ancestor of v

� [v :pre; v :post]6 [u:pre; u:post] (or v :post6 u:pre)

� Just after DFS(v) is called, u is active

� Just before DFS(u) is called, there's a path from u to v in which
every vertices (including u; v) are new.

Sketch Proof:

Note: this is for directed graph. Undirected graph DFS tree does
not have forward edge or cross-edge! It's very powerful precisely
because it classifies edges into two classes: tree/back edges.

Question: why no forward/cross edges in undirected DFS?



Detecting Cycles 9/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A DAG (directed acyclic graph) or dag is a directed graph with
no cycles. Any vertex in a DAG with no incoming edges is called
source; and vertex in a DAG with no outcoming edges is called
sink. An isolated vertex (no incoming/outcoming edges) is both
source and sink. A DAG must have at least one source and one sink,
but can have more.

Green: sources

Red: sinks.



How do we detect cycles in a directed graph? The key idea is an
observation:

If and edge u! v but u finishes earlier than v (u:post< v :post),
then there is directed path from v to u, which means cycle.

Why? Because if u:post<v :post that means u!v is a back edge,
therefore v is ancestor of u.

The reverse is true too; namely if we have cycle then we have back
edge, which means some edge u! v with u finishes earlier. So we
have

Detecting cycles , detecting back edges in DFS

We can generate postorder of the nodes and look for condition
u! v ^ u:post< v :post. Or we could simply embed the back edge
detection logic into the DFS algorithm.



Topological Sort 10/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Topological ordering is an total order � on the vertices such
that u�v for every edge u!v . Visually, topological ordering places



nodes on a line such that no edges point from right to left.

Topological ordering is impossible for cyclic graph! (how do you
place a cycle on a line without right-to-left edge?)

But for every acyclic directed graph we have topological ordering. For
example, any reversed post-ordering is a valid topological ordering.
Computing a topological ordering of an acyclic graph is called topo-
logical sorting .

Why? Based on the analysis of cycle detection, we know that in a
acyclic graph:

for edge u! v , we must have u:post> v :post

We could do topological sorting with DFS with post-order time-
stamp in O(V + E) time. But typically an application visits the
nodes in implicit topological order; in this case DFS with post-
precessing is the right choice of tool:



PostProcessDFS(v):
v :status active
for each edge v!w

if w :status=new
PostProcessDFS(w)

else if w :status= active
report error: �cycles detected!�

v :status finished

This algorithm does not need precise clocks, instead it only relies on
the new!active!finished states of the nodes. Notice that this
PostProcessDFS(v) processes nodes in topological order. Because
of PostProcessDFS is so common, we can shorten the postorder
processing of DAG as

PostProcessDAG(G):
for all vertices v in postorder

Process(v)



Topological Sort: Real Code 11/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15







Memoization and Dynamic Programming 12/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Remember in dynamic programming, one of the important task is
to identify the dependency graph of the subproblems, and find an
evaluation order that repsects the dependency.

Recursion in dynamic programs gives us DAG, and such evaluation
order we seek is precisely reverse topological ordering of the DAG!



Strong Connectivity 13/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

For directed graph, there's stronger version of connectivity called
strongly connected. For two vertices u; v , if there is a directed
path from u to v, and also a directed path from v to u, then we call
the vertices u,v strongly connected.

Strong connectivity defines an equivalence relation over the nodes;
the equivalence class is called the strongly connected compo-
nent (SCC). A SCC of graph G is a maximal strongly connected
subgraph. A directed graph is strongly connected iff it has exactly
1 SCC. At the other extreme, G is a DAG iff every SCC is single
vertex.

The strong component graph scc(G) is another directed
graph obtained by contracting each SCC of G into a single node
and collapsing the parallel edges. the scc(G) is always a DAG.



Now how do we compute the SCC of a graph? We start with com-
puting one SCC of a single node v .

First, we compute the reach(v) by WhateverFirstSearch. Then we
compute reach¡1(v) = fu: u can reach v g by searching the reversal
of G : reach¡1(v)= reach(v) in rev(G). Finally, the SCC of v is the



intersection reach(v)\ reach¡1(v). This takes linear time O(V +E).

To compute all the SCCs, we can wrap the SCC of single node
around a outer loops that computes SCC of every potential node.
However, the resulting algorithm runs in O(VE) time, instead of
linear. (Why? There are at most O(V ) SCCs, and each one needs
O(E) time to discover), even if the graph is a DAG! We can do
better.



Strong Components in Linear Time 14/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All linear algorithm of finding all SCC rely on the observation:

Fix DFS traversal of directed graph G . Each strong component
C contains exactly one node which does not have parent in C .

Why?

� Consider a strong component C of G and any directed path
from one vertex v 2C to another w 2C . The whole path must
belong to C (why?)

� Let v be the vertex in C with the earliest starting (entering)
time, v.pre. Then v has no parent in C .



� (uniqueness). Suppose w is another vertex. Just before DFS(v),
every vertex in C is new, so there's path of new vertices from v
to w. Thus w must have parent in C.

The observation implies that each strong component defines a con-
nected subtree of any depth-first forest. In particular, the node in
C with the earliest starting time is the root of C . And strong
components are contiguous in the depth-first forest. Now we are
ready to describe a linear time algorithm!



StrongComponents(G):
count 0
while G is non-empty

C ;
count count+1
v any vertex in a sink component of G #magic!
for all vertices w in reach(v)

w :label count #we found a SCC
add w to C

remove C and its incoming edges from C .

This algorithm works by identifying a sink component (sink in
the scc(G)). The sink component can only reach itself! We compute
its reach, and remove it from our graph, and recurse. Gradually we
find all the strong components one by one.

But how do we find any vertex in a sink component of G?



Finding vertex in sink component does not seem easy; but finding
vertex in a source component is easy enough. In fact:

The last vertex of any post-ordering of G lies in a source compo-
nent of G .

(why?)

Noting that post-ordering of rev(G) gives us souce component in
rev(G), which is sink component in G! So we do two passes:

� First, DFS traverse rev(G) and record post-order.

� DFS Traverse G, remove the sink components one at a time.







Cut Node (Articulation Vertex) 15/15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In a connected undirected graph, a node is called cut-node is called
cut-node or articulation vertex, iff removing the node discon-
nects the graph.

In the left graph we have the DFS tree of an
undirected connected graph.

node 1,2 are cut-node; other nodes are not.

How do we find out which nodes are cut-
nodes?

Clearly, the back edges (5! 2) play special
role, because it makes 3,4 NOT cut-node.



The back edge inspires us to compute something called
earliest_reach[v] for every vertex, which means the earliers (in
terms of entering time u:pre) vertex that v can reach through tree
edges and back edges. E.g. earliest_reach[4]=2, because 4 can
reach 2 through 5, and that's as early as it can go.

Why do we care about earliest_reach[v]? Because it tells exactly
what nodes are cut-nodes. Several observations:

� Root is cut-node, if it has>2 children. (in DFS tree of undirected
graph, there is no cross-edge, or forward edge).

� Leaves are always not cut-nodes (the spanning tree is still con-
nected, therefore the graph G is also connected)

� If earliest_reach[v]=v, then both v and parent(v) are cut nodes

� If earliest_reach[v]=parent(v), then parent(v) is cut node.

� If earliest_reach[v]<parent(v), then v,parent(v) are not cutnode.





To put the observation in algorithm, we must know the following
information along the DFS tree.

� earliest_reach[v]: the earliest reachable ancestor of the whole
subtree[v].

� is_root[v]: whether v is the root

� is_leaf[v]: whether v is a leaf

Let's put them together into C++ program: cutnode.cpp




