
Lecture 3: Backtracking

Last updated Feb 1, 2021

References:

� Algorithms, Jeff Erickson, Chapter 2

Backtracking 2/26

Backtracking is a particular recursive strategy which constructs a
slution incrementally, one piece at a time.

Think the solution as a vector, and backtracking computes one ele-
ment at a time.

Whenever the algorithm needs to decide between multiple alterna-
tives, it systematically evaluates every alternative and choose the
best.

N-Queens 3/26

On a 8x8 chessboard, place 8 queens
such that no two queens attack each
other. (no two queens in the same
row, column, or diagonal).

Find one solution, or all the solutions,
or count the number of solutions.

Backtracking strategy:

For top row to bottom row, try to
place one queen per row at every pos-
sible position.

Key data structure: partial solution.

N-Queen Backtracking 4/26

The backtracking algorithm given by Gauss is essentially:

PlaceQueens(Q[1::r ¡ 1]; r):
if r > n print Q[1::n] # solution complete
else

for j 1 to n #consider position j in row r
legal true
for i 1 to r ¡ 1 #checking if j is legal

if (Q[i] = j) or (Q[i]=j+r-i) or (Q[i]=j-r+i)
legal=false

if legal
Q.push(j); #make move
PlaceQueens(Q[1::r]; r +1) #accept j, recurse!
Q.pop(); #unmake move

N-Queen Backtracking 5/26

It's equivalent to depth-first search of this tree:

Recursion tree:

Node: legal partial
solution.

Edge: recursive calls

Leaves: partial solu-
tions that cannot be
extended (deadend, or
complete solution)

N-Queens Implementation 6/26

See the animation page: http://www2.cs.uh.edu/~panruowu/
2021s_cosc3320/nqueen.html

To call the recursive backtracking routine, simply do:

Game 7/26

Consider a simple two-player game on nxn square grid:

Rules:

Red/Green player takes
turns

Can move only horizon-
tally (red) or vertically
(green)

Can move one step, or
jump over one.

Place all tokens to the
other ends to win.

We can devise algorithm that starts in any game state, it can win
the game if it's possible to win another perfect player.

Game Tree 9/26

We recursively define a game state to be good or bad as:

� A game state is good, if either the current player already won, or
if the currently player can move to a bad state of the opposing
player.

� A game state is bad, if either the current player already lost, or
if every available move leads to good state of opposing player.

To put it in another way, a non-leaf node in the game tree is good,
if one of its children is bad. A non-leaf node is bad, if all its children
are good.

If we are in good state, we win even if opposing player is perfect.

If we are in bad state, we lose, unless opposing player makes mistake.

Game Tree: Telling Good from Bad 10/26

The recursive definition of good and bad state automatically sug-
gests a recursive backtracking algorithm to play perfectly:

PlayAnyGame(X ,player):
if player won in state X

return good
if player has lost in state X

return bad
for all legal moves X ! Y

if PlayAnyGame(Y ,:player) = bad
return good

return bad

What are the cost?

Subset Sum 11/26

Problem: given a set X of positive integers, and a target integer T ,
is there a subset of X that add up to T?

E.g. if X={8,6,7,5,3,10,9}, and T=15, the answer is yes, because
subsets {8,7}, and {7,5,3}, and {6,9}, and {5,10} all add up to
T=15.

How to approach this problem? Take any element x2X , the answer
is yes iff one of the following is true:

� There is a subset of X that includes x that add up to T

� There is a subset of X that excludes x that add up to T

Taking each case, we have a recursive algorithm:

12/26

SubsetSum(X,T): #does any subset of X sum to T?
if T=0 return true
else if T<0 or X=; return false
else

x any element of X
with SubsetSum(Xn{x},T-x) #recurse, case 1
without SubsetSum(Xn{x},T) #recurse, case 2
return with ^ without

The correctness of this algorithm can be proved by induction.

What's the cost?

Backtracking Summary 13/26

General patterns: making a sequence of decisions.

� in the N-Queens problem, the goal is a sequence of queen posi-
tions, one in each row. For each row, algorithm decides where
to place the queen.

� In the game tree problem, the goal is a sequence of legal moves,
such that each move is as good as possible for the player. For
each game state, the algorithm decides best next move.

� In the SubsetSum problem, the goal is a sequence of input ele-
ments that have a particular sum. For each input element, the
algorithm decides whether to include it in subset or not. (why is
the goal finding a sequence of subset?)

In fact, we can write a generic backtracking algorithm that can serve
as template for solving all kinds of problems.

Backtrack(a[], k, input): #a[] partial solution at step k
if IsASolution(a, k, input)

ProcessSolution(a,k,input)
else

k k+1
candidates construct_candidates(a, k, input)
for c in candidates:

a[k] = c
make_move(a,k,input)
Backtrack(a,k,input)
if finished

return
unmake_move(a,k,input);

Backtracking: Key Techniques 14/26

Successful design of backtracking often involves designing a partial
solution structure that encodes all necessary past decisions. Why?
Because current decision depends on past decisions.

� In N-Queens, we must pass all past decisions (positions in all
previous rows) in order to make legal moves.

� In game tree problem, we only need the current game state.

� For the SubsetSum problem, we need to pass all the remaining
integers, and the remaining target value. Here we don't need the
complete history of past decisions (unless we are asked to output
a subset or all subsets that add up to T).

We must design in advance what information is needed about past
decisions. We might need to solve a more general problem.

Backtracking Technique 15/26

Also, it's often easier to answer a yes/no question first, and design
backtracking algorithm for that.

Modifying the algorithm to obtain more information, or variants of
the problems (e.g. how many solutions? All solutions? One solution?
The best solution according to some criteria?) can be rather easily
done.

Therefore we usually consider only the yes/no variant of a back-
tracking problem.

Text Segmentation 16/26

Problem: given a text string (without punctuation or spaces), seg-
ment it into words. For example consider the English string:

BOTHEARTHANDSATURNSPIN

which can be segmented as �BOTH EARTH AND SATURN SPIN�, or
�BOT HEART HANDS AT URN SPIN�.

As usual, we start with a yes/no question: given a string, can it be
segmented into English words at all?

To make it concrete, let's say we are given a routine that can tell us
whether a string is a �word� or not: IsWord(w).

Text Segmentation 17/26

The input are strings of letters, and the output are sequence of
words. It's natural to consume and produce from left to right.

Jumping into the middle of the segmentation process, we might have
something like:

BLUE STEM UNIT ROBOT HEARTHANDSATURNSPIN

Here the yellow bars are the past decisions�spliting 17 letters into
4 words. Now it's time to decide: where do the next work end?

There are 4 tentative possibilities:

18/26

BLUE STEM UNIT ROBOT HE ARTHANDSATURNSPIN

BLUE STEM UNIT ROBOT HEAR THANDSATURNSPIN

BLUE STEM UNIT ROBOT HEART HANDSATURNSPIN

BLUE STEM UNIT ROBOT HEARTH ANDSATURNSPIN

In the first case, we tentatively accepts HE as our next word, and
recurse into the remaining text. If it returns true, we are done; if it
returns false, we try the next case, and so on.

In this particular problem, our past decisions are not needed for
making the current decision at all.

Text Segmentation 19/26

Splittable(A[1..n]): #can the string A be segmented?
if n=0 return true
for i 1 to n

if IsWord(A[1..i]) #tentatively accept the next word
if Splittable(A[i+1..n]) #recurse!

return true
return false

Note that the partial solution does not need to be maintained.

Longest Increasing Subsequence 20/26

For any sequence S, a subsequence of S is one that's obtained
by deleting zero or more elements, without changing the order. The
elements in the subsequence need not be contiguous in S.

In contrast, a substring of S is a contigous subsequence of S.

For example, MASHER and LAUGHTER are subsequences of
MANSLAUGHTER, but only LAUGHTER is also a substring.

Now the LIS problem is: given a sequence of integers, find the longest
subsequence whose elements are in increasing order.

LIS 21/26

Again, we are dealing with sequence, might as well start from left
to right, and decide to include A[j] or not in our subsequence.

Here's a possible middle of decision sequence:

3 1 4 1 5 9 2 6 5 3 5? 8 9 7 9 3 2 3 8 4 6 2 6

We are deciding whether to include the number 5. But we cannot
because it make our current subsequence not increasing. Next one.

3 1 4 1 5 9 2 6 5 3 5 8? 9 7 9 3 2 3 8 4 6 2 6

Now we have two choices to explore:

1. We include 8, and recurse into the rest

2. We exclude 8, and recurse into the rest

LIS 22/26

Now the important question: what information is needed from our
past decisions? It appears that we only need one last included number
to make current decision (we have the increasing order constraint).

Our base case is that when we at the end (j=n), we return 0, which
is the length of the LIS (there is only one).

LIS(prev , A[1::n]): #length of the LIS, prev is last decision
if n=0 return 0
if A[1] 6 prev #cannot include A[1]; skip it

return LIS(prev,A[2::n])
else

skip LIS(prev,A[2::n])
take LIS(A[1],A[2::n])+1
return max{skip,take}

LIS Backtracking 23/26

Proof of correctness of the backtracking LIS algorithm:

Sufficient to provide the recurrence: let L(i ; j) denote the length of
the LIS of A[j..n], with every element bigger than A[i].

Our recursion gives the recurrence:

L(i ; j)=

8>>>><>>>>:
0 if j > n
L(i ; j +1) if A[i]>A[j]

max
�

L(i ; j +1)
1+ L(j ; j +1)

otherwise

To show the correctness of this recurrence, it's important to note
what L(i ; j) means, and based on that, argue the recurrence makes
sense.

What's the cost of this recursive algorithm?

T (n)= 2T (n¡ 1)+1) T (n)= 2n¡ 1

Worked Example: Sudoku 24/26

Rules:

1. Each of the digits 1-9 must occur exactly once in each row;

2. Each of the digits 1-9 must occur exactly once in each column;

3. Each of the digits 1-9 must occur exactly once in each of the 9
3x3 sub-boxes (with dark borders)

Now let's try to solve this. We can represent the 9x9 grid by a 2d
array, with elements being �123456789� or 0 if it's not marked.

We are given a 2d array which represents a Sudoku puzzle. Our job
is to find one solution. Backtracking lends itself nicely to this task.

Sudoku(A[1..9][1..9]):
if grid is full:

output solution and return
find next open position i,j #next position?
for num in 1..9 that satisfies the rules #next fill-in?

A[i][j] = num #attempt to fill in
Sudoku(A[1..9][1..9]) #recurse!
A[i][j] = 0 #dead end; backtrack

Note that this backtracking algorithm will systematically try all pos-
sible ways fill-in the grid until a solution is found.

Constructing the candidates for the next solution position involves
first picking an open square we want to fill, and then indentifying
which number are candidates to fill the square. Two reasonable way
to pick the first open square:

� Arbitrary Square Selection: pick the first one, the last one, or a
random one; All are correct and it's not clear which one is better.

� Most constrained Square Selection: check each of the open
squares, and pick the one that has fewest candidate numbers.

Both work correctly, but speed might be different. It's intuitive that
the second heuristic may lead to solution faster. Why? Because
if our next position has only two candidate numbers, we have 1/2
possibility of guessing right. Whereas if we pick open position that
has 9 candidate numbers, we have 1/9 possibility to guess right.

Let's put it into C++ code. Some test puzzle files can be down-
loaded from http://lipas.uwasa.fi/~timan/sudoku/

First we have the sudoku function

next let's see the find_candidates() which gives a list of legal
fill-ins for a given open square:

And for the find_next_open() function that chooses next open
square to fill-in, we implement three heuristics: find the first open
(left-right, top-bottom order), find a random open square, and find
the most constrained open square.

Here we only show the find_next_open_most_constrained()

Some runtime performance for the very hard case in previous picture.

find_next_open runtime(ms) #recursion calls
first open 1,079 6,943,195
random ? ?
most constrained 68 10,373

It seems that the most-constrained heuristic is very helpful in han-
dling the hard case.

Word Search 25/26

(Leetcode 79). Given an m � n board and a word, find if the
word exists in the grid. The word can be reconstructed from let-
ters sequentially adjacent cells, where �adjacent� means horizontally
or vertically neighboring. The same letter cannot be used more than
once.

Word Ladder 26/26

(leetcode 126)

Given two words (beginWord and endWord), and a dictionary's
word list, find all shortest transformation sequence(s) from begin-
Word to endWord , such that:

1. Only one letter can be changed at a time

2. Each transformed word must exist in the word list. Note
that beginWord is not a transformed word.

Note:

� Return an empty list if there is no such transformation sequence.

� All words have the same length.

� All words contain only lowercase alphabetic characters.

� You may assume no duplicates in the word list.

� You may assume beginWord and endWord are non-empty and
are not the same.

