This exam is **closed book**. You can have one page of notes. UH expels cheaters.

1. **Advantages and disadvantages:** (4×5 points)
 a) What is the major disadvantage of *not using lightweight processes in a server*?
 The server will either have to remain single-threaded or will have to fork conventional processes, which would be much costlier than creating a lightweight process.
 b) What is the major disadvantage of *busy waits*?
 They waste CPU cycles (and context-switches).
 c) What is the major advantage of *streams* over *datagrams*?
 They guarantee that all messages will arrive in sequence, undamaged, without lost or duplicate messages.
 d) What is the major advantage of *idempotent procedures*?
 A remote procedure call to an idempotent procedure can be restarted as many times as needed until it executes properly.

2. What is the default action taken by a process receiving a *signal*? (5 points) How can the process specify a different outcome? (5 points)
 By default, a process that receives a signal terminates. To specify a different outcome, the process can do a signal() system call to catch the signal.

3. Consider the following system V.4 scheduler.

<table>
<thead>
<tr>
<th>#ts_quantum</th>
<th>ts_tgexp</th>
<th>ts_slpret</th>
<th>ts_maxwait</th>
<th>ts_lwait</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>X</td>
<td>1</td>
<td>16000</td>
<td>1</td>
<td>#</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>2</td>
<td>8000</td>
<td>1</td>
<td>#</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>3</td>
<td>4000</td>
<td>Y</td>
<td>#</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>Z</td>
<td>2000</td>
<td>3</td>
<td>#</td>
</tr>
</tbody>
</table>

 a) The sole correct value for the parameter **X** is: 0
 b) The sole correct value for the parameter **Y** is: 3
 c) The sole correct value for the parameter **Z** is: 3
4. For each of the statements below, indicate in one sentence whether the statement is true or false (2 points), and why (3 points).

a) Servers should always use **blocking** receives.

 TRUE, there are more efficient that non-blocking receives.

b) Most modern operating systems use **preemptive scheduling**.

 TRUE, preemptive scheduling guarantees that high-priority processes will never have to wait for a lower-priority process that monopolizes the CPU.

c) We can avoid process starvation by **increasing** the priorities of processes doing terminal I/O.

 FALSE, we should increase the priorities of the processes that have been in the ready queue for too long.

d) **Atomic transactions** guarantee **at most once semantics**.

 FALSE, atomic transactions guarantee **all-or-nothing semantics**.

e) A message sent to a **private mailbox** can only be received by one of the processes having read access to that mailbox.

 FALSE, a message sent to a private mailbox can only be received by the process **owning** the mailbox or its children.

f) In a RPC, one of the tasks of the **user stub** is to exchange messages with the user program.

 FALSE, the user stub exchanges messages with the **server stub**.

5. How could we achieve fast context switches between threads sharing the same address space without requiring programmers to use non-blocking system calls? (10 points)

 We could do what Amoeba does. Amoeba threads are managed at user-level but the kernel is aware of them: when a thread executes a blocking system call, the kernel returns control to the thread scheduler of the task; this thread scheduler can either schedule another thread or return control to the OS.

6. Complete the following program segment so that the output of **stdout** will be redirected to the pipe **outpipe**: (3×5 points)

   ```c
   int outpipe[2];
   __pipe(outpipe)______________________________;
   close(_1__________________________________)
   dup(__outpipe[1]_________________________);
   close(outpipe[0]); close(outpipe[1]);
   ```