
High Accuracy Matrix Computations on Neural Engines:
a Study of QR Factorization and its Applications

Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu
Department of Computer Science

University of Houston
{szhang36,ebaharlo,pwu7}@uh.edu

Abstract
Fueled by the surge of ever expanding successful applications

of deep neural networks and the great computational power de-
manded, modern computer processors and accelerators are begin-
ning to offer half precision floating point arithmetic support, and
special units (neural engines) such as NVIDIA TensorCore on GPU
and Google Tensor Processing Unit (TPU) to accelerate the training
and prediction of deep neural networks. It remains unclear how neu-
ral engines can be profitably used in application other than neural
networks. In this paper we present an endeavor of accelerating and
stabilizing a fundamental matrix factorization on neural engines—
the QR factorization—which may open doors to much wider rele-
vance to scientific, engineering, and data sciences. We show that
traditional Householder QR algorithms and implementations do
not have the necessary data locality, parallelism, accuracy and ro-
bustness on neural engines which are characterized by extreme
speed and low precision/range.

We demonstrate that neural engines can be effectively used to
accelerate matrix computations (QR 3.0x-14.6x speedup compared
to cuSOLVER, reaching up to 36.6TFLOPS); however different al-
gorithms (recursive Gram-Schmidt) are needed to expose more
locality and parallelism, even at the cost of increased computations.
Moreover, scaling, iterative refinement, and other safeguarding pro-
cedures are also needed to regain accuracy and avoid overflowing.
Our experience seems to suggest that presently with neural en-
gines the matrix factorizations (QR, LU, Cholesky) are best to be
co-designed with its applications (linear solver, least square, orthog-
onalization, SVD etc) to achieve high performance and adequate
accuracy and reliability, rather than used as a black-box.

ACM Reference Format:
Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu. 2020. High Accuracy
Matrix Computations on Neural Engines: a Study of QR Factorization and
its Applications. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Driven by the need to train large scale deep neural networks,

there’s been a tidal wave of specialized low precision matrix matrix
multiplication units. Among them are TensorCore from NVIDIA on
its Volta and Turing architecture, Google’s Tensor Processing Unit
(TPU)1, and Intel’s upcoming Cooper Lake Xeon processors, as well

1https://cloud.google.com/tpu/

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

as its Nervana Neural Network Processor NNP-T 10002. These neu-
ral engines are usually characterized by the support of lower preci-
sion arithmetic (such as 16 bit floating point format), and extremely
efficient matrix-matrix multiplication. For example, NVIDIA V100
boasts up to 120 “deep learning” teraFLOPS (120×1012 floating point
operation per second) [32], which is basically half precision matrix
multiplication accumulated in single precision. Google’s TPU v3
claims 420 TeraFLOPS, also in doing half precision matrix-matrix
multiplication. In contrast, V100 single precision peak performance
is 14 TeraFLOPS, and double precision is 7TeraFLOPS. Having these
neural engines greatly speeds up applications that primarily spends
time in low precision matrix-matrix multiplication, and also results
in much higher energy efficiency.

However outside the neural networks, effective use of such neu-
ral engines are only emerging. Two challenges must be addressed
in using neural engines: 1) how to expose enough locality and par-
allelism to enable neural engines to run at high speed? 2) how to
mitigate the loss of accuracy and reliability of using the limited half
precision format? In this paper we present effective use of NVIDIA
TensorCore units to QR factorize matrix and its applications in
solving linear least square problems, orthogonalization, and low
rank approximation. Least square problem and its many variants
are prevalent in science, engineering, and statistical machine learn-
ing; for instance non-linear least square problems are probably the
largest source of all non-linear optimization problems. As such,
QR factorization and its applications form a core component of
any linear algebra packages such as LAPACK [1] which have been
downloaded millions of times, and supported by all major processor
vendors.

Thus we set to answer the following questions: is it profitable to
use neural engines to accelerate common linear algebra operations
reliably and accurately? We use QR factorization to demonstrate
that the answer is yes, but new algorithms are needed to satisfy the
data locality and parallelism that neural engines need to run at full
speed, and to compensate the loss of accuracy and stability.

We consider the contributions of this paper to be:
• Simply replacing thematrix-multiplications in blockedHouse-
holder QR by TensorCore does not increase the performance
significantly. We propose novel recursive Gram-Schmidt QR
that exhibits better data locality at the cost of doing more
computations. The net result is vastly faster QR (3.0x to
14.6x, reaching 36.6TFLOPS) compared to single precision
cuSOLVER QR (SGEQRF).

• The internal half precision format in TensorCore has very
limited precision and more importantly very limited range

2https://www.nextplatform.com/2019/07/15/intel-prepares-to-graft-googles-
bfloat16-onto-processors/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://cloud.google.com/tpu/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.nextplatform.com/2019/07/15/intel-prepares-to-graft-googles-bfloat16-onto-processors/
https://www.nextplatform.com/2019/07/15/intel-prepares-to-graft-googles-bfloat16-onto-processors/

Conference’17, July 2017, Washington, DC, USA Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu

which are susceptible to over/underflow. We devise cheap
iterative refinement, re-orthogonalization, and automatic
column scaling to regain accuracy and avoid overflow.

• We conduct comprehensive empirical study of the accuracy
and performance of QR factorization, least square solver, and
orthogonalization for a variety of matrices, with different
sizes, aspect ratio, and spectrum distribution.

The paper is organized as follows. Section 2 introduces numerical,
algorithmic, and architectural backgrounds to understand this paper.
Section 3 introduces the main methods, analysis, and rationale
behind our algorithmic design and implementation. Section 4 is a
comprehensive empirical study on the accuracy and performance
of the proposed methods. Section 5 discusses related work and the
context around this paper, and section 6 wraps up it with conclusion.

2 Backgrounds
In this section we review some backgrounds that are most rele-

vant to understand this paper. Readers already familiar with these
topics are encouraged to quickly scan it or skip it.

2.1 Half Precision Arithmetic and TensorCore
GPU

NVIDIA introduced a specialized unit called TensorCore from their
Volta architecture, which boasts up to 120 TFLOPS (120× 1012 float-
ing point operations per second) for half precision (FP16) matrix-
matrix multiplication. Compared to single precision SGEMM (Sin-
gle precision GEneral Matrix-Matrix multiplication) and double
precision DGEMM, TensorCore is 7x and 14x faster respectively,
which is a considerable upgrade in the performance at the cost of
significantly lower precision and consequent loss of accuracy and
numerical stability.

TensorCore only supportsmatrix-matrixmultiplication (GEMM3).
The easiest to use API is from cuBLAS, and it has many variations.
A more flexible and also highly efficient way to program Tensor-
Core is through the CUTLASS template library4 from NVIDIA, or
directly call theWMMA intrinsic. For this paper we use TensorCore
through cuBLAS library.

The Google Tensor Processing Unit (TPU) also depends exten-
sively on 16 bits floating point matrix-matrix multiplication to
achieve its claimed 420 TFLOPS in its latest TPU v3 offering. How-
ever the 16 bits floating point format TPU uses is slightly different
from the NVIDIA TensorCore; TPU uses the bfloat16 format, which
has 3 less bits for mantissa and use 3 more bits for exponents so it
can represent a wider range of numbers at lower resolution. Intel
also planned to introduce bfloat16 processing (together with FP32
accumulation) in their future processors (Cooper Lake Xeon) so
we will see more variety of half precision support in mainstream
processors, which makes it even more useful to extend the use
pattern of low precision computing beyond deep neural networks.

Let us take a look at the different floating point format and see
what gives and what takes in terms of accuracy (resolution in repre-
senting real numbers), and range (smallest and largest representable
real number) in figure 1. The IEEE single precision floating point
format is accurate and widely ranged, for it has 32 bits to spare.

3LAPACK subroutine naming convention: SGEMMmeans single precision general matrix
multiplication, and DGEMM means double precision one
4https://github.com/NVIDIA/cutlass

Figure 1: IEEE single/half precision and bfloat16 floating point for-
mat

There are currently two widely implemented 16 bits floating point
formats. Among them, IEEE FP16 has a significantly constrained
range, but its resolution (the unit roundoff error—the distance to
next representable number from 1) is about 10 times better than
bfloat16. Bfloat16 on the other hand has the same range as single
precision, but its resolution is very limited (there is no bfloat16
number between 1 and 1.0078). Thus bfloat16 is more robust (less
prone to overflow and underflow) but less stable/precise (large
roundoff error). In this paper we use FP16 format supported by
NVIDIA TensorCore.

2.2 Linear Least Square (LLS) Problems and
Direct Solvers

LLS problems are prevalent in natural science, engineering, and
data sciences. To give a specific example (gradiometry), consider
the large scale least square problems solved today concerning the
determination of the Earth’s gravity field from highly accurate satel-
lite measurements; see [16]. Another example is the least square
problems arising from many fields (data fitting, statistical machine
learning, geodesy, computer vision, robotics (bundle adjustment),
etc). Non-linear least square problems can often be solved as a series
of linear least square problems.

The (over-determined) linear least square problem is stated as
an minimization problem:

min
x

| |Ax − b | |2 (1)

where A ∈ Rm×n (m > n) has full column rank, and b ∈ Rn .
Geometrically, this minimization is to find the "projection" of point
b onto the range (column space) of matrix A. Analytically the LLS
problem has closed form solution:

x∗ = (ATA)−1ATb (2)

Computationally, the analytical solution can be obtained by solving
the square linear equation (called the normal equation): ATAx =
ATb. Typically a Cholesky factorization ofATA = LLT can lead to a
solution, via backward and forward substitution. However directly
forming ATA is unstable for all but the most well-conditioned sys-
tems; in practice we would avoid forming ATA directly. Anyway
this is our first method: direct normal equation (NE) method:

ATAx = ATb (3)

https://github.com/NVIDIA/cutlass

High Accuracy Matrix Computations on Neural Engines:
a Study of QR Factorization and its Applications Conference’17, July 2017, Washington, DC, USA

The second direct method which can handle more ill-conditioned
matrix is based on QR factorization. For a tall and skinny matrixA it
takes roughly twice flops than the NEmethod, but it handles a much
wider range of matrix (if NE can handle up to condition number
κ, then QR can handle condition number κ2). The basic idea is as
follows. First we factorize the rectangular matrix A ∈ Rm×n,m > n
into the product of an orthogonal matrix Q ∈ Rm×n , and a square
upper triangular matrix R ∈ Rn×n : A = QR. Then the solution to
(1) is given by the following elementary matrix-vector operation:

x∗ = R\(QTb) (4)

For even more ill-conditioned system, or rank-deficient system
(the columns of A are linearly dependent), we need more stable
and expensive algorithms such as rank-revealing QR (e.g. QR with
column pivoting), or Singular Value Decomposition (SVD). We do
not cover these types of methods, and confine ourselves to using
the QR factorization to solve modestly ill-conditioned LLS problem.

2.3 Iterative Solvers for LLS, and
preconditioning

As discussed in the previous subsection, direct solvers are robust but
could be slow for large scale problems. Iterative methods are more
attractive for large scale and especially sparse problems, where the
only operation involving matrix A is the matrix-vector multiplica-
tionAv andATv . However for iterative methods to be competitive a
good preconditioner is essential, which is in general a very difficult
problem. A basic algorithm for solving the LLS problem without
explicitly forming ATA is called CGLS5. Basically CGLS amounts
to applying the famous conjugate gradient (CG) method on the
normal equation, without explicitly forming ATA, thus avoiding
squaring the condition number.

In this paper, we are going to combine the direct solver based on
QR factorization, with an iterative method as safeguards to refine
accuracy (this idea may be broadly called iterative refinement). The
hope is that we can get the best of both worlds—the opportunity to
use TensorCore and predictability/stability of direct methods, and
flexibility to take an inaccurate solution/factorization and turn it
into increasingly accurate solution through iteration.

2.4 Definitions of Terminology
To make this paper more readable, the definitions of terminology
are given in Table 1.

3 Methods
In this section we set out to design and engineer a TensorCore

accelerated QR factorization subroutine, and devise iterative re-
finement, re-orthogonalization, and scaling to regain accuracy and
reliability lost due to half precision TensorCore under the context
of LLS, orthogonalization, and optimal low rank approximation.
We also provide error analysis to guide the use of TensorCore ac-
celerated QR and the various accuracy improvement techniques.

3.1 Accelerating QR factorization on
TensorCore

As briefly introduced in section 2.2, QR factorization is one of the
most fundamental matrix factorization in numerical linear algebra.
5this algorithm has been given various names, such as CGNR, CGNE, and GCG-LS

Terminology Definition

LLS Linear Least Square
SGEMM Single precision General matrix multiplication
TC-GEMM TensorCore General matrix multiplication
GEMV General matrix vector multiplication
CGLS Conjugate Gradient method for Least Square
RGSQRF Recursive Gram-Schmidt QR Fatorization
[S/D]GEQRF Single/Double precision General matrix House-

holder QR Factorization
[S/D]ORMQR Orthogonal Multiply by Q from QR factoriza-

tion: Perform QC or QTC with the implicit Q
formed by Householder QR.

[S/D]TRSM Single/Double precision; solve a triangular sys-
tem.

[S/D]CuSOLVE Single/Double LLS direct solver
([S/D]GEQRF+[S/D]ORMQR+[S/D]TRSM)

[S/D]SOLVE Single/Double solve QRx = b
(GEMV+[S/D]TRSM)

TFLOPS Tera floating point operations per second.

cond(A)/κ(A) Condition number of a matrix A
cuSOLVER A CUDA library from NVIDIA that provides

LAPACK-like
direct solvers

Table 1: Definitions of Terminology and Abbreviations

It seeks to factorize a general matrixA into product of an orthogonal
matrixQ and an upper triangular matrix R. QR is almost always an
important building block of any numerical linear algebra packages
such as LAPACK [1], ScaLAPACK[7]. On GPU, NVIDIA provides
well optimized cuBLAS for basic matrix operations such as multipli-
cation, and cuSOLVER for high level matrix factorizations, such as
LU/QR and eigendecompositions. A more comprehensive package
is the MAGMA [14], which uses a hybrid CPU/GPU architecture.

3.1.1 Why can’t I just replace all matrix multiplication with Ten-
sorCore and get higher performance? Unlike matrix-matrix multi-
plication, matrix factorization typically exhibits more dependency
and less parallelism, and more complicated memory access pat-
tern. Therefore matrix factorization cannot achieve the speed of
matrix-matrix computation, but with algorithmic innovations called
"blocked" or "tiled" QR could approach a significant fraction of peak
performance. Basically, the idea of tiling is to aggregate matrix-
vector operations into fewer but bigger matrix-matrix multipli-
cations, so as to increase arithmetic intensity (ratio between op-
erations and number of elements) therefore enabling better data
locality in the trailing matrix update. This technique is essential in
bridging the gap between fast processor and slow memory, using
the fast on-chip memories (registers, caches) to service most of the
memory access. But because of the complex dependency, some part
of the factorization is still matrix-vector and vector-vector based,
which have much lower data locality. Modern algorithms and im-
plementations usually divides each iteration of the factorization
into two steps: panel factorization (slow, but small) and trailing
matrix update (fast and big matrix multiplication), where most the
floating point arithmetic are spent in the trailing matrix update.
Based on this structure, a straight-forward strategy is to leave panel

Conference’17, July 2017, Washington, DC, USA Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu

factorization intact, while replacing the trailing matrix update with
TensorCore GEMM. However, this simple strategy is not enough to
yield significant speedup for QR for the following reasons:

The matrix multiplication is not completely on the criti-
cal path. The MAGMA [14] QR uses hybrid CPU/GPU architecture
where panel factorization is on CPU, and trailing matrix update
(GEMM) is on GPU. Due to algorithmic pipeline, the GEMM execu-
tion is completely or partially overlapped by the panel, thus speed-
ing up GEMM has only limited effect on the overall QR speed. See
table 2 for an illustration. It seems to suggest that just by replacing
the trailing matrix update with TC-GEMM leads to underwhelming
speedups.

Performance in TFLOPS

block size 32 64 128 256 512 768

MAGMA QR 4.58 6.09 4.51 3.36 1.73 0.86
MAGMA QR with TC 4.63 7.02 4.87 3.52 1.64 0.86

Table 2: PerformanceMAGMA2.5.2 SGEQRF() subroutinewith trail-
ing matrix using SGEMM vs. TC-GEMM on AMD Ryzen Threadrip-
per 2970WX24-Core Processor clocked at 2.4GHZ,with TitanVTen-
sorCore, linked with MKL 2019.0.5. Matrix size 32768*16384

The tiled algorithm is not exposing enough data locality
for significant acceleration The NVIDIA cuSolver SGEQRF sub-
routine is a pure GPU implementation of tiled Householder QR,
which has GEMM on its critical path. However the tiled QR al-
gorithm does not provide enough data locality for the GPU and
TensorCore. According to our benchmark in table 3, TC-GEMM
needs the smallest dimension to be at least 2048 to achieve max-
imum performance, while SGEMM needs around 1024. However,
with such large block size, a large proportion of computation is
spent in panel factorization which has low arithmetic intensity. To
summarize, smaller block size B results in more FLOPs in matrix
multiplication which runs slower, and bigger B results in less FLOPs
in matrix multiplication but they run faster. Typically empirical
tuning of B is required to achieve good balance. The tiled House-
holder QR factorization spends 2 parts of computation in the panel
(SGEQRF in table 3), and n/B parts in the trailing matrix update (
TC-GEMM/GEMM in table 3); see [4]. Thus we can estimate the
performance of a traditional blocked Householder QR factorization
with cuSOLVER SGEQRF() as panel and TC-GEMM/SGEMM as
trailing matrix update:

SHouseQR(B) =
n/B + 2

2
SSGEQRF(B)

+
n/B

SGEMM(B)

(5)

which is plotted in figure 2 for a 32768x16384 matrix. We can
draw two conclusions: 1) In tiled Householder algorithms, enabling
TensorCore for the trailing matrix update (TC-GEMM vs. GEMM)
does increase the overall performance but only by around 30%;
2) Even with TC-GEMM enabled, the overall performance of the
accelerated blocked Householder QR is no better than cuSolver
SGEQRF().

3.1.2 Do more in less time: Recursive Gram-Schmidt QR Factoriza-
tion There is another variant of QR algorithm that can also turn

Figure 2: Estimated performance of blocked Householder QR with
different block size B: trailing matrix update using TensorCore vs.
without TensorCore, based on table 3 and formula (5)

k TC-GEMM SGEMM TC-GEMM SGEMM SGEQRF

128 8.45 1.83 4.44 2.28 0.10
256 30.17 4.19 11.39 5.91 0.14
512 56.48 8.23 58.05 10.19 0.36
1024 72.39 12.43 77.58 12.80 0.79
2048 93.53 13.54 87.29 13.56 1.55
4096 97.82 12.31 92.72 12.81 2.71
8192 92.75 12.94 92.20 13.04 4.39
16384 82.32 12.96 83.40 13.12 6.67

Table 3: TC-GEMM and SGEMM Performance in TFLOPS as k
changes from 128 to 16384 with fixed m = 32768. In columns 2-3,
A ∈ Rk×m , B ∈ Rm×k . In columns 4-5, A ∈ Rm×k , B ∈ Rk×k . In
column 6, A ∈ Rm×k

most of its operations into matrix-matrix multiplication—recursive
QR. The idea of recursive QR has been explored by [17] to replace
the panel factorization in QR. It’s only used in panel because it in-
creases the number of operations needed to 2x that of Householder
QR. The big increase in operation counts is probably the reason
that recursive QR is not used often in practice. On the other hand,
Recursive QR has the advantage of increased data locality, thus the
limited use of QR in panel factorization is able to balance out its
limited increased operation count, and get modest overall speedup.

In order to take better advantage of the TensorCore we will em-
ploy recursive QR as the overall QR algorithm. We mitigate the in-
crease of operations, by resorting to a different basic QR algorithm—
(modified) Gram-Schmidt (MGS)—rather than conventional House-
holder QR. It turns out that with MGS Recursive QR, the operation
counts, which can be solved by recurrence (6), only increases mod-
erately compared to Householder QR (2mn2 vs 2mn2 − 2

3n
3, at most

50% increase form ≥ n.) instead of 2x increase. But because we can
dramatically accelerate the matrix-matrix multiplication, it has the

High Accuracy Matrix Computations on Neural Engines:
a Study of QR Factorization and its Applications Conference’17, July 2017, Washington, DC, USA

potential to result in faster overall execution time.{
T (n) = 2T (n2) +mn2, n > 128
T (n) = 2mn2, n = 128 (6)

The basic idea of recursive QR is a quite simple one. Given a
matrix A, we divide evenly its columns into two halves, denoted by
A = [A1 |A2]. We first QR factorize the first half A1 = Q1R11, and
then compute north-east quarter of R12 = QT

1 A2. Next we update
the second half A2 = A2 −Q1R12. Finally QR factorize the updated
second half A2 = Q2R22. Note that the QR of the two halves can be
recursed using this algorithm itself. The result of the original QR
factors can be assembled like this:

[A1 |A2] = [Q1 |Q2]

[
R11 R12

R22

]
(7)

Algorithm 1 Recursive Gram-Schmidt QR Factorization, with re-
cursion cutoff size 128
1 function [Q,R] = RGSQRF(A)
2 [m,n] = size(A);
3 if n==128
4 [Q,R] = panelQR(A);
5 return
6 end
7 [Q1,R11] = RGSQRF(A(:,1:n/2));
8 R12 = Q1' * A(:,n/2+1:n);
9 [Q2,R22] = RGSQRF(A(:,n/2+1:n) - Q1 * R12);
10 Q = [Q1 Q2];
11 R = [R11 R12; zeros(n/2) R22];
12 end

The basic structure is the Algorithm 1, and the implementation
uses cuSOLVER SGEQRF() as the panelQR (line 4) when the input
matrix A becomes small (e.g. n = 128). For matrix sizem × n, this
algorithm roughly takes 2mn2 flops.

Let’s do a similar estimate of the performance of this algorithm
based on the benchmark in table 3 for a 32768x16384 matrix and see
if the RGSQRF algorithm can expose more data locality to perform
better than tiled QR. In each function call RGSQRF(), roughly half
of the flops is in matrix-matrix multiplication and the other half of
the flops spent in the two recursion function calls. Thus we have
the folllowing recursion for the performance (TFLOPS) of am × n
matrix:

SRGSQRF(m,n) =

{
SSGEQRF(m,n), n = B

2
1

SRGSQRF(m,n/2)+
1

STC-GEMM(m,n/2)
, n > B (8)

We calculate SRGSQRF(32768, 16384) using a range of cutoff B and
show the result in figure 3. Compare this figure with figure 2 it’s
clear that Recursive QR exposes more data locality than tiled QR,
and allows better speedups from TensorCore. Factoring the extra
20% computations, the RGSQRF still gains significant speedups
from TC-GEMM, and surpasses the performance of SGEQRF() by
aboout 37%. Furthermore, Recursive QR can achieve optimal perfor-
mance even at small panel size B = 128, which would be important
for reducing the footprint and global memory traffic in the next
subsection.

Figure 3: Estimated performance of Recursive Gram-Schmidt QR
with different block size B: matrix-multiplication using TensorCore
vs. without TensorCore, based on table 3 and formula (8)
3.1.3 Do more in less time: Communication Avoiding Gram-Schmidt
Panel The recursive Gram-Schmidt QR seems to be able to benefit
from TensorCore substantially, but the unaccelerated panel factor-
ization (cuSOLVER SGEQRF()) limits the overall speedup severely.
In this subsection we once again trade computations for more data
locality (less data movements/communication) in the panel, by
employing the communication avoiding Gram-Schmidt QR.

The challenge in fast panelQR is that of data locality and paral-
lelism. The conventional Householder panel has sequentially de-
pendent iterations, and the working-set is the whole panel which
cannot fit in fast memory on GPU (register files+ shared mem-
ory). Fortunately for QR, there’s a communication avoiding QR
(CAQR) [1] variant that simultaneously improve parallelism and
data locality, at the cost of more computations. Our panelQR is
based on CAQR, with the Modified Gram Schmidt QR replacing
Householder QR used in [1]. The idea of CAQR can be illustrated
in equation (9).

A1
A2
A3
A4

①
=

Q11R1
Q12R2
Q13R3
Q14R4

②
=

Q11

Q12
Q13

Q14

R1
R2
R3
R4

③
=

Q11

Q12
Q13

Q14

Q21
Q22
Q23
Q24

 R
④
=

Q11Q21
Q12Q22
Q13Q23
Q14Q24

 R
⑤
= QR

(9)

In (9), there are 5 steps indicated by the number over the equality
sign. In the ① step, we divide a tall matrix A evenly into 4 smaller
matrices (still tall, more rows than columns), and QR factorize them
independently. In step ② we stack the R factors vertically. Note that
the number of rows of the R factors are less than the number of
rows of original A. In step ③, we factorize the vertically stacked Rs

Conference’17, July 2017, Washington, DC, USA Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu

(potentially carry this process recursively). In ④, we do 4 matrix-
matrix multiplications for the 4 corresponding Q factors. In ⑤ we
reinterpret the result as the QR factors of original A. The reason Q
is orthogonal, is that in step ④ the 4 matrix-matrix multiplication is
equivalent to the product of two orthogonal matrices (second line),
and therefore is orthogonal.

Practically, we fix our panel to be of 32 columns withm rows,
and decompose the matrix A into 256x32 submatrices (step ①). On
V100 GPU, the 256x32 submatrix can fit into shared memory so
that we only need to read and write global memory once. These
256x32 blocks are independently factorized using the modified
Gram-Schmidt algorithm into QR factors; see algorithm 2. To map
this algorithm to GPU effectively, we let each threadblock QR fac-
torize one 256x32 block. We launch 256 threads, with each threads
reading,processing, and writing a single row of the 256x32 block.
The most time consuming part is line 7 where reductions are needed
(vector inner products across threads). We use CUB template li-
brary6 from NVIDIA Research to have a threadblock level fast
reduction. We manually unroll the loop 4 ways to expose more
instruction level parallelism, and to reduce the number of reduc-
tions by a factor of 4. In step ④ we use cuBLAS batched SGEMM()
subroutine to do the matrix multiplications in parallel. We recurse
in step ③, until the number of rows is below 256 so that a single
threadblock will suffice.

In summary, our CAQR implementation has two salient features:
1) the Gram-Schmidt process is run completely within shared mem-
ory; 2) all the inter-threadblock communication/synchronization
happens in the batched SGEMM() which is extremely fast. Hence
our CAQR panel reads global memory minimally (log8(m/256)
passes to the panel) , and have minimal cross threadblock syn-
chronization and communication.

Algorithm 2 256x32 Modified Gram-Schmidt QR, as implemented
in the CUDA kernel
1 function [Q,R] = mgs(A)
2 [m,n] = size(A);
3 Q = A; R = zeros(n);
4 for k=1:n
5 R(k,k) = norm(Q(:,k));
6 Q(:,k) = Q(:,k)/R(k,k);
7 R(k,k+1:n) = Q(:,k)' * Q(:,k+1:n);
8 Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n)
9 end
10 end

For a 32768x128 panel, our hand coded CAQR panel achieves
0.33TFLOPS, which is 3.3x faster than cuSOLVER SGEQRF(). As
a result, the RGSQRF() algorithm equipped with the new CAQR
panel is estimated to achieve 27 TFLOPS on 32768x16384 matrix
using the estimation formula (8). We will have more comprehensive
empirical study in section 4; in fact as data in figure 7 shows our
actual implementation achieves 26.2TFLOPs, which is very close to
what we have estimated!

6https://nvlabs.github.io/cub/

3.2 Linear Least Square ProblemWith QR
Factorization

One important use of QR factorization is to solve linear least square
problems.

3.2.1 Numerical Issues A natural concern for using the half preci-
sion TensorCore matrix-matrix multiplication is the potential loss
of accuracy and stability. In the case of QR, two kinds of accuracy
are of importance: the backward error and the orthogonality of the
Q factor. The backward error is | |A−Q̂ R̂ | |

| |A | |
and the orthogonality of

Q̂ is | |I − Q̂T Q̂ | |.
Ideally these two numerical errors should be zero, but because

of roundoff errors (exacerbated by using low precision TensorCore)
and potential loss of orthogonality of Gram-Schmidt QR, the QR
factorization might not be accurate enough for solving least square
problem.

3.2.2 Direct Solve with QR The accuracy of direct solution of LLS
problem using QR factorization using (4) depend on the accuracy of
the QR factorization. To measure the accuracy of a solution to the
linear least square problem minx | |Ax − b | |, we use the following
accuracy metric:

AT (Ax̂ − b)

for a computed solution x̂ . Ideally this metric should be 0, but will
not be exactly zero due to roundoff errors in the QR factorization.
Therefore smaller is better for this accuracy test for LLS.

3.2.3 Iterative Refinement It can be seen that directly solve the
LLS problem with our low precision QR factorization may not lead
to sufficient accuracy. To achieve higher accuracy we refine the
solution. There are two approaches for this task. One is actually
called iterative refinement in the literature [5, 6, 12, 25]. Another
one, which appears to be new for this purpose is what we are going
to introduce. It’s a Krylov subspace iterative solver for LLS, cou-
pled with our low-precision QR factorization as preconditioner
to achieve high accuracy and fast convergence. This idea blurs the
distinction between direct solver and iterative solver; it inherits the
stability and robustness of direct solver, while retains the flexibility
and the iterative nature of Krylov iterative solver. We use the CGLS
iterative solver, which is mathematically equivalent to Conjugate
Gradient on the normal equation, but numerically more stable. We
list the algorithm with the QR factorization in Algorithm 3.

This algorithm first calls upon the fast RGSQRF to do QR factor-
ization, and then runs CGLS algorithm, with the R factor as right
preconditioner for A. For a sufficiently accurate QR factor R, AR−1
should be fairly well-conditioned, which means that κ(AR−1) is
small (close to 1, ideally). The convergence rate is linear; specif-
ically the error is reduced by at least a constant factor in every
iteration [39]:

ek = e0

(
κ(AR−1) − 1
κ(AR−1) + 1

)k
With perfect QR factorization κ(AR−1) = κ(Q) = 1, and CGLS
converges in 1 iteration. With imperfect QR, we need slightly more
iterations to converge; see experiment section 4.2 for some empirical
examples.

https://nvlabs.github.io/cub/

High Accuracy Matrix Computations on Neural Engines:
a Study of QR Factorization and its Applications Conference’17, July 2017, Washington, DC, USA

Algorithm 3 LLS High Accuracy Solver: CGLS with RGSQRF as
Preconditionera

1 function [x] = cgls_qr(A,b)
2 [Q,R] = RGSQRF(A); % TensorCore QR
3 [m,n] = size(A);
4 x = zeros(n,1);
5 r = b - A*x;
6 s = A'*r;
7 p = s;
8 norms0 = norm(s);
9 gamma = norms0^2;
10 for k=1,2,...
11 q = A*(R\p);
12 delta = norm(q)^2;
13 alpha = gamma/delta;
14 x = x + alpha*p;
15 r = r - alpha*q;
16 s = R\(A'*r);
17 norms = norm(s);
18 gamma1 = gamma;
19 gamma = norms^2;
20 beta = gamma / gamma1;
21 p = s + beta*p;
22 end
23 end
a The convergence test is omitted. This presentation is adapted from Per

Christian Hansen and Michael Saunders at
https://web.stanford.edu/group/SOL/software/cgls/matlab/cgls.m

3.3 Orthogonalization

Another important application of QR factorization is called orthogonalization—
finding an orthogonal basis of the columns of matrix A (which is
given byQ in the QR factorization). The RGSQRF algorithm inherits
one of the deficiencies of Gram-Schmidt orthogonalization proce-
dure in the loss of orthogonality of the Q factor for ill-conditioned
matrices. If we need accurate orthogonalization result for some
application then we need to refine the orthogonality of theQ factor.
To do that we can re-orthogonalize the Q factor again using the
RGSQRF subroutine: Q = Q2 ∗ R2. This procedure is akin to the
block re-orthogonalization in Gram-Schmidt QR [38]. The general
result can be summarized by “twice is enough”: orthogonalizing
twice should bring the orthogonality to fully working precision. For
some analysis behind this technique we refer to [18]; here we show
some empirical study which demonstrate the practical efficacy of
re-orthogonalization. From figure 4 we see that the backward error
(| |A −QR | |/| |A| |) is not affected by cond(A) for both RGSQRF and
SGEQRF, and it’s up to the full working precision, half and single re-
spectively. From figure 5 we see that SGEQRF is fully orthogonal up
toworking precision, whereas RGSQRF’s orthogonality deteriorates
somewhat linearly with the increase of cond(A). However, with
re-orthogonalization, RGSQRF-ReOrtho can be brought back to or-
thogonality up to working precision.With re-orthogonalization,
RGSQRF is 3.7x to 7.7x faster than SGEQRF+SORMQR from
figure 6.

Figure 4: QR factorization accuracy; backward error (smaller is bet-
ter) RGSQRF vs. SGEQRF. matrix size 32768*16384, SVD arithmetic
distribution

Figure 5: QR factorization orthogonality accuracy: SGEQRF vs.
RGSQRF vs. RGSQRF-Reortho, matrix size 32768*16384, SVD arith-
metic distribution

Figure 6: QR factorization performance: RGSQRF-Reortho (left bar)
vs. cuSolver SGEQRF plus generating Q (SORMQR) (right bar) for
different matrix sizes.

3.4 Optimal Low Rank Approximation
Yet another application of QR factorization is computing optimal
low rank approximation of a tall-skinny (data) matrix using the effi-
cient QR-SVD algorithm: A = QR, R = U ΣVT , and we have SVD of
A = QU ΣVT . Optimal low rank approximation has many uses such
as data compression, dimension reduction, principal component
analysis, etc. For tall-skinny matrix the dominant computations

https://web.stanford.edu/group/SOL/software/cgls/matlab/cgls.m

Conference’17, July 2017, Washington, DC, USA Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu

| |A −QUr ΣrV
T
r | |/| |A| |

rank r RGSQRF-SVD SGEQRF-SVD

16 9.77e-01 9.77e-01
64 9.08e-01 9.08e-01
128 8.18e-01 8.18e-01
256 6.49e-01 6.49e-01
512 3.53e-01 3.53e-01

QR-SVD

RGSQRF-SVD SGEQRF-SVD
time(ms) 274.95 1755.19

Table 4: QR-SVD based optimal low rank approximation for a tall-
skinny matrix of size 524288*1024. The matrix is randomly gener-
ated with arithemtic singular value distributions, cond(A) = 106.

is spent in the first step—QR factorization, which can be substan-
tially accelerated using our proposed RGSQRF. With SVD, we can
truncate it to low rank to obtain the optimal rank-r approximation
A ≈ Ar = QUr ΣrV

T
r . Since truncation error is most likely to be

dominant, the roundoff errors in RGSQRF is insignificant, thus no
refinement or re-orthogonalization is needed. See table 4; we get
the same quality optimal low rank approximation as single
precision QR-SVD, while 6.4x faster.

3.5 Resacling the matrix to mitigate
over/underflow

One of the important haphazards in using TensorCore is the limited
range of TensorCore internal half precision floating point format.
For example, if an matrix element is larger than 65504 then when
it get converted to half precision in TensorCore there’s an overflow
which either results in infinity or unbounded error. To avoid such
catastrophe, we can take advantage of one property of QR factoriza-
tion: rescaling the columns of the matrix A does not affect the QR
factorization. Specifically, we can arbitrarily scale the columns of
A (equivalent to multiplying a diagonal matrix P to the right of A:
AP), and The Q factor remains unchanged; the columns of R factor
will get scaled by the same P : AP = QRP so that we can recover
the QR factorization of the original matrix easily. This property
holds not only mathematically but also numerically, as long as the
scaling itself is accurate. This property allows us to rescale a badly-
scaled matrixA to range of half precision floating point: 6× 10−8 to
65504, such that overflow will never happen, and underflow will be
reduced or eliminated. This scaling can be done fully automatically
and very cheaply by examining every columns of A for a scaling
factor. Since orthogonal transformation preserves 2-norm, once the
intial matrix is properly scaled then all intermediate operations will
not overflow. Note that on the contrary LU factorization does not
guarantee this.

3.6 Error Analysis
This section is devoted to the error analysis of the RGSQRF al-
gorithm. Basically, two kinds of error would be considered: the
backward error and the orthogonality of the Q factor. For calculat-
ing the backward error, we can use below equation.

| |A − Q̂R̂ | |2
| |A| |2

In [40] author has found the bounding of backward error

| |A − Q̂R̂ | |2
| |A| |2

≤ cυ

In which c is constant number and υ is unit roundoff. It is obvious
that in this equation the backward error is small and independent
from the condition number. As discussed in previous section,the
orthogonality error can be defined by

| |I − Q̂T Q̂ | |2

Based on our experiment, this error is between Recursive-CGS
and Recursive-MGS. In [18] the authors proved that for CGS the
loss of orthogonality can be bounded in terms of the square of
the condition number κ(A). In contrast, Bjorck [40] proved that
the loss of orthogonality in MGS depends only linearly on κ(A)
. So, we can claim that the error bound of our method would be
between bounds of CGS and MGS, that in worse case is the square
of the condition number κ(A)2 times the unit roundoff. However,
according to our experimental result it is closer to ϵ times κ(A).
Moreover, if we used re-orthogonalization in our method, the error
bound for orthogonality is

| |I − Q̂T Q̂ | |2 ≤ ϵ

which removes its dependence on condition number of A. In this
way, we can make the conclusion that re-orthogonalization will
decrease the amount of the error bound and two times orthogo-
nalization are enough for ensuring the orthogonality of matrix Q
[3, 18].

4 Experiments
In this section we conduct comprehensive empirical study on

the numerical behavior (accuracy), and performance behavior of
our proposed RGSQRF and Linear Least Square Solver. We pay
special attention to how enabling/disabling TensorCore for matrix
multiplication affects the performance.

For all the experiments we use a Redhat 7 Linuxworkstation with
NVIDIA V100 (PCIe version) GPU. The CUDA version is 10.1, which
contains a C++ compiler and libraries cuBLAS and cuSOLVER.
For the Linear Least Square experiments we used random matrix
generation routine from MAGMA 2.5.1 to generate random matrix
with specific condition number and singular value distribution.

4.1 QR Factorization
4.1.1 The effect of the CAQR panel on the performance of RGSQRF
Figure 7 illustrates the performance of our two attempts and the
comparison with cuSolver SGEQRF. As we can see that for a large
scale matrix, the speedup of TensorCore accelerated RGSQRF is
between 3.0x to 14.6x, depending on the shape of the matrix. From
Figure 7, CAQR panel contributes more when the matrix is skinny,
whereas TC-GEMM contributes more when the matrix is squar-
ish. In summary, it’s clear that the CAQR panel is essential in the
RGSQRF performance improvement over SGEQRF by comparing
the left bar and right bar in figure 7.

4.1.2 The effect of TensorCore on performance in panel and trailing
matrix update We did some extra experiments to show the effect of
enabling/disabling TensorCore in both the panel and update, shown
in figure 8. The first uses TensorCore for both panel/update. The

High Accuracy Matrix Computations on Neural Engines:
a Study of QR Factorization and its Applications Conference’17, July 2017, Washington, DC, USA

Figure 7: RGSQRF performance with different panel: CAQR panel
(left bar) vs. SGEQRF panel (right bar). In the label TF means
TFLOPS, dx means d times speedup over baseline cuSOLVER SGE-
QRF

f

Figure 8: Performance of RGSQRF with TensorCore enabled vs.
disabled in panel and trailing matrix update. TensorCore in
panel/update are (on,on) for left bar, (off, on) for middle bar, and
(off, off) for right bar.

second bar uses TensorCore only in update, the best one that’s
reported in Figure 7. The third bar disables TensorCore.

The first thing we notice by comparing left bar with middle bar
is that TensorCore does not help much in the panel. Therefore, we
decide not to use TensorCore in CAQR panel to avoid losing accu-
racy for little gain in speed. On the other hand, comparing middle
bar to right bar indicates that TensorCore in update is critical and
worth using. In fact, without TensorCore, RGSQRFmay speed down
compared to cuSOLVER SGEQRF, especially for squarish matrices.
In summary, TensorCore contributes critically to the speedups we
see in RGSQRF.

4.2 Linear Least Square Problem
Unlike QR, whose accuracy only depends on condition number, to
refine LLS solution the CGLS iterative solver performance depends
on the singular value distribution of A. To cover a comprehen-
sive variety of different singular value distribution and condition
number, we use the following randomly generated matrix. 1) each
element is i.i.d. from uniformly distributed random number within
(0,1) and (-1,1); 2) each element is i.i.d from normally distributed
random number with mean 0 and standard deviation 1; 3) random
matrix with specified condition number and geometric singular
values (σi) distribution: [logσ1, . . . , logσn] are evenly spaced; 4)

random matrix with specified condition number and arithmetic
singular values (σi) distribution: [σ1, . . . ,σn] are evenly spaced; 5)
random matrix with clustered singular values: all but the smallest
singular values are 1.

4.2.1 Performance Based on the performance on QR factorization,
we are also expecting a considerable speed up on solving LLS prob-
lems. In order to get the same accuracy level with direct LLS solver
provided by cuSOLVER, we combine RGSQRF and CGLS together
(Algorithm 3) to refine the solution accuracy. Figure 9 shows the
comparison between time cost of RGSQRF plus CGLS iterative
solver and direct solver (SGEQRF+SORMQR+STRSM), note that
the RGSQRF solution is able to attain double precision accuracy.
Obviously, we spend extra time in CGLS when compared with di-
rect solvers, which results in somehow a lower speedup than QR
factorization. But it is still a tremendous improvement on solving
LLS problems. Similarly, there is the some tendency that taller and
thinner matrices tend to perform better, which is in line with our
observation from the experiments on QR factorization.

Generally speaking, CGLS converges pretty fast with precondi-
tioned AR−1. In the case of uniformly random matrix 32768×16384,
it can reach a pretty good accuracy in 20 iterations.

However, uniform matrix is typically well-conditioned and it
should have a fast converge speed. The convergence rate of an itera-
tive solver like CGLS depends strongly on the spectrum property of
the matrix A. To make the LLS study more general, we generate dif-
ferent types of matrix with different singular value distribution and
condition number. We expect results to be condition-distribution-
related, that is, the larger condition number thematrix has, themore
iterations it will take. In some extreme cases, CGLS cannot con-
verge to the highest accuracy and we will discuss it in more details
next subsection. Figure 9a to Figure 9h illustrates the relationships
in terms of condition number, distribution and number of itera-
tions, and it is consistent to our anticipation. We observe that in
almost all cases RGSQRF with refinement outperforms sin-
gle/double precision direct LLS solver using [S/D]GEQRF by
up to 8.9x/13.5x while achieving the same accuracy, respec-
tively.

4.2.2 Accuracy At first we would like to show the observations on
the accuracy based on x = R−1(QTb). Because RGSQRF involves
with half precision, so we are not expecting to see as accurate result
as cuSOLVER can provide. As the accuracy showed in Fig 10, we can
conclude that in most cases, RGSQRF direct solver perform worse
than SGEQRF solver and the difference is around two orders of
magnitude. It explains why we need iterative methods as safeguard.

Fig 10 also compares DGEQRF direct solver, SGEQRF direct solver
and RGSQRF iterative solver accuracy with several condition num-
bers. For RGEQRF iterative solver, we choose a somehow best tol-
erance that will give us a relatively accurate result and reasonable
converge speed. We can observe that if the matrix condition is not
very bad, RGSQRF and CGLS is able to generate at least the same
level of accuracy with DGEQRF direct solver with small number of
iterations(shown by the digits in Fig.10).

To sum up, in terms of accuracy, we can claim that RGSQRF with
CGLS refinement is able to provide a reliable result when compared
with single/double precision Householder QR LLS direct solver at
much faster speed.

Conference’17, July 2017, Washington, DC, USA Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu

(a)Matrix of Type 1: Random Uniform on (0, 1) (b)Matrix of Type 2: random uniform on (-1, 1)

(c)Matrix of Type 3: random normal with mean=0, standard
deviation=1

(d)Matrix of Type 4: SVD geometric distribution with cond =
103

(e)Matrix of Type 5: SVD arithmetic distribution with cond =
105

(f)Matrix of Type 6: SVD arithmetic distribution with cond =
106

(g)Matrix of Type 7: SVD cluster distribution with cond = 105
and σi = {1, ..., 1, 1

cond }

(h)Matrix of Type 8: SVD cluster distribution with cond = 106
and σi = {1, ..., 1, 1

cond }

Figure 9: Performance in milliseconds and speedups of three linear square problem solvers: RGSQRF iterative solver(left bar), cuSolver SGE-
QRF direct solver(middle bar) and cuSolver DGEQRF direct solver(right bar) for different matrix types and sizes.

High Accuracy Matrix Computations on Neural Engines:
a Study of QR Factorization and its Applications Conference’17, July 2017, Washington, DC, USA

Figure 10: LLS accuracy: matrix size 32768*16384 with SVD clus-
ter2 distribution, condition number varies from 103 to 106. Com-
parison between SCuSOLVE, DCuSOLVE,RGSQRFDirect Solver and
RGSQRF+CGLS. The numbers along with the lines indicate number
of refinement iterations.

According to the experiments on SVD geometric distribution
(Fig 9d), we can find the performance on this type of matrix is not
as impressive as other types. The reason is that CGLS takes 20-30 it-
erations to converge to 10−12 (the same accuracy with DCuSOLVE),
while other matrix types typically take less than 10 iterations to con-
verge. We also test SVD geometric distribution with cond = 104 and
it reveals that for matrix size 32768*16384, it needs 200 iterations—
which is the max number of iteration we can tolerate—to converge
to 10−6 and it’s because of the very difficult distribution of singular
values. This represents a stress case for our refinement procedure.
We are still able to achieve single precision accuracy with around
2x speedup, however we can not achieve double precision accuracy
profitably. If high accuracy is needed double precision QR direct
solve should be used instead, which is beyond the capability of
single precision QR, and certainly beyond the mixed half precision
RGSQRF with refinement.

5 Related Work
NVIDIA introduced TensorCore technology with their Volta

architecture [32] in 2017. Resources about NVIDIA TensorCore
include detailed micro-architecture analysis and benchmarking
[29], an early report on the programmability, performance, and
precision [31]. In [11] important parallel primitives reduction and
scan is accelerated with TensorCore. In [21–23] TensorCore was
used for accelerating linear system solvers in the framework of
hybrid CPU/GPU linear algebra package MAGMA [14]. There are
numerous use cases of half precision or even lower precision in the
application of neural networks.

The QR factorization, along with LU and Cholesky factorization
form the one half of important matrix factorizations in numerical
linear algebra. QR factorization can be used to solve linear system,
linear least square problems, orthogonalization of a set of vectors,
and eigendecompositions; see the encyclopedic book [19] for more
details and pointers. These factorizations for the core of popu-
lar linear algebra packacges such as LAPACK [1] and Eigen [20]

for general CPUs, PLASMA [15] on multi-core systems, ScaLA-
PACK [7] and Elemental [35] for distributed memory systems,
and cuSOLVER7/cuBLAS8 for NVIDIA GPU accelerators as part
of CUDA libraries, and SLATE [30] on distributed heterogeneous
CPU/GPU systems. There are primarily three main algorithms for
QR factorization: classic Gram-Schmidt, modified Gram-Schmidt,
and Householder QR [27]. See a blog post from Cleve Moler9 for a
simple comparison, and the book [37] for details. The high perfor-
mance implementation of Householder QR depends on blocking, i.e.
aggregating several Householder reflections into a single matrix-
matrix multiplication. The scheme was developed in [36] and used
in virtually all high performance numerical linear algebra packages.
Communication-Avoiding QR is discussed in [2, 13].

The use of QR factorization as a stable method to solve linear
least square problem is standard direct method. Iterative methods
for least square problems are also possible, and may be preferred
for very large scale and sparse problems. CGLS appeared in [24]
together with the discovery of Conjugate Gradient method; there’s
another mathematically equivalent but numerically more stable
one called LSQR [34]. In this paper, we take a somewhat unsual
approach in using iterative method for a general dense problem.

The roundoff error analysis of half precision floating point arith-
metic is only emerging. The report [26] provides some statistical
roundoff error analysis that is more suitable for half precision, as
traditional deterministic analysis is too pessimistic to give any use-
ful error bound. The report [8] provides error analysis for the fused
multiply-addition matrix mulitplication on TensorCore. These pa-
pers [9, 10] proposes and analyzes a mixed half,single, and double
precision linear solver.

The closest related work is probably the linear solver based
on TensorCore [21–23]. This work shares some ideas with those
recent works in that both compensate the loss of precision from
TensorCore by combining an iterative solver or iterative refinement.
Both contribute to the broad effort in bringing TensorCore to linear
algebra. The distinction is that this paper considers QR factorization
instead of LU factorization, and proposes an GPU only instead of
hybrid CPU/GPU.

There is another related work of mixed precision (single/double)
QR factorization [28]. To perform most of computation using BLAS-
3 kernels, they do a matrix matrix multiplication at first and factor-
ize ATA to obtain R. However, the orthogonality error of CholQR
depends quadratically on the condition number of the input matrix.
The authors propose a method that some of the intermediate results
are accumulated in the doubled precision and they prove that with
this method, the orthogonality error is only bounded by κ(A). In
contrast, our method doesn’t seem to double the condition number
of the input matrix.

A recent paper also utilizes TensorCore to perform QR factor-
ization and they achieve 3x faster than CuSolver [33]. But they are
limited in that only very tall and skinny matrices (with 16 columns)
can be factorized faster, while our method is not only faster but
also can handle arbitrary shapes.

7https://developer.nvidia.com/cusolver
8https://developer.nvidia.com/cublas
9https://blogs.mathworks.com/cleve/2016/10/03/householder-reflections-and-the-
qr-decomposition/

https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cublas
https://blogs.mathworks.com/cleve/2016/10/03/householder-reflections-and-the-qr-decomposition/
https://blogs.mathworks.com/cleve/2016/10/03/householder-reflections-and-the-qr-decomposition/

Conference’17, July 2017, Washington, DC, USA Shaoshuai Zhang, Elaheh Baharlouei, Panruo Wu

6 Conclusions
Neural engines are characterized by extreme performance and

low precision/range. We explored accelerating QR factorization
using neural engines accurately and reliably. First, we demonstrate
that simply replacing matrix-multiplication with neural engines in
conventional QR does not result inmuch speedup, due to inadequate
data locality and parallelism. We then devised novel recursive QR
algorithm and a new panel that expose much higher degree of
data locality at the cost of increased computation. The tradeoff is
essential in effectively exploiting the TensorCore on V100 GPU
which results in 3.0x-14.6x speedup over cuSOLVER SGEQRF.

On the other hand, the low precision of neural engine may cause
loss of accuracy. To regain accuracy, depending on how QR is used
we may have different safeguarding procedures. For least square
solve, we proposed a novel Krylov subspace method as iterative
refinement. For orthogonalization, we propose re-orthogonalization
to bring orthogonality to full working precision. For truncated QR-
SVD we often don’t need any refinement as numerical error is
dwarfed by the truncation error.

We conclude by saying that neural engines can significantly
accelerate matrix computations, but different algorithms and en-
gineering are needed to exploit them. Potential loss of accuracy
should be considered in the context of specific application. QR is
likely to be foundational in matrix computation on neural engines
for its versatility and numerical robustness.

Acknowledgements
This work has benefited greatly from correspondence with Åke

Björck and Julien Langou.
We would like to thank the University of Houston for providing

the startup funding in supporting this work. We acknowledge the
use of the Sabine Cluster and the advanced support from the Re-
search Computing Data Core at the University of Houston to carry
out the research presented here. We are also grateful for the gener-
ous of hardware donation of NVIDIA Corporation. We gratefully
acknowledge the Texas Advanced Computing Center (TACC) at
The University of Texas at Austin for providing HPC resources that
have contributed to the research results reported within this paper.

References
[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK
Users’ Guide. Society for Industrial and Applied Mathematics. https://doi.org/
10.1137/1.9780898719604

[2] Michael Anderson, Grey Ballard, James Demmel, and Kurt Keutzer. 2011.
Communication-Avoiding QR Decomposition for GPUs. In 2011 IEEE Interna-
tional Parallel & Distributed Processing Symposium. IEEE, Anchorage, AK, USA,
48–58. https://doi.org/10.1109/IPDPS.2011.15

[3] Jesse L. Barlow and Alicja Smoktunowicz. 2011. Reorthogonalized Block Classical
Gram–Schmidt. arXiv:1108.4209 [math] (Aug. 2011). http://arxiv.org/abs/1108.
4209 arXiv: 1108.4209.

[4] Christian Bischof and Charles Van Loan. 1987. The WY Representation for
Products of Householder Matrices. SIAM J. Sci. Statist. Comput. 8, 1 (Jan. 1987),
s2–s13. https://doi.org/10.1137/0908009

[5] Åke Björck. 1967. Iterative refinement of linear least squares solutions I. BIT 7, 4
(Dec. 1967), 257–278. https://doi.org/10.1007/BF01939321

[6] Åke Björck. 1968. Iterative refinement of linear least squares solutions II. BIT 8,
1 (March 1968), 8–30. https://doi.org/10.1007/BF01939974

[7] L. S. Blackford, Jaeyoung Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S.
Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley, and Jack
Dongarra. 1997. ScaLAPACK user’s guide. SIAM.

[8] Pierre Blanchard, Nicholas J Higham, Florent Lopez, Theo Mary, and Srikara
Pranesh. 2019. MIXED PRECISION BLOCK FUSEDMULTIPLY-ADD: ERROR ANAL-
YSIS AND APPLICATION TO GPU TENSOR CORES. Technical Report. The Uni-
versity of Manchester. 16 pages.

[9] Erin Carson and Nicholas J Higham. 2017. Accelerating the Solution of Linear
Systems by Iterative Refinement in Three Precisions. Technical Report. University
of Manchester. http://eprints.maths.manchester.ac.uk/

[10] Erin Carson and Nicholas J Higham. 2017. A NewAnalysis of Iterative Refinement
and its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems.
SIAM Journal on Scientific Computing 39, 6 (2017), A2834–A2856. https://doi.
org/10.1137/17M1122918

[11] Abdul Dakkak, Cheng Li, Isaac Gelado, Jinjun Xiong, and Wen-mei Hwu. 2019.
Accelerating Reduction and Scan Using Tensor Core Units. Proceedings of the
ACM International Conference on Supercomputing - ICS ’19 (2019), 46–57. https:
//doi.org/10.1145/3330345.3331057 arXiv: 1811.09736.

[12] James Demmel. 2007. Extra-precise Iterative Refinement for Overdetermined Least
Squares Problems. Technical Report. Lapack Working Notes.

[13] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. 2012.
Communication-optimal Parallel and Sequential QR and LU Factorizations.
SIAM Journal on Scientific Computing 34, 1 (Jan. 2012), A206–A239. https:
//doi.org/10.1137/080731992

[14] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stan-
imire Tomov, and Ichitaro Yamazaki. 2014. Accelerating numerical dense linear
algebra calculations with GPUs. Numerical Computations with GPUs (2014), 3–28.
https://doi.org/10.1007/978-3-319-06548-9_1 ISBN: 9783319065489.

[15] Jack Dongarra, Piotr Luszczek, and David Stevens. 2017. PLASMA 17 Perfor-
mance Report Linear Systems and Least Squares. Technical Report. University of
Tennessee, LAPACK Working Note #292.

[16] Iain S Duff and Serge Gratton. 2006. The Parallel Algorithms Team at CERFACS.
[17] E. Elmroth and F. G. Gustavson. 2000. Applying recursion to serial and parallel

QR factorization leads to better performance. IBM Journal of Research and
Development 44, 4 (July 2000), 605–624. https://doi.org/10.1147/rd.444.0605

[18] Luc Giraud, Julien Langou, Miroslav Rozložník, and Jasper van den Eshof. 2005.
Rounding error analysis of the classical Gram-Schmidt orthogonalization process.
Numer. Math. 101, 1 (July 2005), 87–100. https://doi.org/10.1007/s00211-005-
0615-4

[19] Gene H. Golub and Charles F. Van Loan. 2012. Matrix Computations. JHU Press.
https://books.google.com/books?id=5U-l8U3P-VUC

[20] Gaël Guennebaud, Beno^it Jacob, and others. 2010. Eigen v3. (2010). http:
//eigen.tuxfamily.org

[21] Azzam Haidar, Ahmad Abdelfattah, Mawussi Zounon, Panruo Wu, Srikara
Pranesh, Stanimire Tomov, and Jack J. Dongarra. 2018. The Design of Fast
and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arith-
metic and Iterative Refinement Techniques. In Computational Science - ICCS 2018
- 18th International Conference, Wuxi, China, June 11-13, 2018, Proceedings, Part I.
586–600. https://doi.org/10.1007/978-3-319-93698-7_45

[22] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J Higham. 2018.
Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-
Precision Iterative Refinement Solvers. In SC.

[23] Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack Dongarra. 2017. Investi-
gating Half Precision Arithmetic to Accelerate Dense Linear System Solvers. In
8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems.

[24] Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of conjugate gradi-
ents for solving linear systems. Vol. 49. NBS Washington, DC.

[25] Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718027

[26] Nicholas J. Higham and Theo Mary. 2018. A New Approach to Probabilistic
Rounding Error Analysis. Technical Report. The University of Manchester.

[27] Alston S. Householder. 1958. Unitary Triangularization of a Nonsymmetric
Matrix. J. ACM 5, 4 (Oct. 1958), 339–342. https://doi.org/10.1145/320941.320947

[28] Yamazaki Ichitaro., Tomov Stanimire., and Dongarra Jack. 2015. Mixed-Precision
Cholesky QR Factorization and Its Case Studies on Multicore CPU with Multiple
GPUs. SIAM Journal on Scientific Computing 37, 3 (2015), C307–C330. https:
//doi.org/10.1137/14M0973773 arXiv:https://doi.org/10.1137/14M0973773

[29] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. (2018).
http://arxiv.org/abs/1804.06826 arXiv: 1804.06826.

[30] Jakub Kurzak, Panruo Wu, Mark Gates, Ichitaro Yamazaki, Piotr Luszczek, Gerald
Ragghianti, and Jack Dongarra. 2017. Designing SLATE: Software for Linear
Algebra Targeting Exascale. SLATE Working Notes 3, ICL-UT-17-06. Innovative
Computing Laboratory, University of Tennessee.

[31] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S.
Vetter. 2018. NVIDIA tensor core programmability, performance & precision.
Proceedings - 2018 IEEE 32nd International Parallel and Distributed Processing
Symposium Workshops, IPDPSW 2018 (2018), 522–531. https://doi.org/10.1109/
IPDPSW.2018.00091 arXiv: 1803.04014 ISBN: 9781538655559.

[32] Nvidia. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. Technical Report. 53
pages. Issue: v1.1.

https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1109/IPDPS.2011.15
http://arxiv.org/abs/1108.4209
http://arxiv.org/abs/1108.4209
https://doi.org/10.1137/0908009
https://doi.org/10.1007/BF01939321
https://doi.org/10.1007/BF01939974
http://eprints.maths.manchester.ac.uk/
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1145/3330345.3331057
https://doi.org/10.1145/3330345.3331057
https://doi.org/10.1137/080731992
https://doi.org/10.1137/080731992
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1147/rd.444.0605
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1007/s00211-005-0615-4
https://books.google.com/books?id=5U-l8U3P-VUC
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1145/320941.320947
https://doi.org/10.1137/14M0973773
https://doi.org/10.1137/14M0973773
http://arxiv.org/abs/https://doi.org/10.1137/14M0973773
http://arxiv.org/abs/1804.06826
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091

High Accuracy Matrix Computations on Neural Engines:
a Study of QR Factorization and its Applications Conference’17, July 2017, Washington, DC, USA

[33] Hiroyuki Ootomo. and Rio Yokota. 2019. TSQR on Tensor Cores. SC ’19, 29 The
International Conference for High Performance Computing, Networking, Storage,
and Analysis (2019). https://doi.org/10.1145/1122445.1122456

[34] Christopher C. Paige and Michael A. Saunders. 1982. LSQR: An Algorithm for
Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 8, 1
(March 1982), 43–71. https://doi.org/10.1145/355984.355989

[35] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and
Nichols a. Romero. 2013. Elemental: A New Framework for Distributed Memory
Dense Matrix Computations. ACM Trans. Math. Software 39, 2 (2013), 1–24. https:
//doi.org/10.1145/2427023.2427030 arXiv: 1502.07526v1 ISBN: 9781577357384.

[36] R. Schreiber and C. Van Loan. 1989. A Storage-Efficient WY Representation
for Products of Householder Transformations. SIAM J. Sci. Statist. Comput. 10, 1

(1989), 53–57. https://doi.org/10.1137/0910005
[37] Gilbert W Stewart. 1998. Matrix Algorithms: Volume 1: Basic Decompositions.

Vol. 1. Siam.
[38] G. W. Stewart. 2008. Block Gram–Schmidt Orthogonalization. SIAM Journal on

Scientific Computing 31, 1 (Jan. 2008), 761–775. https://doi.org/10.1137/070682563
[39] L. N. Trefethen and D. III Bau. 1997. Numerical Linear Algebra. Vol. 12. SIAM.

https://doi.org/10.1137/1.9780898719574 Publication Title: Numerical Linear
Algebra with Applications ISSN: 1070-5325.

[40] Å.Björck. 1994. Numerics ofGram-Schmidt orthogonalization. Linear Algebra
Appl. 197-198, 1 (1994), 297–316. https://doi.org/10.1016/0024-3795(94)90493-6

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/355984.355989
https://doi.org/10.1145/2427023.2427030
https://doi.org/10.1145/2427023.2427030
https://doi.org/10.1137/0910005
https://doi.org/10.1137/070682563
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1016/0024-3795(94)90493-6

	Abstract
	1 Introduction
	2 Backgrounds
	2.1 Half Precision Arithmetic and TensorCore GPU
	2.2 Linear Least Square (LLS) Problems and Direct Solvers
	2.3 Iterative Solvers for LLS, and preconditioning
	2.4 Definitions of Terminology

	3 Methods
	3.1 Accelerating QR factorization on TensorCore
	3.2 Linear Least Square Problem With QR Factorization
	3.3 Orthogonalization
	3.4 Optimal Low Rank Approximation
	3.5 Resacling the matrix to mitigate over/underflow
	3.6 Error Analysis

	4 Experiments
	4.1 QR Factorization
	4.2 Linear Least Square Problem

	5 Related Work
	6 Conclusions
	References

