1. A cheap laptop has 2 GB of main memory, 32-bit addresses and a page size of 4 KB. (3×5 points)

 a) How many page frames are there in main memory? ___________________ frames

 b) How many bits of the virtual address are taken by the byte offset? ____________ bits

 c) How many bits of the virtual address are taken by the page number? ____________ bits

2. The old UNIX Fast File System required all disk writes involving metadata updates to be performed in a synchronous fashion. (2×5 points)

 a) Why? __

 __

 __

 __

 b) What was the main drawback of this approach? ________________________________

 __

 __

 __

3. Consider a 64-bit UNIX file system where all block addresses are 8-byte long and file sizes can exceed 4GB. Assuming a 4KB page size, how many file blocks could it access? (3×5 points)

 a) With one level of indirection? ___ blocks

 b) With two levels of indirection? __ blocks

 c) With three levels of indirection? __ blocks

 You can detail here your computations for possible partial credit.
4. **Questions with short answers:** (6×5 points)

 a) Which page replacement policy supports *real-time processes*? ____________________________

 __

 __

 b) What is the *main advantage* of *journaling file systems* with *asynchronous metadata updates*? _______

 __

 __

 c) What is the purpose of the `lseek()` system call? ________________________________

 __

 __

 d) What is the purpose of the *valid bit* in a virtual memory system? __________________________________

 __

 __

 e) Where do UNIX file systems store *file names*? __

 __

 __

 f) What is the major disadvantage of *very large block sizes* in file systems? ________________

 __

 __
5. Consider the following multilevel page table organization. It was said in class that that organization was ideally suited to virtual memory systems with 32-bit addresses and 4 KB pages. Why? (5 points)

![Page Table Diagram]

6. Give examples of an access control list and a ticket in the UNIX/LINUX file systems? (2×5 points)
 a) Access control list: __
 b) Ticket: ___

7. Consider the classical BSD clock replacement policy with a single hand. (3×5 points)
 a) What happens when the hand of the clock reaches a valid page? ________________
 __
 __
 __
 b) What happens when the hand of the clock reaches a page that was marked invalid? ______________
 __
 __
 __
 c) What happens when a process tries to access a page that was marked invalid? ______________
 __
 __