THIRD QUIZ ANSWERS

COSC 6360
October 28, 2019
Version A
First question

- How does Raft ensure that all newly elected leader are *up to date*?
First question

- How does Raft ensure that all newly elected leader are *up to date*?

 - Servers never vote for a candidate whose log is not as up to date as their own log.
Second question

- How does SSH use **HMAC SHA-1**?
Second question

How does SSH use **HMAC SHA-1**?

- **SSH uses HMAC SHA-1 to verify that the data exchanged between the client and the server were not tampered by a third party.**
Third question

- If Alice knows the **public key** of Bob, how can she send a secret message to Bob?
Third question

- If Alice knows the **public key** of Bob, how can she send a secret message to Bob?

 - **She will encrypt her message with the public key of Bob.**
 - **Deciphering the message requires the knowledge of the secret key of Bob.**
Fourth question

Why is the BitTorrent *chunk selection policy* poorly suited to streaming applications?
Fourth question

- Why is the BitTorrent chunk selection policy poorly suited to streaming applications

 - The BitTorrent chunk selection policy makes downloaders select the rarest chunks without regard to any timing constraints.
Fifth question

- Consider a **RAID level 5** disk array with ten disks.
- How many disk reads and disk writes will be required to update the value of a single block assuming we *already know* the previous value of the block being updated?

- **Answer:** _____ reads and ____ writes.
Fifth question

Consider a RAID level 5 disk array with ten disks.

How many disk reads and disk writes will be required to update the value of a single block assuming we already know the previous value of the block being updated?

Answer: one reads and two writes.
Explanation

- We have the old value of the data block d_{old}
- We read the old value of the parity block p_{old}
- We compute the new value of the parity block
 - $p_{new} = d_{old} \oplus d_{new} \oplus p_{old}$
- We write to disk
 - The new value of the data block d_{new}
 - p_{new}
Sixth question

- Consider a **log-structured file system** (LFS) that is being accessed *immediately after* the system has been rebooted.

- Assuming that a final checkpoint was taken when the system was powered down, which steps must be taken to access a specific i-node.
Sixth question

- Fetch *specific block of i-node map block addresses* located in checkpoint area
- Fetch *specific i-map block* whose address is given by *block of i-node map block addresses*
- Fetch i-node block whose address is given by *i-map block*
Explanation

Checkpoint Area

Was brought up to date at shutdown

I-node map blocks spread over the log

I-node blocks also spread over the log
Seventh question

- Why does NFS use *stateless servers*?
Seventh question

- Why does NFS use *stateless servers*?

- *NFS use stateless servers because stateless servers can be restarted after a crash without impacting user behavior.*
Seventh question

- What is their *main drawback*?
Seventh question

- What is their main drawback?

- Stateless servers cannot detect whether
 - A single client accesses a given file
 - Multiple clients access the file
Seventh question

Consider a distributed file system implementing *close-to-open consistency*. Assuming that

- Alice opens the file at 9:30 AM, modifies it and closes it at 10:25 AM,
- Bob opens the file at 10:00 AM, modifies it and closes it at 10:15 AM,
- Carol opens the file at 10:30 AM, modifies it and closes it at 11:00 AM.
Seventh question

- Which of these three users would see his or her changes incorporated in the final version of the file?
Version B
First question

- Which technique does Raft use to reduce the risk of split votes in leader elections?
First question

- Which technique does Raft use to reduce the risk of *split votes* in *leader elections*?

 - *Raft uses randomized election timeouts to increase the chances that a single follower will detect the loss of the leader before the others.*
Second question

- How does SSH use **HMAC SHA-1**?
Second question

- How does SSH use *HMAC SHA-1*?

 - *SSH uses HMAC SHA-1 to verify that the data exchanged between the client and the server were not tampered by a third party.*
Third question

- If Alice knows the **public key** of Bob, how can Bob send her signed messages?
Third question

If Alice knows the **public key** of Bob, how can Bob send her signed messages?

- **He will encrypt his messages with his secret key.**
 - Anyone can decipher these messages.
 - Only Bob can have written them.
Fourth question

Why is the BitTorrent **chunk selection policy** poorly suited to streaming applications?
Fourth question

Why is the BitTorrent chunk selection policy poorly suited to streaming applications

- The BitTorrent chunk selection policy makes downloaders select the rarest chunks without regard to any timing constraints.
Fifth question

- Consider a **RAID level 5** disk array with ten disks.
- How many disk reads and disk writes will be required to update the value of a single block assuming we **do not know** the previous value of the block being updated?

□ **Answer:** _____ reads and ____ writes.
Fifth question

- Consider a RAID level 5 disk array with ten disks.
- How many disk reads and disk writes will be required to update the value of a single block assuming we already know the previous value of the block being updated?

Answer: two reads and two writes.
Explanation

- We read
 - The old value of the data block d_{old}
 - The old value of the parity block p_{old}

- We compute the new value of the parity block
 - $p_{new} = d_{old} \oplus d_{new} \oplus p_{old}$

- We write to disk
 - The new value of the data block d_{new}
 - p_{new}
Sixth question

- Consider a \textit{log-structured file system} (LFS) that is being accessed \textit{immediately after} the system has been rebooted.

- Assuming that a final checkpoint was taken when the system was powered down, which steps must be taken to access a specific i-node.
Sixth question

- Fetch *specific block of i-node map block addresses* located in checkpoint area
- Fetch *specific i-map block* whose address is given by *block of i-node map block addresses*
- Fetch i-node block whose address is given by *i-map block*
Explanation

- I-node map blocks spread over the log
- I-node blocks also spread over the log

Checkpoint Area

Was brought up to date at shutdown
Seventh question

- What is the main advantage of *stateless servers*?
Seventh question

- What is the main advantage of *stateless servers*?

 - *NFS use stateless servers because stateless servers can be restarted after a crash without impacting user behavior*
Seventh question

What is their main drawback?
Seventh question

What is their *main drawback*?

- **Stateless servers cannot detect whether**
 - A single client accesses a given file
 - Multiple clients access the file
Seventh question

- Consider a distributed file system implementing *close-to-open consistency*. Assuming that
 - Alice opens the file at 9:30 AM, modifies it and closes it at 10:15 AM,
 - Bob opens the file at 10:00 AM, modifies it and closes it at 11:15 AM,
 - Carol opens the file at 10:30 AM, modifies it and closes it at 11:00 AM.
Seventh question

- Which of these three users would see his or her changes incorporated in the final version of the file?

Alice
Bob
Carol