COSC 6375: Computer System Performance Evaluation Spring 2009

Instructors:	JF Pâris, Rong Zheng	
Email:	jfparis (at) sbcglobal.net, rzheng (at) cs.uh.edu	
Lectures	MW 2:30pm – 4:00 pm in SEC 2006	
Office Hours:	MW 4:00pm-4:45pm	
Class web site:	Go to www.uh.edu/webct, click on WebCTVista button	

Textbook:

• Hisashi Kobayashi and Brian L. Mark, *System Modeling and Analysis: Foundations of System Performance Evaluation*. Prentice Hall, 2008 (ISBN 013034835X, 9780130348357).

References:

- R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, Wiley- Interscience, New York, NY, 1991
- Dimitri Bertsekas, Robert Gallager, *Data Networks* (2nd Edition), Prentice Hall.
- George S. Fishman, *Discrete Event Simulation: Modeling, Programming and Analysis*, Springer Verlag, 2001.

Prerequisites: Algorithms, data structure, probability, stochastic processes

Synopsis:

Evaluation and prediction of the behavior of computer systems and networks are integrated part of the design of these systems. This course will cover a set of techniques that are central to the modeling and performance evaluation of modern computer systems. These techniques are from the areas of experimental design, statistics (both parametric and non-parametric), random number generation, simulation, queuing theory and queuing networks.

Lectures	Торіс	Reading, Assignments
1 st week	Introduction	TBA
2 nd to 4th weeks	Simulation	TBA
5 th week	Review of probability and stochastic processes	TBA
6 th week	Queuing theory	TBA
7 th week	Queuing networks	TBA
8 th week	Network calculus	TBA
9 th and 10 th weeks	Analysis of outputs	TBA
11 th week	Model fitting	TBA
12 th week	Testing	TBA
13 th week	Applications	TBA

Tentative schedule:

Grading

There will be one midterm (30% of grade), one final (30%) and four assignments (40%). Late assignments will be assessed a penalty of *5 points* per day unless announced otherwise. You will be given a total of **three** grace days to be used at your discretion. All tests will be *closed book*. You will be allowed one $8.5"\times11"$ one-sided sheet of notes for each test.

No cheating will be tolerated on any graded assignment: what you turn in must be your own work. The minimum penalty for any transgression will be an **F** grade for the course. People failing the assignments OR the exams will fail the course.