\qquad

This exam is closed book. You can have one page of notes. UH expels cheaters.

1. A virtual memory system has 64 -bit addresses and a page size of 16 kilobytes. How many bits of the address are used by
a. The byte offset? (5 points)

Answer: $\quad \log _{2}(16 \mathrm{~K})=14$ bits
b. The page number? (5 points)

Answer: 64-14=60 bits
2. Which particularity of the $x 86$ Intel/AMD architecture complicates the task of implementers of virtual machine support software? (5 points)

The whole VM approach assumes that a kernel executing in user mode will behave exactly like a kernel executing in privileged mode except that privileged instruction will be trapped.

This is not true for the Intel $x 86$ architecture: Pop flags (POPF) instruction
3. A computer system achieves 99.5 percent availability with a repair time of 12 hours. What is its mean time to failure? (5 points) (Hint: express your answer in days.)

The MTTF of the system is
Starting with $A=$ MTTF/(MTTF + MTTR), we have
MTTF $=A /(1-A) \times M T T R=0.995 /(0.005) \times 0.5=0.995 \times 100=99.5$
4. Your employer is thinking of purchasing either a shared memory multiprocessor or a computer cluster for performing huge simulations. What are the respective disadvantages of the two solutions? (2×5 points)

Shared memory multiprocessors are easier to program.
Computer clusters are cheaper and very easy to assemble but all data exchanges among computers must be done through message passing.
5. A small direct-mapping cache has 2,048 entries with each entry containing four words. The computer memory is byte-addressable and all addresses are 32 -bit addresses. (4×5 points)
a. What is the cache size (tags excluded) in bytes? Answer: $2,048 \times 4 \times 4=32 \mathrm{~K}$ bytes
b. What is the $\boldsymbol{t a g}$ size?

Answer: $32-4-11=17$ bits
(You can use this space to detail your computation.)
Remove $\log _{2}(16)=4$ bits since of each entry is 16 -byte long and $\log _{2}(2,048)=11$ bits that are given by address in cache.
c. How could we increase the hit ratio of the cache without increasing its size?
(You do not need to describe how you would implement your solution.)
Replacing it with a set-associative cache that could store 1,204 pairs of four-word entries.
d. What would be the main disadvantage of your solution?

Set-associative caches are slower than direct mapping caches.
\qquad
6. Caches and virtual memory: (4×5 points)
a. What would be a reasonable page size for a virtual memory system? Answer
b. Justify your answer in a few words.

Because page faults are very costly, the system should try to bring in as many useful data as possible.
c. Would that be a reasonable block size for a cache?

YES \qquad NO \quad X
d. Justify your answer in a few words.

Cache block sizes are much smaller: 64 bytes is a good choice because larger block sizes create too many collisions.
7. Consider a RAID-5 system with four data blocks $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ and one parity block p per stripe.
a. How much of the total disk space is used by parity blocks? (5 points)

20 percent
b. How can we reconstitute the contents of block b_{3} after the disk holding that block has failed? (5 points)
$\underline{b}_{3}=\underline{b}_{0} \times O R b_{1} \times O R b_{2} \times O R p$
8. Assuming that a main memory access takes

1 bus clock cycle to send the address,
16 bus clock cycle to initiate a read,
1 bus clock cycle to send a word of data,
how many clock cycles would it take to transfer 16 bytes to the cache if
a. the data are stored in a single bank of memory? (5 points)

Answer:
69 cycles
(You can use this space to detail your computation.)
$1+4 \times(16+1)=69$ (because all operations are done sequentially)
b. the data are stored in a four-way interleaved memory? (5 points) Answer: \qquad (You can use this space to detail your computation.)

$1+16+4 \times 1=21$

(because the reads, but not the data transfers, are performed in parallel)
9. How can we prevent user programs from modifying their own page tables? (5 points)

We must store page tables in the protected area of the operating system.
10. How can we protect the integrity and the security of user data on disk? (5 points)

We need a dual-mode CPU that will distinguish between non-privileged instructions that all processes can execute and privileged instructions that only the kernel can execute. Making all I/O instructions privileged will prevent people form directly accessing the data on disk.
\qquad

