
Mach Virtual Memory

Jehan-François Pâris

Computer Science Department
University of Houston

Houston, TX 77204-3475

1. General Objectives

Mach's virtual memory system has two primary objectives:
(a) to be as portable as the UNIX virtual memory system
while supporting more functionalit y (see below), and (b)
to support multiprocessing, distributed systems and large
address spaces.

2. The Virtual Memory User Interface

Its main features are:

1. A consistent virtual memory interface on all
machines supporting Mach: some features, such as
shared pages, can be more or less eff iciently imple-
mented depending on the underlying hardware;

2. Full support for multiprocessing: this includes
thread support, eff icient data sharing mechanisms
and a full y parallel implementation of the virtual
memory;

3. Modular paging: there is no dedicated swap area and
external pagers are allowed to implement file
mapping or any application-specific paging poli cy
(such as recoverable virtual memory for transaction
management).

3. Data Structures and Algorithms

There are four basic data structures:

1. The resident page table: keeps track of Mach pages
residing in main memory (a Mach page may contain
several physical pages but their number must be a
power of 2);

2. The memory object: a unit of backing storage man-
aged by the kernel or a user task1;

3. The address map: a doubly linked li st of map entries
each which describes a mapping from a range of
virtual addresses to a region of a memory object; all
pages mapped by the same map entry have the same
protection and inheritance attributes (page is to be
copied, shared or ignored at fork() time) .

4. The p-map: the memory-mapping data structure used
by the specific hardware (page tables for a VAX ,
inverted page table for the IBM RT, more complex
structures on other machines); it does not have to be
kept full y up-to-date except for the pages in the
resident part of the kernel.

1 In practice, this means either a file or a swap area.

The address map is a li st of chunks of page tables. “Hint
pointers” are kept to shorten searches besides most
address maps are expected to contain few entries.

Mach systematicall y uses lazy evaluation: invalid page
faults are used to postpone the creation of page tables and
lookup of disk addresses until needed. For instance, Mach
implements stacks for UNIX processes by allocating
enough virtual memory to hold the maximum size allowed
for each process but delays the actual mapping until the
page is referenced. Hardware-detected protection
violations are also used to implement copy-on-write.

Mach uses a global FIFO memory poli cy but places
expelled pages on an inactive li st from which they can be
reclaimed. This the same policy as VMS but for the fact
that VMS allocated a separate resident set of frames to
each process.

All virtual memory algorithms rely on locks whenever
exclusive access to a data structure has to be guaranteed.
To prevent deadlocks, all algorithms gain locks using the
same ordering.

The total size of the machine-dependent part of Mach's
virtual memory implementation is about 16 kilobytes.

4. Applications

Mach uses its memory object mapping mechanism to
implement standard UNIX I/O semanticswhile allowing
user programs to access directly the mapped file data.

As in Accent [1], copy-on-write is used to implement
eff icient message passing: messages can be sent and
received without having any data copied until either the
sender or the receiver tries to modify the data. It also
provides a much faster implementation of the UNIX
fork() and eliminates the vfork() kludge.

Shared libraries2 are supported through the mapped file
interface.

References

[1] Robert Fitzgerald and Richard F. Rashid, "The Integration
of Virtual Memory Management and Interprocess
Communication in Accent." ACM Trans. on Computer
Systems, 4, 2 (1986), pp. 147-177.

[2] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D.
Black, W. Bolosky and J. Chew, “Machine-independent
virtual memory management for paged uniprocessor and
multiprocessor architectures,” IEEE Trans. on Computers,
C-37:8 (1988), pp. 896-905.

[3] A. Tevanian Jr., Architecture-Independent Virtual Memory
Management for Parallel and Distributed Environments:
The Mach Approach. Ph.D. Dissertation, Technical Report
CMU-CS-88-106, Computer Science Department, Carnegie
Mellon University (1987).

2 A shared library is a system library that is dynamicall y
shared among all processes currently in main memory.

