
The Operational Analysis of Queueing Network Models*

PETER J. DENNING
Computer Sciences Department, Purdue Unwers~ty, West Lafayette, Indiana 47907

JEFFREY P. BUZEN

BGS Systems, Inc., Box 128, Lincoln, Massachusetts 01773

Queueing network models have proved to be cost effectwe tools for analyzing modern
computer systems. This tutorial paper presents the basic results using the operational
approach, a framework which allows the analyst to test whether each assumption is met
in a given system. The early sections describe the nature of queueing network models and
their apphcations for calculating and predicting performance quantitms The basic
performance quantities--such as utilizations, mean queue lengths, and mean response
tunes--are defined, and operatmnal relationships among them are derwed Following this,
the concept of job flow balance is introduced and used to study asymptotic throughputs
and response tunes. The concepts of state transition balance, one-step behavior, and
homogeneity are then used to relate the proportions of time that each system state is
occupied to the parameters of job demand and to dewce charactenstms Efficmnt methods
for computing basic performance quantities are also described. Finally the concept of
decomposition is used to stmphfy analyses by replacing subsystems with equivalent
devices. All concepts are illustrated liberally with examples

Keywords and Phrases" balanced system, bottlenecks, decomposability, operational
analysis, performance evaluation, performance modeling, queuelng models, queuelng
networks, response tunes, saturation.

CR Categorws: 8.1, 4.3

INTRODUCTION

Queueing networks are used widely to an-
alyze the performance of multiprogrammed
computer systems. The theory dates back
to the 1950s. In 1957, Jackson published an
analysis of a multiple device system
wherein each device contained one or more
parallel servers and jobs could enter or exit
the system anywhere [JACK57]. In 1963
Jackson extended his analysis to open and
closed systems with local load-dependent

* This work was supported in part by NSF Grant
GJ-41289 at Purdue University

service rates at all devices [JACK63]. In
1967, Gordon and Newell simplified the no-
tational structure of these results for the
special case of closed systems [GORD67].
Baskett, et al. extended the results to in-
clude different queueing disciplines, multi-
ple classes of jobs, and nonexponential ser-
vice distributions [BASK75].

The first successful application of a net-
work model to a computer system came in
1965 when Scherr used the classical ma-
chine repairman model to analyze the MIT
time sharing system, CTSS [SCHE67]. How-
ever, the Jackson-Gordon-Newell theory

PermmsIon to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copymg m by permission of the Assoclatlon for Computing Machinery.
To copy otherwlse, or to republish, reqmres a fee and/or specific permission.
© 1978 ACM 0010-4892/78/0900-0225

Computing Surveys, Vol. 10, No. 3, September 1978

226 P. J. Denning and J. P. Buzen

CONTENTS

INTRODUCTION
1 THE BASIS FOR OPERATIONAL ANALYSIS

Operatmnal Variables, Laws and Theorems
Apphcatton Areas
Prior Work m Operatmnal Analysts

2 VALIDATION AND PREDICTION
3 OPERATIONAL MEASURES OF NETWORKS

Types of Networks
Bamc Operatmnal Quantities

4 JOB FLOW ANALYSIS
Vtslt Ratms
System Response Tune

Examples
Bottleneck Analys~

Examples
Summary

5 LOAD DEPENDENT BEHAVIOR
6 SOLVING FOR STATE OCCUPANCIES

State Trap~ttmn Balance
Solving the Balance Equations

An Example
Accuracy of the Analysm

7 COMPUTATION OF PERFORMANCE QUANTITIES
Closed System with Homogeneous Service Tm~es
Termmal Driven System with Homogeneous Serwce Tunes
General Systems

8 DECOMPOSITON
Offime Experiments
Apphcatmns

CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

lay dormant until 1971 when Buzen intro-
duced the central server model and fast
computational algorithms for these models
[BuzE71a, BuzE71b, BUZE73]. Working
independently, Moore showed that
queueing network models could predict the
response times on the Michigan Terminal
System (MTS) to within 10% [MooR71].
Extensive validations since 1971 have veri-
fied that these models reproduce observed
performance quantities with remarkable
accuracy [BuzE75, GIAM76, HUGH73,
LII's77, ROSE78]. Good surveys are
[GELE76a, KLEI75, KLEI76, and MONT75].

Many analysts have experienced puzzle-
ment at the accuracy of queueing network
results. The traditional approach to deriv-
ing them depends on a series of assump-
tions used in the theory of stochastic proc-
esses:

• The system is modeled by a stationary
stochastic process;

• Jobs are stochastically independent;
• Job steps from device to device follow

a Markov chain;
• The system is in stochastic equilib-

rium;
• The service time requirements at each

device conform to an exponential dis-
tribution; and

• The system is ergodic--i.e., long-term
time averages converge to the values
computed for stochastic equilibrium.

The theory of queueing networks based
on these assumptions is usually called
"Markovian queueing network theory"
[KLEI75]. The italicized words in this list of
assumptions illustrate concepts that the an-
alyst must understand to be able to deploy
the models. Some of these concepts are
difficult. Some, such as "equilibrium" or
"stationarity," cannot be proved to hold by
observing the system in a finite time period.
In fact, most can be disproved empirically
--for example, parameters change over
time, jobs are dependent, device to device
transitions do not follow Markov chains,
systems are observable only for short pe-
riods, service distributions are seldom ex-
ponential. It is no wonder that many people
are surprised that these models apply so
well to systems which violate so many as-
sumptions of the analysis!

In applying or validating the results of
Markovian queueing network theory, ana-
lysts substitute operational (i.e., directly
measured} values for stochastic parameters
in the equations. The repeated successes of
validations led us to investigate whether
the traditional equations of Markovian
queueing network theory might also be re-
lations among operational variables, and, if
so, whether they can be derived using dif-
ferent assumptions that can be directly ver-
ified and that are likely to hold in actual
systems. This has proved to be true
[BuzE76a,b,c; and DENN77].

This tutorial paper outlines the opera-
tional approach to queueing network
modeling. All the basic equations and re-
sults are derived from one or more of three
operational principles:

• All quantities should be defined so as

Computing Surveys, Vol 10, No, 3, September 1978

The Operational Analysis of Queueing Network Models 227

to be precisely measurable, and all as-
sumptions stated so as to be directly
testable. The validity of results should
depend only on assumptions which can
be tested by observing a real system
for a finite period of time.

• The system must be flow balanced--
i.e., the number of arrivals at a given
device must be (almost) the same as
the number of departures from that
device during the observation period.

• The devices must be homogeneous--
i.e., the routing of jobs must be inde-
pendent of local queue lengths, and the
mean time between service comple-
tions at a given device must not depend
on the queue lengths of other devices.

These operational principles, which will be
discussed at length in later sections, lead to
the same mathematical equations as the
traditional Markovian assumptions. How-
ever, the operational assumptions can be
tested, and there are good reasons to be-
lieve that they often hold. This is why
operational queueing network analysis ex-
plains the success of validation experi-
ments. It is now possible to use the
queueing network technology with much
more confidence and understanding.

1. THE BASIS FOR OPERATIONAL
ANALYSIS

Throughout this paper we will be concerned
with deriving equations that characterize
the performance of actual computer sys-
tems during given time periods. To do this,
we need a mathematical framework in
which we can define formal variables, for-
mulate hypotheses, and prove theorems.

The theory of stochastic processes has
traditionally been used as such a frame-
work. Most analyses of performance begin
with the

Stochastic Hypothesis: The behavior
of the real system during a given period
of time is characterized by the proba-
bility distributions of a stochastic
process.

Supplementary hypotheses are usually also
made. These hypotheses, which concern
the nature of the stochastic process, typi-
cally introduce concepts such as steady

state, ergodicity, independence, and the dis-
tributions of specific random variables. All
these hypotheses constitute a stochastic
model.

Observable aspects of the real system--
e.g., states, parameters, and probability dis-
tributions--can be identified with quanti-
ties in the stochastic model, and equations
relating these quantities can be derived.
Although formally applicable only to the
stochastic process, these equations can also
be applied to the observable behavior of
the system itself under suitable limiting
conditions [BuzE78a].

Stochastic models bestow bountiful
benefits. Independent and dependent vari-
ables can be defined precisely, hypotheses
can be stated succinctly, and a considerable
body of theory can be called on during
analysis. However, stochastic modeling has
certain disadvantages, the most important
being the impossibility of validating the
Stochastic Hypothesis and the supplemen-
tary hypotheses that depend on it.

The Stochastic Hypothesis is an asser-
tion about the causes underlying the behav-
ior of a real system. Because one cannot
prove asserted causes by studying observed
effects, the truth or falsehood of the Sto-
chastic Hypothesis and its dependent sup-
plementary hypotheses--for a given system
and time period--can never be established
beyond doubt through any measurement. 1
This is true even if measurement error is
assumed to be zero and every conceivable
measurement is assumed to be taken.

Thus, an analyst can never be certain
that an equation derived from a stochastic
model can be correctly applied to the ob-
servable behavior of a real system.

Operational Variables, Laws, and Theorems

Hypotheses whose veracity can be estab-
lished beyond doubt by measurement will
be called operationally testable. Opera-
tional analysis provides a rigorous mathe-
matical discipline for studying computer
system performance based solely on oper-
ationally testable hypotheses.

] For example, one can never establish through mea-
surement that a set of observed service times ts or is
not a sample from a sequence of independent expo-
nentially distributed random variables.

Computing Surveys, Vol. 10, No. 3, September 1978

228 P. J. Denning and J. P. Buzen

In operational analysis there are two
basic components to every problem: a sys-
t em, which can be real or hypothetical, and
a time period, which may be past, present,
or future. The objective of an analysis is
equations relating quantities measurable in
the system during the given time period.

The finite time period in which a system
is observed is called the observation period.
An operational variable is a formal symbol
that stands for the value of some quantity
which is measurable during the observation
period. It has a single, specific value for
each observation period.

Operational variables are either basic
quanti t ies, which are directly measured
during the observation period, or derived
quantit ies, which are computed from the
basic quantities. Figure 1 shows a single-
server queueing system with four basic
quantities:

T-- the length of the observation period;
A-- the number of arrivals occurring dur-

ing the observation period;
B- - the total amount of time during

which the system is busy during the
observation period (B _< T); and

C--the number of completions occurring
during the observation period.

Four important derived quantities are
ffi A / T , the arrival rate

(jobs/second);
X = C/T , the output rate

(jobs/second);
U ffi B / T , the uti l izat ion (fraction

of time system is busy); and
S ffi B /C , the mean service t ime

per completed job.

The basic quantities (A, B, C) are typical
of "raw data" collected during an observa-
tion, and the derived quantities (~, X, U, S)
are typical of "performance measures." All
these quantities are variables which may

queue

FIGURE 1

s e r v e r

B,T

Single server queuelng system.

×

¢

change from one observation period to an-
other.

It is easy to see that the derived quanti-
ties satisfy the equation

U = XS.

Thus, if the system is completing 3 jobs/
second, and if each job requires 0.1 second
of service, then the utilization of the system
is 0.3 or 30%. An equation such as this,
which expresses an identity among opera-
tional quantities, is called an operational
law or operat ional identity. This is because
the relation must hold in every observation
period, regardless of the values observed.
The identity U = X S is called the utiliza-
tion law. We will encounter various other
operational laws later.

Now, suppose that we assume that the
number of arrivals is equal to the number
of completions during the observation pe-
riod. That is, we assume

A ffi C.

This assumption is called job f low balance
because it implies ~ ffi X. Job flow balance
holds only in some observation periods.
However, it is often a very good approxi-
mation, especially if the observation period
is long, because the ratio of unfinished to
completed jobs, (A - C)/C, is typically
small. Job flow balance is an example of an
operationally testable assumption: it need
not hold in every observation period, but
an analyst can always test whether or not
it does--or how much error is made by
assuming it does.

Under the assumption of job flow bal-
ance, it is easy to see that

U ffi AS.

This is an example of an operat ional theo-
rem: a proposition derived from operational
quantities with the help of operationally
testable assumptions.

In a stochastic analysis of Figure 1,
would be interpreted as the reciprocal of
the mean time between arrivals, S as the
mean amount of service requested by jobs,
and U as the steady-state probability that
the system has at least one job in it. The
statement U = AS is a limit theorem for
stochastic steady state [KLEI75]. In gen-
eral, a steady-state stochastic theorem is a
statement about a collection (ensemble) of

Computing Surveys, Vol 10, No 3, September 1978

The Operational Analysis of Queueing Network Models

possible infinite behavior sequences, but it
is not guaranteed to apply to a particular
finite behavior sequence. An operational
theorem is a statement about the collection
of behavior sequences, finite or infinite,
that satisfy the given operational assump-
tions: it is guaranteed to apply to every
behavior sequence in the collection. (For
detailed comparisons between stochastic
and operational modeling, see [BouH78,
BuzE78a].)

Application Areas

There are three major applications for op-
erational results such as the utilization law:

• Performance Calculation. Operational
results can be used to compute quan-
tities which were not measured, but
could have been. For example, a mea-
surement of U is not needed in a flow-
balanced system if k and S have been
measured.

• Consistency Checking. A failure of the
data to verify a theorem or identity
reveals an error in the data, a fault in
the measurement procedure, or a viola-
tion of a critical hypothesis. For ex-
ample, U ~ kS would imply an error if
observed in a flow-balanced system.

• Performance Prediction. Operational
results can be used to estimate per-
formance quantities in a future time
period (or indeed a past one) for which
no directly measured data are avail-
able. For example, the analyst can es-
timate k and S for the future time
period, and then predict that U will
have the value kS in that time period.
(Although the analyst may find ways
of estimating U directly, it is often
easier to calculate it indirectly from
estimates of k and S.)

The first two applications are straightfor-
ward, but the third is actually a two-step
process. The first step is estimating the
values of k and S for the future time period;
the second step is calculating U. Our pri-
mary concern in this paper is deriving the
equations which can be used for perform-
ance calculation, consistency checking, and
the second step in performance prediction.

Parameter estimation, the first step in

229

performance prediction, is a problem of in-
duction-inferring the characteristics of an
unseen part of the universe on the basis of
observations of another finite part. Gardner
has an interesting discussion of why no one
has found a consistent system of inductive
mathematics [GARD76]. Various techniques
for dealing with the parameter estimation
problem will be discussed throughout this
paper.

Prior Work in Operational Analysis

Many textbooks illustrate the ideas of prob-
ability with operational concepts such as
"relative frequencies" and "proportions of
time." In addition, the derivations of many
well-known results in the classical theory of
stochastic processes are based, in part, on
operational arguments. However, the ex-
plicit recognition that operational analysis
is a separate branch of applied mathemat-
ics -qui te apart from the theory of stochas-
tic processes--is a more recent develop-
ment.

The concept of operational analysis as a
separate mathematical discipline was first
proposed by Buzen [BuzE76b], who char-
acterized the real-world problems that
could be treated with operational tech-
niques, and derived operational laws and
theorems giving exact answers for a large
class of practical performance problems. At
about the same time, operational argu-
ments leading to upper and lower bounds
on the saturation behavior of computer sys-
tems were presented by Denning and Kahn
[DENN75a]. These arguments were the op-
erational counterpart of similar results de-
veloped by Muntz and Wong [MUNT74].
The only operational assumption used at
this point was job flow balance.

These early operational results dealt ex-
clusively with mean values of quantities
such as throughput, response time, and
queue length. The theory was soon ex-
tended so that complete operational distri-
bu t ions-as well as mean values--could be
derived for operational analogs of the
"birth-death process" and the "M/M/1
queueing process" [BUzE76a, BUZE78a].
These extensions introduced two new
analysis techniques: the application of

Computing Surveys, Vol. 10, No. 3, September 1978

230 P. J. Denning and J. P. Buzen

"flow balance" in the logical state space of
the system (as contrasted with the physical
system itself) and the homogeneity assump-
tions, which are the operational counter-
parts of Markovian assumptions in stochas-
tic theory. These techniques form the basis
for the operational treatment of many prob-
lems which are conventionally analyzed
with ergodic Markovian models.

The results in [BuzE76a and Buzz78a]
applied only to single-resource queueing
systems. The same analysis techniques
were applied to multiple-resource queueing
networks by Denning and Buzen
[DENN77a], who showed that the "product
form solution," encountered in Markovian
queueing networks, holds in general
queueing networks with flow balance and
homogeneity; this result is more general
than can be derived in the Markovian
framework. This work also introduced a
new operational concept, "online ffi offline
behavior," which characterizes the way an-
alysts use decomposition to estimate pa-
rameters of devices and subsystems. The
operational treatment of queueing network
models is discussed in detail in the rest of
this paper. Additional points about the the-
ory and applications of operational analysis
have been given in [BOUH78, BUZE77,
BuzE78a].

2. VALIDATION AND PREDICTION

We have noted three uses of models in
studying computer performance: calcula-
tion, consistency-checking, and prediction
of performance measures. Validation refers
to extensive testing of a model to determine
its accuracy in calculating performance
measures. Predictzon refers to using a val-
idated model to calculate performance
measures for'a time period (usually in the
future) when the values of parameters re-
quired by the model are uncertain.

Figure 2 illustrates the steps followed in
a typical validation. First, the analyst runs
an actual workload on an actual system.
For the observation period, he measures
performance quantities, such as throughput
and response time, and also the parameters
of the devices and the workload. Then the
analyst applies a model to these param-
eters, and compares the results against the

measured performance quantities. If, over
many different observation periods, the
computed values compare well with actual
(measured) values, the analyst will come to
believe that the model is good. Thereafter,
he will employ it confidently for predicting
future behavior and for evaluating pro-
posed changes in the system.

The scheme of Figure 2 is used to validate
many types of models, including highly de-
tailed deterministic models, simulation
models, and queueing network models. In
general, the more parameters used by the
model, the greater is its accuracy in such
validations.

Performance prediction typically follows
the scheme of Figure 3. The analyst begins
with a set of workload and device param-
eters for a particular observation period,
known as the baseline period. He then
carries out a modification analysis to esti-
mate the values these parameters are ex-
pected to have in the projection period,
which is another time period for which he

~ () meosurem4mt Per focmotce Col¢~ato~ MODEL VALID C~ Q P

FIGURE 2. Typical validation scheme.

?

MODIFICATION ANALYSIS

FIGURE 3. Typical performance prediction scheme.

Computing Surveys, Vol 10, No 3, September 1978

The Operational Analysis of Queueing Network Models

desires to know performance quantities. (In
the projection period, the same system may
be processing a changed workload, or a
changed system may be processing the
same workload, or both.) The analyst ap-
plies the validated model to calculate per-
formance quantities for the projection pe-
riod. If the modification is ever imple-
mented, the predictions can be validated by
comparing the actual workload and system
parameters against the project values (#1)
and the actual performance quantities
against the projected quantities (#2).

A variety of invariance assumptions are
employed in the modification analysis.
These assumptions are typically that device
and workload parameters do not change
unless they are explicitly modified--the an-
alyst may assume, for example, that the
mean disk service time will be invariant if
the same disk is present in both the baseline
and projection periods, or that the mean
number of requests for each disk will be
invariant if the same workload is present in
both periods. Though usually satisfactory,
such assumptions can lead to trouble if a
given change has side effects--for example,
increasing the number of time-sharing ter-
minals may unexpectedly reduce the batch
multiprogramming level even though the
batch workload is the same.

The wise analyst will make all his invar-
iance assumptions explicit. Otherwise, he
will have difficulty in explaining a failure in
Validation #1, which will cause a failure in
Validation #2--even though previous tests
of the model were satisfactory (Figure 2).

In some prediction problems there is no
explicit baseline period. In these cases, the
analyst must estimate parameters for the
projection period by other means. For ex-
ample, he can estimate the mean service
time for a disk from published specifica-
tions of seek time, rotation time, and data
transfer rate; and he can estimate the mean
number of disk requests per job from an
analysis of the source code of representative
programs. Usually, however, the modifica-
tion analysis is more accurate when it be-
gins with a measured baseline period.

A model's quality depends on the number
of parameters it requires. The more infor-
mation the model requires about the work-

231

load and the system, the greater the accu-
racy attainable in its calculations. However,
when there are many parameters, there
may be a lot of uncertainty about whether
all are correctly estimated for a projection
period; the confidence in the predictions
may thereby be reduced. Queueing network
models isolate the few critical parameters.
They permit accurate calculation and cred-
ible prediction.

Additional issues of performance calcu-
lation and parameter estimation will be dis-
cussed as they arise throughout the paper.
(See also [BuzE77, BUZE78a].)

3. OPERATIONAL MEASURES OF
NETWORKS

Figure 1 illustrated a "single resource"
queueing model consisting of a queue and
a service facility. This model can be used
to represent a single input/output (I/O)
device or central processing unit (CPU)
within a computer system. A model of the
entire computer system can be developed
by connecting single-resource models in the
same configuration as the devices of an
actual computer system. A set of intercon-
nected single-resource queueing models
comprises a multiple-resource queueing
network.

Types of Networks

Figure 4 shows two of K devices in a mul-
tiple-resource network. A job enters the
system at IN. It circulates around in the
network, waiting in queues and having ser-
vice requests processed at various devices.
When done, it exits at OUT. The network
is operationally connected in that each de-
vice is visited at least once by some job
during the observation period.

The model assumes that no job overlaps
its use of different devices. In practice, few
applications programs ever achieve more
than a few per cent overlap between CPU
and I/O devices: the error introduced by
this assumption is usually not significant. 2
The model also assumes that a device is

2 Measurements taken at the Purdue Umverslty Com-
puter Center reveal that the average overlap of CPU
and I/O within a job is between 4 and 6 per cent.

Computing Surveys, Vol 10, No 3, September 1978

232 P. J . D e n n i n g a n d J . P. B u z e n

K
N

Devices
Oobs

.~-~ Device [X~ ~ / / ~

• • / qlJ

Xj

" ' " qo, I qoi qlo

IN OUT

(c l o s e d)

FIGURE 4. Two devices in a queueing network.

. . .

busy if a request is pending theremno part
of the system can block progress in another
part. This assumption is not met by all real
systems; for example, the CPU might be
unable to continue if an I/O buffer is full.

A job is "in queue" at device i if it is
waiting for or receiving service there. We
let n, denote the number of jobs in queue
at device i, and N = n l + • • • +nK denote the
total number of jobs in the system. The
s y s t e m o u t p u t rate , Xo, is the number of
jobs per second leaving the system. If the
system is open, Xo is known and N varies
as jobs enter or leave the system. If the
system is closed, the number of jobs N is
fixed; this is modeled by connecting the
output back to the input, as suggested by
the dashed arrow in Figure 4.

An analysis of an open system assumes
that X0 is known and seeks to characterize

the distribution of N. An analysis of a closed
system begins with N given and seeks to
determine the resulting X0 along the OUT/
IN path. Other quantities such as queue
lengths and response times at the devices
may be sought in both cases.

Example: Figure 5 shows a common type
of network, the "central server." Device 1
is the CPU, devices 2, • , K are I/O sta-
tions. A job begins with a CPU service
interval (burst) and continues with zero or
more I/O service intervals which alternate
with further CPU bursts. The quantities
qu are called the "routing frequencies" and
the S, the "mean service times." Definitions
for these quantities will be given shortly.

In the closed central server network of
Figure 5, a new job enters the system as
soon as an active job terminates. This be-

Computing Surveys, Vol 10, No 3, September 1978

The Operational Analysis of Queueing Network Models 233

IN

qlO + q12 + "" + q lK ffi I

Si qlo

Xo

q l K

SK

q l2 ~~--'~-~
S2

OUT

FIGURE 5. Centra l server network.

havior typically occurs in a batch process-
ing system operating under a backlog. The
throughput of the system under these con-
ditions is denoted by X0.

Time sharing systems which are driven
by interactive terminals can also be repre-
sented as closed networks. Figure 6 depicts
the structure. The model is separated into
two {open) subnetworks: the central sub-
system, which consists of I/O devices and
the CPUs, and the terminal subsystem.
Each terminal is manned by a user who
alternates between thinking and waiting.
In the thinking state, the user is contem-
plating what job next to submit, and the
central subsystem is performing no work
for him. On submitting a next job, the user
enters the waiting state, where he remains
until the central subsystem completes the
job for him. The mean time a user spends
in a thinking interval is called the think
time; we denote it by Z. The mean time a

user spends in a waiting interval is called
the response time (of the central subsys-
tem); we denote it by R. Since users think
independently, the think time Z is indepen-
dent of M. Because jobs delay each other
while contending for resources in the cen-
tral subsystem, R is a function of M.

It is also possible to define mixed systems
which are open for some workloads and
closed for others. Figure 7 illustrates a typ-
ical case. The interactive workload com-
prises the jobs associated with the M inter-
active terminals. The batch workload com-
prises jobs submitted by other means, for
example, remote job entry stations. The
number of interactive jobs in the network
(including the terminal subnetwork) is fixed
at M, but the number of batch jobs may be
variable. The batch throughput (Xo) is
given, but the interactive throughput (Xo')
depends on X0 and on the other parameters
of the network.

Computmg Surveys, Vol 10, No. 3, September 1978

234 P. J. D e n n i n g a n d J. P. B u z e n

×;

TERMINAL
SUBSYSTEM

- " ~ N ~

M Term,nols
Z Think T,me

CENTRAL SUBSYSTEM

[i OUT

K Devices N Jobs (O~N<-M)

FmURE 6. Termmal-driven system.

I TERMINALS

-' L
__~ CENTRAL

SUBSYSTEM

OUT

OUT
Xo

P interactive Workload
-- -- -- ~ Batch Workload

FIGURE 7. Mixed sys tem.

Basic Operational Quantities

Suppose that the system is measured dur-
ing an observation period of T seconds and

that these data are collected for each device
i ffi 1 , K:

A, --number of arrivals;
B, - - to ta l busy time (time during which

n, > 0);
C,~--number of times a job requests ser-

vice at device j immediately after
completing a service request at de-
vice i.

These are similar to data specified in Figure
1, but here we are not requiring device i to
be a single server. If we treat the "outside
world" as device "O", we can define also

Aoj--number of jobs whose first service
request is for device j;

C,o--number of jobs whose last service
request is for device i.

We will assume that Coo = 0, because other-
wise there would be jobs that used no re-
sources before departing. However, it is
possible that C, > 0 for any device i since
a job could request another burst of service
from a device which had just completed a

Computing Surveys, Vol 10, No 3, September 1978

The Operational Analysis of Queueing Network Models

request for tha t job. The number of com-
pletions at device i is

K
C,=ECv, t = l K.

j - -0

The number of arrivals to, and departures
from, the system are, respectively,

K K

A0 = ~ Ao~, Co=~C,o.
j --1 t - I

From Figure 4 it is clear tha t Ao = Co in a
closed system.

In terms of these basic data, four derived
operational quantit ies are defined:

U, ffi utilization of device i
= B , / T .

S, ffi mean service t ime between
completions of requests at
device i

= B,/C~

X, = output rate of requests from
device i

= C , / T
qu ---- routing frequency, the fraction

of jobs proceeding next to
device j on completing a
service request at device i

fC , /C , , i f / - - 1 K
= "--LAoj/Ao, if i = 0.

nt(t)
A / \

B,

(t)

6

5

4-

3-

2 .

I -

0
5 I0 15 20

FIGURE 8. Example of a device's operation.

Note that , for any i, q,o + qtl + . . . + qtK =

1. Note tha t q,0 is an output routing fre-
quency (fraction of completions from de-
vice i corresponding to the final service
request of some job) and q0j is an input
routing f requency (fraction of arrivals to
the system which proceed first to device j) .
Note also tha t the system output rate is
defined as Xo -- Co/T. It is easy to deduce
the operational law

K

Xo = ~ X,q,o.
t - 1

Note tha t X0, X1 X r cannot be inter-
preted as " throughputs" because no as-
sumption of job flow balance has been
made. I t is clear tha t the utilization law

U, = X,S,
holds at every device.

We let n, denote the queue length at
device i; it includes jobs waiting for and

235

receiving service. Somet imes we write n,(t)
to make explicit the t ime dependence. (An
example n,(t) appears in Figure 8.) To cal-
culate mean queue length and response
t ime at a device, analysts usually introduce
the basic measure W,, which is the area
under the graph of n,(t) during the obser-
vation period. Since f~,, the mean queue
length at device i, is the average height of
this graph,

ft, = WJT.

The mean response t ime at device i, de-
noted by R,, is also related to W, in a simple
way. Note tha t W~ can be interpreted as
the total number of "job-seconds" accu-
mula ted at device i during the observation
period (if j jobs are at a device for s seconds,
j s job-seconds accumulate). R, is defined as
the average amount of t ime accumulated at
device i per completed request. Thus

R, = W,/C,.

An immediate consequence of these defi-
nitions is the operational law

6, = X~R,,

which is called Little's Law.
Example: Figure 8 shows device t and a
possible observation of its queue length for
a period of 20 seconds. The basic measures
a r e

A, = 7 jobs, B, = 16 seconds, C, ffi 10 jobs.
Note that n,(0) ffi 3 and that

n,(20) ffi n,(0) + A, - C~ = 0.
The basic operational performance measures
a r e

Comput ing Surveys, Vol 10, No. 3, September 1978

236 P. J. Denning and J. P. Buzen

U, -- 16 /20 St = 1 6 / 1 0 X, ffi 1 0 / 2 0

= 0.80 --- 1.6 -- 0.5

seconds jobs/second
The total area under n,(t) in the observation
period is

W~ -- 40 job-seconds.
Thus the mean queue length is

ht = W,/T ffi 2 jobs,
and the mean response time per service
completion is:

R, ffi WJC, = 4 seconds.

4. JOB FLOW ANALYSIS

Given the mean service times (S,) and the
routing frequencies (q,j), how much can we
determine about overall device completion
rates (XJ or response times (RJ? These
questions are usually approached through
the operational hypothesis known as the

Prmciple of Job Flow Balance: For
each device i, Xt is the same as the
total input ra te to device i.

This principle will give a good approxima-
tion for observation periods long enough
tha t the difference between arrivals and
completions, At - C, is small compared to
C~. I t will be exact if the initial queue length
n~(0) is the same as the final n,(T). Choosing
an observation period so that the initial and
final states of every queue are the same is
not as strange as it might seem. This notion
underlies the highly successful "regenera-
tion point" method of conducting simula-
tions [IGLE78].

When job flow is balanced, we refer to
the X, as device throughputs. Expressing
the balance principle as an equation,

K

C j f A j = Z C,j, t = O g
t--O

(Note tha t job flow balance allows us to
substi tute Coj for Ao~.) With the definition
qtj = CJC, , we may write

K

Cj = E C,q,j.
tmO

Employing the definition X~ ffi C,/T, we
obtain

JOB FLOW BALANCE EQUATIONS
K

X+ffi Y,X,q,~, /ffiO g
tmO

If the network is open, the value of X0 is
externally specified and these equations
will have a unique solution for the un-
knowns X,. However, if the network is
closed, Xo is initially unknown, and the
equations have no unique solution; this can
be verified by showing tha t the sum of the
Xj-equations f o r j ffi 1 , K reduces to the
Xo-equation. In a closed network, there are
K independent equations but K + 1 un-
knowns. Nonetheless, the job flow balance
equations contain information of consider-
able value.

Visit Ratios

T h e "visit ratio," which expresses the mean
number of requests per job for a device, can
always be calculated uniquely from the job
flow balance equations. With the mean ser-
vice times, they can be used to determine
the throughputs and response t imes of sys-
tems under very light or very heavy loads.
Define

V, = X , /Xo;

V~ is the job flow through device t relative
to the system's ou tput flow. Our definitions
imply tha t V, ffi C,/Co, which is the mean
number of completions at device i for each
complet ion f rom the system. Since V, can
be interpreted as the mean number of visits
per job to device i, we call it the visit ratio.

The relation X, ffi V, Xo is an operational
law, called the Forced Flow Law. It s tates
tha t the flow in any one par t of the system
determines the flows everywhere in the sys-
tem.

E x a m p l e : Consider the performance ques-
tion: "Jobs generate an average of 5 disk
requests and disk throughput is measured
as 10 requests/second; what is the system
throughput?" This question seems momen-
tartly frivolous, since nothing is stated about
the relation between the disk and any other
part of the system. Yet the forced flow law
gives the answer precisely. Let subscript t
refer to the disk:

Xo ffi X,/ V,
ffi 10 requests/second

5 requests/job
ffi 2 jobs/second.

On replacing each X, with V, Xo in the job
flow balance equations, we obtain the

Computmg Surveys, Vol. 1O, No. 3, September 1978

T h e O p e r a t i o n a l A n a l y s i s o f Q u e u e i n g N e t w o r k M o d e l s

VISIT RATIO EQUATIONS
170=1

K

V~=qoj+ ~ V,q,j, 1 = 1 K

These are K + 1 independent equations
with K + 1 unknowns: a unique solution is
always possible assuming the network is
operationally connected. These equations
show the relation between the network's
"connective structure," represented by the
q,j, and the visit ratios. Although V~ =
X, /Xo is an operational law, the iT, satisfy
the visit ratio equations only if job flow is
balanced in the network.

Example: The central server network
(Figure 5) has these job flow equations:

Xo = Xlqlo

XI f Xo + X2 + . . . + X~

X ,=XIqI , , iffi2 K.

Setting X, = V, Xo, these equations reduce
to

1 = Vlqlo

V]= I + V2+ . . . + VK

V , = Vlq~,, t = 2 K .

It is easy to see that

V1 -- 1/qlo

V, = ql,/qlo, i = 2 K.

In this case, only K of the possible routing
frequencies q~j are nonzero; these q~, can be
determined uniquely if the 17, are given.
This is not so in a general network, where
K visit ratios are insufficient to determine
the (K + 1) 2 unknown routing frequencies.

As we shall see, all the performance quan-
tities can be computed using only the visit
ratios and the mean service times S, as
parameters. The visit ratio equations are
used to prove tha t this is so. In practice, the
analyst may be able to extract the visit
ratios directly from workload data, thereby
avoiding computing a solution of the visit
ratio equations.

System Response Time

One method of computing the mean re-
sponse t ime per job, R, for an open or closed
system is to apply Little 's law to the system
as a whole,

R = ~ f /Xo ,

237

where fil = fh + . . . + fix. I f /g/or Xo are not
known, an al ternate me thod can be used.
Since h, = X,R, from Little 's law at device
i, and X, = V, Xo from the forced flow law,
we have f i , /Xo = V,R,. This reduces [V/Xo
to the G e n e r a l R e s p o n s e T t m e Law:

K

R f Y. V~R,.
t l l

This law holds even if job flow is not bal-
anced.

Little 's law can be used to compute the
central subsystem's response t ime R in the
terminal driven system of Figure 6. Th e
mean time for a user to complete a think-
wait cycle is Z + R. When job flow is
balanced, X0 will denote the rate at which
cycles are completed. By Little 's law,
(Z + R)Xo must be the mean number of
users observed to be in a think-wait cycle;
but all the users are in such cycles, hence,
M = (Z + R)Xo. Therefore ,

R ffi M / X o - Z .

This is called the I n t e r a c t i v e R e s p o n s e
T i m e F o r m u l a .

Examples

This section's three examples illustrate per-
formance calculation and performance pre-
diction using the operational laws summa-
rized in Table I. The first example illus-
t rates a simple performance calculation; a
few measured data are used to find the
mean response time. The second example
illustrates a performance calculation for a
system with an interactive and a batch
workload; it also illustrates a performance
prediction, estimating the effect of tripled

TABLE I. OPERATIONAL EQUATIONS*

Utthza t ton L a w U, = X,S,

Ltttle' s L a w f~ ffi X ,R,

Forced F low L a w X~ ffi V, Xo
K

Output F low L a w Xo ffi ~ X,q,o

K

General Response T tme L a w R ffi ~ V,R,

In teract tve Response T ime R - M/Xo - Z
Formula (Assumes flow bal-
ance)

* Operational derivations for most of these equations
were fLrst presented In [BuzE76b].

Computmg Surveys, Voi. 10, No. 3, September 1978

238 P. J . D e n n i n g a n d J. P. B u z e n

batch throughput on interactive response
time. The third example illustrates a more
complex prediction problem, estimating the
effect of consolidating two separate time
sharing systems; it illustrates the use of
invariance assumptions in the modification
analysis.

For the first example, we suppose that
these data have been measured on a time
sharing system:

Each job generates 20 disk requests;
The disk utilization is 50%;
The mean service time at the disk is 25

milliseconds;
There are 25 terminals; and
Think time is 18 seconds.

We can calculate the response time after
first calculating the throughput. Let sub-
script i refer to the disk. The forced flow
and utilization laws imply

Xo = X, /V , ffi u J v , s,.

From the data,
(.5)

Xo ffi - - ffi 1 job/second.
(20)(.025)

From the interactive response time for-
mula,

R ffi 20/1 - 18 ffi 2 seconds.

Our second example considers a mixed
system of the type shown in Figure 7. These
data are collected:

There are 40 terminals;
Think time is 15 seconds;
Interactive response time is 5 seconds;
Disk mean service time is 40 milliseconds;
Each interactive job generates 10 disk

requests;
Each batch job generates 5 disk requests;

and
Disk utilization is 90%.

We would like to calculate the throughput
of the batch system and then estimate a
lower bound on interactive response time
assuming that batch throughput is tripled.
The interactive response time formula gives
the interactive throughput:

Xo' ffi M / (Z + R')
ffi 40/(15 + 5)
ffi 2 jobs/second.

Let subscript i refer to the disk. The disk
throughput is X, + X,', where X, is the batch
component and X / i s the interactive com-
ponent. The utilization law implies

X, + X ; ffi U,/S,
ffi (.9)/(.04)
ffi 22.5 requests/second.

The forced flow law implies that the inter-
active component is

X," ffi V,'Xo' ffi (10)(2) ffi 20 requests/second,

so that the batch component is

X, -- 22.5 - 20 ffi 2.5 requests/second.

Using the forced flow law again, we find the
batch throughput:

Xo ffi X J V , ffi 2.5/5 ffi 0.5 jobs/second.

Now consider the effect of tripling the
batch throughput. If X0 were changed to 1.5
jobs/second without changing V, then X,
would become V~0 ffi 7.5 requests/second.
Assuming that the increased throughput
does not change the disk service time, the
maximum completion rate at the disk is
1/S~ ffi 25 requests/second; this implies that
the completion rate of the interactive work-
load, X/, cannot exceed 25 - 7.5 ffi 17.5
requests/second. Therefore

Xo' = X , ' /V ; <- 17.5/10 ffi 1.75 jobs/second

and

R' ffi M/Xo" - Z >_ 40/1.75 - 15
ffi 7.9 seconds.

Tripling batch throughput increases inter-
active response time by at least 2.9 seconds.

Notice that the validity of these esti-
mates depends on the assumptions that the
parameters M, Z, 11,, and S, are invariant
under the change of batch throughput. Al-
though these are often reasonable assump-
tions, the careful analyst will check them
by verifying that the internal policies of the
operating system do not adjust to the new
load, and that interactive users are inde-
pendent of batch users.

For the third example, we consider a
computer center which has two time shar-

Computing Surveys, Vol 10, No. 3, September 1978

The Operatmnal Analysis of Queueing Network Models

ing systems; each is based on a swapping
disk whose mean service t ime per request
is 42 msec. The mean think t ime in both
systems is Z - 15 seconds. These data have
been collected:

System A System B
16 terminals 10 terminals
25 disk requests/job 16 disk requests/job
80% disk utilization 40% disk utilization

In order to reduce disk rentals, manage-
ment is proposing to consolidate the two
systems into one with 26 terminals and
using only one of the disks. We would like
to est imate the effect on the response t imes
for the two classes of users.

We let subscript i refer to the disk, and
use primed symbols to refer to System B.
T he formula X0 = U,/V~S, gives through-
puts for the two systems:

(.8)
X o - - - -

(25)(.042)
= 0.77 jobs/second (System A)

(.4)
Xo'

(16)(.042)
= 0.60 jobs/second (System B)

The response t imes are

R --- 16/(.77) - 15
= 5.8 seconds (System A)

R'ffi 10/(.6) - 15

= 1.1 seconds (System B)

Over an observation period of T seconds
there would be X,T disk requests serviced
in Sys tem A, and X { T in System B; the
fraction of all disk requests which are A-
requests would be

X~T/(X,T + X{T) ffi U,/(U, + U{) = 2/3.

In order to est imate the effect of consol-
idation, we need to know the disk comple-
t ion rates for each workload when both
workloads share the one disk. Because the
characteristics of the users and the disk are
the same before and after the change, it is
reasonable to make this invariance assump-
tion: In the consolidated system, 2/3 of the
disk requests will come from the A-users. I t
is also reasonable to assume tha t the disk
utilization will be nearly 100% in the con-
solidated system. This implies tha t the total
disk throughput will be 1/S, -- 1/(.042) =

239

24 requests/second. Of this total, the
throughputs of the two types of users are

X, = (2/3)(24)
= 16 requests/second (A-users)

X{= (1/3)(24)
ffi 8 requests/second (B-users)

This implies tha t the system throughputs
are

Xo = XJV~
= 16/25
ffi 0.64 jobs/second (A-users)

Xo' = X/ /V/
= 8/16
-- 0.5 jobs/second (B-users)

and tha t the response t imes are

R = 16/(.64) - 15
= 10 seconds (A-users)

R ' = 10/(.5) - 15
= 5 seconds (B-users)

Note tha t the two types of users experience
different response times. This is because
the B-users, who generate less work for the
disk, are delayed less at the disk than the
A-users.

Once again it is worth noting explicitly
tha t the parameters V,,]7,', S,, and Z are
assumed to be invariant under the proposed
change. The careful analyst will check the
validity of these assumptions. Th e assump-
tion tha t the ratio of Sys tem A to System
B throughputs is invariant under the
change should be approached with caution;
it is typical of the assumptions a skilled
analyst will make when given insufficient
data about the problem. We will present an
example shortly in which a faster CPU af-
fects two workloads differently: the ratio of
interactive to batch th roughput changes.

Bottleneck Analysis
This section deals with the asymptot ic be-
havior of th roughput and response t ime of
closed systems as N, the number of jobs in
the system, increases. We will assume tha t
the visit ratios and mean service t imes are
invariant under changes in N.

Note tha t the ratio of complet ion rates
for any two devices is equal to the ratio of
their visit ratios:

Computmg Surveys, Voi. 10, No. 3, September 1978

240 P. J. Denning and J. P. B u z e n

X, IXj = V, IV~.

Since/.7, ffi X,S,, a similar property holds for
utilizations:

u , / v ~ = v , s , / y ~ s , .

Our invariance assumptions imply that
these ratios are the same for all N.

Device i is sa turated if its utilization is
approximately 100%. If U, ffi 1, the utiliza-
tion law implies that

X, = l / S , ;

this means that the saturated device is com-
pleting work at its capacity--an average of
one request each S, seconds. In general,
U, -< 1 and X, <_ 1/S,.

Let the subscript b refer to any device
capable of saturating as N becomes large.
Such devices are called bottlenecks because
they limit the system's overall performance.
Every network has at least one bottleneck.

Since the ratios U,/Uj are fixed, the de-
vice i with the largest value of V,S, will be
the first to achieve 100% utilization as N
increases. Thus we see that, whenever de-
vice b is a bottleneck,

VbSb ffi max { V1S, VKSK}.

The bottleneck(s) is (are) determined by
device and workload parameters.

Now: if N becomes large we will observe
Ub = 1 and Xb ffi 1/Sb; since Xo/Xb ffi 1/Vb,
this implies

Xo-..= 1 /VbSb

is the maximum possible value of system
throughput. Since V,S, is the total of all
service requests per job for device i, the
s u m

Ro ffi V,S, + + VKSK,

which ignores queueing delays, denotes the
smallest possible value of mean response
time. In fact, Ro is the response time when
N = i. This implies that Xo = I/Ro when
N = I .

The properties of Xo are summarized in
Figure 9. As a function of N, Xo rises
monotonically from I/Ro at N -- 1 to the
asymptote I/VbSb. It stays below the line
of slope i/Ro emanating from the origin:
Job interference via queueing when N ffi k
usually prevents throughput from achiev-
ing k/Ro.

Were we to hypothesize that k jobs al-
ways managed to avoid delaying each other
in the network, so that Xo ffi k/Ro, the
saturation asymptote requires that k /Ro <--
1/ VbSb, or

k < N* ffi Ro = V'S' + + VrSr
- - VbSb VbSb -= K.

In words, k > N* would imply with cer-
tainty that jobs queue somewhere in the
system. Since N* thus represents the load
beyond which queueing is certain to be
observed, we call N* the saturation po in t
of the system.

These results extend to the response time
of the terminal driven system (Figure 6).
For M terminals and think time Z, the mean
response time is R = M/Xo - Z. When M
ffi 1, R must be Ro. Since Xo cannot exceed
l / V b S b ,

R >_ M V b S b - Z >- M V , S, - Z, l f f i l , - ,K .

As M becomes large, R approaches the
asymptote MVbSb - Z. These facts are
summarized in Figure 10.

Notice that the response time asymptote
intersects the horizontal axis at

Mb = Z/VbSb.

lObS/sec

vbs,

L o a d
D

I N ~' N

FIGURE 9. System throughput

Ro / / I Number of
i Iv Termlno~$
l M~ M~ M M

FIGURE I0. Response time

Computing Surveys, Vol. 10, No. 3, September 1978

The Operational Analysis

This is a product of a waiting time at the
terminals (Z) and a saturation job flow
through the terminals (1/VbSD; by Little's
law, Mb denotes the mean number of think-
ing terminals when the system is saturated.
The response time asymptote crosses the
minimum response time R0 at

Mb* = (Ro + Z}/VbSb = N* + Mb.

when there are more than Mb* terminals,
queueing is certain to be observed in the
central subsystem.

Notice that the response time asymp-
totes and intersections M0 and M0* depend
only on M, Z, V0, and S0. The only assump-
tions needed to compute them are job flow
balance and invariance of the visit ratios
and mean service times under changes in
load. Note also that when Z = 0 these
results yield the response time asymptotes
of a closed central system. These results
may be extended to include the case where
service times are not strictly invariant, but
each S, approaches some limit as the queue
length at device i increases [MUNT74,
DENN75a].

To summarize: the workload parameters
or the visit ratio equations allows the ana-
lyst to determine the visit ratios, V,. Device
characteristics allow determination of the
mean service time per visit, S,. The largest
of the products V,S, determines the bottle-
neck device, b. The sum of these products
determines the smallest possible response
time, R0. The system throughput is 1/VoSb
in saturation. The saturation point N* of
the central subsystem is Ro/VbSb; and
N* + Z/VoSo terminals will begin to satu-
rate the terminal driven system.

An analysis leading to sketches such as
Figures 9 and 10 may give some gross guid-
ance on effects of proposed changes. For
example, reducing V,S, for a device which
is not a bottleneck (e.g., by reducing the
service time or the visit ratio) will not affect
the bottleneck; it will make no change in
the asymptote 1/VoSo and will generally
produce only a minor change in minimal
response time R0. Reducing the product
V,S, for all the bottleneck devices will re-
move the bottleneck(s); it will raise the
asymptote 1/VbS0 and reduce R0. However,
this effect will be noticed only as long as
VbSb remains the largest of the V,S,: too

of Queueing Network Models 241

much improvement at device b will move
the bottleneck elsewhere. These points will
be illustrated by the example of the next
section.

The property that 1/VbSb limits system
throughput was observed by Buzen for
Markovian central server networks
[BvzE71a]. It was shown to hold under very
general conditions by Chang and Laven-
berg [CHAN74]. Muntz and Wong used it in
bottleneck analysis of general stochastic
queueing networks [MUNT74, MUNT75];
Denning and Kahn derived the operational
counterpart [DENN75a]. Response time
asymptotes were observed by Scherr for his
model of CTSS [SCHE67], and by Moore
for his model of MTS [Moon71]. The
concept of saturation point was introduced
by Kleinrock [KLEI68], who also studied
all these results in detail in his book
[KLEI76].

Examples

This section illustrates the applications of
bottleneck analysis for the three cases of
Figures 11 through 13. For each, we con-
sider a series of questions as might be posed
by a computing center's managers, who
seek to understand the present system and
to explore the consequences of proposed
changes.

Figure ll(a) depicts a central server sys-
tem driven by a set of interactive terminals.
The visit ratio equations for this network
are

V0 = 1 = .05VI
Vl = Vo + V~ + V3
v2 = .55V,
V3 = .40V~

i
FIGURE ll(a).

q J2

Q*a

$a " 04t .~

An example system.

Computing Surveys, Vol. 10, No 3, September 1978

242

Sec,

2.2 -;

P. J. Denning and J. P. Buzen

i j / /
I 20 22

Ms Mi }*

FIGURE l l (b) . Response t ime curve.

~ M

CPU DISK sec.

24 . / /
DRUM

-- %0

~ M
21 22 23 50 63

FIGURE 11(C). Response t ime asymptotes.

T h e solution is

V1=20, V ~ = l l , V3=8.

T h e V,S, products are

V~S~ = (20)(.05)
ffi 1.00 seconds (Total CPU time)

V2S2 = (11)(.08)
-- .88 seconds (Total Disk time)

V~S3 ffi (8)(.04)

= .32 seconds (Total Drum time)

These products sum to the minimal re-
sponse t ime

R0 ffi 2.2 seconds.

T h e largest product is ~S1; therefore
b ffi 1 and the C P U is the bott leneck. (The
sys tem is " C P U bound.")

Figure 11(b) shows the a sympto tes of the
response t ime curve. T h e num ber of think-
ing terminals in sa tura t ion is

M1 = Z/VISI = 20 terminals.

T h e sa tura t ion point of the central subsys-
t em is

N* ffi Ro/V]S1 = 2.2 jobs.

T h e n u m b e r of terminals required to begin
sa tura t ing the ent i re sys tem is

Ml* ffi 22.2.

Q u e s t i o n : Throughput is measured as
O. 715jobs~second and mean response time
as 5.2 seconds. What is the mean number
of users logged in during the observation
period? T h e interact ive response t ime for-
mula can be solved for the (mean) number
of active terminals ,

M = (R + Z) / X o

ffi (5.2 + 20)/(.715)
ffi 18 terminals.

Q u e s t i o n : Is 8-second response time
feasible when 30 users are logged in? I f
not, what minimum amount of CPU
speedup is required? Since the response
t ime a sympto t e requires that , for M ffi 30,

R >_ (30)(1.00) - 20 ffi 10 seconds,

the 8-second requ i rement cannot be met. I f
$1' is the service t ime of a faster CPU, we
need

MV1SI' - Z ~ 8 seconds,

o r

$1' < .047 seconds.

This gives a speedup factor of S1/SI' - 1.07;
the new C P U mus t be a t least 7% faster.
Since V]S]' ffi (20) (.047) = .93, the sys tem
would still be C P U - b o u n d with this faster
processor (see Figure 11(c)); therefore the
change is feasible.

Q u e s t i o n : Is lO-second response time
feasible when 50 users are logged in? I f
not, what minimum amount of CPU
speedup is required? I f the C P U were infi-
nitely fast (S1 ffi 0), the disk would be the
bot t leneck (see Figure 11(c)). In this case

R >_ MV2S~ - Z.
For M ffi 50,

R _> (50)(.88) - 20 = 24 seconds.

Thus , no a m o u n t of C P U speedup will
make 10-second response feasible when
M = 50.

Our second example concerns the 25-ter-
minal t ime sharing sys tem of Figure 12. A
m e a s u r e m e n t has revealed tha t jobs require

Computmg Surveys, Vol 10, No. 3, September 1978

The Operational Analysis of Queueing Network Models 243

25 Termmall

FIGURE 12.

I loTl
I I °-

R = 5 1 1 ¢

A time sharing system.

a mean total CPU t ime of 240 msec, tha t
CPU utilization is 30%, and tha t response
t ime is 5 seconds. T h e th roughpu t and
think t ime are

Xo ffi U,/ V, SI
ffi (.30)/(.24) ffi 1.25 j o b s / s e c o n d

Z ffi M/Xo - R
ffi 25/1.25 - 5 -- 15 seconds.

Question: The CPU utilization seems
low. What effect would a cheaper CPU of
hal f speed have on response time? Install-
ing a CPU of half speed cannot increase
sys tem throughput , nor can it reduce
th roughpu t below half its original value. (If
all service times, including Z, were doubled,
th roughput would be exactly half the orig-
inal value.) Therefore ,

0.625 _< Xo ~ 1.25 jobs/second

af ter the change. (With U~ = XoVIS~ this
implies 0.3 _< /31 -< 0.6 af ter the change.)
Applying the response t ime formula,

5.0 _ R _< 25.0 seconds.

T h e slower CPU will have no effect on
response t ime if some other device is satu-
ra ted (no change in Xo); otherwise, it could
cause response t ime to increase by as much
as a factor of five.

Th is example i l lustrates why sys tem bot-
t lenecks can confuse the unwary analyst. I f
some device (not the CPU) is sa turated,
lowering CPU speed will increase CPU uti-
lization without observable effect on re-
sponse time. CPU utilization can be a de-
ceptive measure of a sys tem's performance.

Our third example concerns the sys tem
of Figure 13, which has two workloads. I t
will i l lustrate how a faster device m a y affect

pe r formance adversely. Each ba tch job re-
quires one disk-swap followed by an unin-
t e r rup ted CPU execution burs t averaging 1
second. Each interact ive job requires an
average of 10 page swaps f rom the disk,
each followed by a shor t C P U burs t aver-
aging 10 msec.

Pr imed symbols refer to the interact ive
workload. I t is easy to see f rom Figure 13
t ha t the ba tch visit rat ios are V, ffi 112 = 1,
and the interact ive visit rat ios are Vf ffi V2'
ffi 10. T h e tota l of t imes required by jobs a t
the devices are:

Disk CPU
Batch V~S~ ffi .09 sec. V2S2 ffi 1.0 sec.
Interactive V,'S,' ffi .90 sec. V2'$2' ffi .1 sec.

Evident ly the interact ive workload is
disk-bound and the ba tch workload CPU-
bound. This is a good mixture of jobs in the
system.

Question: A measurement reveals that
the CPU is saturated, and that interactive
response time is 4 seconds. What ~s batch
throughput? Disk utilization? We can solve
the interact ive response t ime formula for
the interact ive throughput :

Xo' ffi M/(R' + Z)
ffi 25/(4 + 30) = .735 jobs/second.

Since Xo' = X2'/V2', the interact ive com-
ponent of CPU th roughpu t is X2' ffi 7.35
reques ts /second, and the utilization due to
interact ive jobs is

U2' ffi X{S2' = (7.35)(.01) ffi .074.

Since total utilization is 1.00, the com-
ponen t due to ba t ch jobs m u s t be Us = .926.
Thus the ba tch th roughpu t is

Xo = X1 ffi X2 = U2/$2 = .926 jobs/second.

T h e utilization of the disk is
X,S~ + X{SI' = (.926)(.09) + (7.35)(.09) ffi .745.

Question: An analysis of batch back-
logs reveals that the computing center
needs to support a batch throughput of at
least 4.S jobs~second. Is this feasible in the
present system? I f there were no interact ive
jobs, the highest possible C P U ba tch
th roughpu t would be X2 = 1/82 = 1 j o b /
second. T h e required ba tch th roughpu t
cannot be achieved.

Question: A CPU 5 times faster is avail-
able. What happens if batch throughput of

Computing Surveys, Vol 10, No. 3, September 1978

244 P. J. D e n n i n g a n d J. P. B u z e n

IN I ~ - . 1,
~ L , .9

M = 2 5 , . ,

IN Z = 30sec. - - I ~ - I T DISK " -cJ -~T l " cPu x2' ~_ .I =
' 2 ;OUT

S=' = . 0 9 s e c . S z ' = .01 sec.

S I = . 0 9 s e c . S z = 1 . 0 s e c .

FIGURE 13.

I n t e r o c h v e Workload

4 ~ B o t c h W o r k l o a d

A system with two workloads.

4 . 5 j o b s ~ s e c o n d is ach i eved w i th th i s CPU?
With the new CPU, the ba tch CPU burst
becomes $2 ffi .2 second, and the interactive
CPU burst $2' = .002 second. With a forced
ba tch flow of X0 ffi X1 = X2 = 4.5 jobs /
second, the ba tch components of disk and
CPU utilization would be

U~ = X~S~ = (4.5)(.09) ffi .41
U2 ffi X2S2 ffi (4.5)(.20) = .90

This gives bounds for the interactive com-
ponents of throughput :

Xl' ffi UI'/S~' ~- (1 - .41)/(.09)
= 6.61 requests/second

X2' = U2'/$2' <- (1 - .90)/(.002)
= 50 requests/second.

Since XI' = X2', the maximum possible in-
teract ive job flow at the CPU is 6.61 re-
quests /second, and the maximum possible
interact ive th roughput is 0.66 jobs/second.

This implies a lower bound on the interac-
tive response time:

R' = M/Xo' - Z ~_ 25/.66 - 3 0 = 7.8 seconds.

T h e interesting feature of this example is
tha t the added capaci ty in the system ac-
tually hur ts the performance of the inter-
active workload. T h e reason is tha t speed-
ing up the CPU alleviates the ba tch bottle-
neck there, allowing more ba tch jobs to
queue up at the disk. Th e additional disk
queueing interferes with the already disk-
bound interact ive jobs. To achieve Xo = 4.5
jobs / second in the ba tch s t ream wi thout
affecting interact ive response time, the sys-
t em needs a faster disk as well. T h e disk
must suppor t X1 + XI' ffi 4.5 + 7.35 = 11.85
reques ts / second total, which means tha t its
service t ime must not exceed 1/11.85 sec-
ond (85 msec). We will re turn to this ex-
ample later.

Computmg Surveys, Vol 10, No. 3, September 1978

The Operational Analysis of Queueing Network Models 245

Summary

By augmenting the basic operational defi-
nitions with the assumption that job flow is
balanced in the system, the analyst can use
visit ratios, via the forced flow law, to de-
termine flows everywhere in the network.
Response times of interactive systems can
also be estimated. Table I summarized the
principal equations.

When the available information is insuf-
ficient to determine flows in the network at
a given load, the analyst can still approxi-
mate the behavior under light and heavy
loads. For light loads the lack of queueing
permits determining response time and
throughput directly from the products V~S,.
For heavy loads, a saturating device limits
the flow at one point in the network,
thereby limiting the flows everywhere;
again, response time and throughput can be
computed easily. For intermediate loads,
further assumptions about the system are
needed.

5. LOAD DEPENDENT BEHAVIOR

The examples of the preceding section were
based on assumptions of invariance for ser-
vice times, visit ratios, and routing frequen-
cies. These assumptions are too rigid for
many real systems. For example, if the mov-
ing-arm disk employs a scheduler that min-
imizes arm movement, a measurement of
the mean seek time during a lightly loaded
baseline period will differ significantly from
the average seek time observed in a heavily
loaded projection period. Similarly, the
visit ratios for a swapping device will differ
in baseline and projection periods having
different average levels of multiprogram-
ming.

These two examples illustrate load de-
pendent behavior. To cope with it, the an-
alyst replaces the simple invariance as-
sumptions with conditional invariance as-
sumptions that express the dependence of
important parameters on the load. Instead
of asserting that the disk's mean seek time
is invariant in all observation periods, the
analyst asserts that the mean seek time is
the same in any two intervals in which the
disk's queue length is the same. That is, the
average seek time, whenever the disk's

queue length is n (for any integer n), is
assumed to be the same in both the baseline
and the projection period, but the propor-
tion of time that the queue length is n may
differ in the two periods. Similarly, the
swapping device's visit ratio whenever the
multiprogramming level is N is assumed to
be the same in both the baseline and the
projection period, but the proportion of
time that the multiprogramming level is N
may differ in the two periods.

Tables II and III summarize the opera-
tional concepts needed to express condi-
tional invariants and to work with load
dependent behavior. Table II shows that
each of the basic quantities (C,j, B,) is re-
placed with a function of the load. Thus
C,j(n) counts the number of times t at which
jobs request service at devicej immediately
on completing a service request at device i,
given that n, ffi n just before each such
time t. The function T,(n) specifies the total
time during which n, ffi n.

Table III shows the various operational
measures which can be derived from the
basic quantities of Table II. There are two
new concepts here. The first is the service
function, S~(n) ffi 1/X,(n), which measures
the mean time between completions when
n, = n; if device i can process several service
requests at once, S,(n) can be less than the
mean amount of service required by a re-
quest. The second concept is the queue
length distribution, p,(n), which measures
the proportion of time during which n, ffi n.
That the mean queue length f~, ffi W,/T is
equivalent to the usual definition E,>o
np,(n) can be seen from the definition of
W, in Table II.

The method of partitioning the data ac-
cording to time intervals in which n,(t) = n
is called stratified sampling. The sets of
intervals in which n,(t) ffi n are called the
"strata" of the sample. All data in the same
stratum are aggregated to form the mea-
sures of Tables II and III.

Our analytic methods can deal with only
two kinds of load dependent behavior: a
device's service function may depend on
the length of that device's queue; the visit
ratios and routing frequencies may depend
on the total number of jobs in the system.
Thus quantities like q,~(n) = C~(n)/C,(n) or

Computing Surveys. Vol. 10, No. 3, September 1978

246 P . J . D e n n i n g a n d J . P . B u z e n

TABLE II. BASXC MEASURES

Completion Counts

Interdevice

Device, conditional

Device, unconditional

Arrwal Counts
To a device

To the system
Busy Ttmes

Conditional

Unconditional

Routing Frequencws

Originating in system

Originating outside system

Accumulated Waiting Ttme

iffi l K jffi0 K

C,j(n)

C,(n)

C,

Ao~

Ao

T,(n)

B,

qv

qo~

W,

ffi Number of times t at which a job requests service at device j
next after completing a service request at devlce i, given n,
s n just before t.

K

= ~ C.j(n)
j-o

ffi ~ C,(n)
n>0

ffi Number of times t at which an arrwing job uses devicej for its
first service request.

E

== ~ A o j
j l l

ffi Total time dunng which n, ffi n.

= ~ T,(n) = T - T,(0)
n>0

1 ~ C,j(n) [Undefined if C, ffi 0]
--~ C , n > O

ffi AoJAo [Undefined ff Ao -- 0]

= ~ nT,(n)
n:>O

TABLE Ill. OPERATIONAL PERFORMANCE MEASURES

i ff i l K yffi0 K
[Any quantity whose denominator would be zero is undefined]

Request Completton Rates
Conditional X,(n) ffi C,(n)/T,(n)
Unconditional, dewce* X, - C J T

K

Unconchtlonal, system Xo = ~. X,q,0ffi ColT
#--l Mean Service Time Between Completions

Conditional S,(n) ffi T,(n)/C,(n)
Unconditional S, ffi B,/C,

Queue Size Dtstrtbutwn p,(n) ffi T,(n)/T
Utthzation U, ffi B , / T ffi 1 -p,(O)
Mean Queue Length fz, ffi W , / T
Mean Response Time R, ffi W,/C,

* Note that X, ffi ~ X,(n) p,(n) is an identity.
n>0

V,(n) ffi C , (n) l C o c a n n o t be hand led . Be-
cause r o u t i n g f requenc ies a n d visi t ra t ios
o rd ina r i l y d e p e n d on ly on t he in t r ins ic de-
m a n d s of jobs a n d n o t on local queue
lengths , such q u a n t i t i e s are of l i t t le in te res t .
However , q u a n t i t i e s l ike q v (N) a n d V , (N)
do arise f r equen t ly - - e . g . , w h e n the d e m a n d
for swapp ing d e p e n d s o n the m u l t i p r o g r a m -
m i n g level N [DE~N75b, D E s ~ 7 6] - - a n d
these q u a n t i t i e s c an be h a n d l e d in the
models .

E x a m p l e : An initially idle device i is ob-
served for 16 seconds. At t -- 0, 1, 2, and 3

jobs arrive. Each job requires exactly 4 sec-
onds of service. (This implies that comple-
tions occur at times t -- 4, 8, 12, and 16.)
The resulting n,(t) is sketched in Figure 14.
The load dependent quantities are:

n C,(n) T,(n) Sf(n) Xf(n) p,(n)

0 0 0 - - 0
1 1 5 5 1/5 5/16
2 1 5 5 1/5 5/16
3 1 5 5 1/5 5/16
4 1 1 1 1 1/16

Totals: C, ffi4 T ffi 16 - - 16/16

Computing Surveys, Vol. 10, No. 3, September 1978

n, f t)

5

3

2 ¸

2 4 6

FIGURE 14.

T h e O p e r a t i o n a l A n a l y s i s o f Q u e u e i n g N e t w o r k M o d e l s • 247

I
I

I
8 I0 12 14 16

A queueing at a device.

Note that C,(0) = 0 since departures from
an idle device are impossible. The uncon-
ditional mean service time is, as expected,

S, ffi B,/C, ffi 16/4 = 4 seconds.

Notice, however, that S,(n) is not 4 for any
value of n. The accumulated waiting time
is:

W, = Y. n T,(n) = 34 job-seconds.
n > 0

Therefore the mean queue length and re-
sponse time are:
~, = W , / T R, = W , / C ,

= 34/16 = 34/4
-- 2.125 jobs = 8.5 seconds.
If the arrivals were synchronized with the

departuresmi.e., occurring at t = 0, 4, 8, and
12--then n,(t) = I throughout the 16-second
observation period. In this case S, (1) = 4
seconds, S,(n) = 0 for n > 1, f~, = 1, and
R, = 4 seconds.

This example illustrates two impor tant
points. First, the amount of queueing de-
pends on the nature of the arrivals and
departures. Different pat terns of arrival of
the same jobs may produce different mea-
sures of mean queue length and response
time, even while producing the same
throughput and utilization. This is why an
analyst who seeks to measure queueing
(e.g., wi thp,(n) , or fz,, or R,) needs to make
more assumptions.

T he example also illustrates tha t the ob-
served service function S,(n) depends on
the arrival pat tern, even though all the jobs
may have identical service requirements.
There is, in general, no simple relationship
between S,(n) and the service times re-
quired by jobs.

6. SOLVING FOR STATE OCCUPANCIES

T he assumption of job flow balance is in-
sufficient to find flows in a closed network,

or to compute response t imes accurately.
These quantit ies depend on how jobs dis-
t r ibute throughout the network; the job
flow balance equations do not. To represent
the job distribution, we define a "s ta te" of
the system: a vector

n - - (n l , nx)

in which n, __ 0 is the number of jobs in
queue at device i, and N = n~ + . . . + n K is
the total number of jobs in the system.

The set of all s tates n is called the "sys-
t em state space." Th e number of possible
states is usually quite large. We observe
tha t each state can be encoded by a binary
string of N ls and K - 1 0s,

11...1011...10...011...1 ;

nl n2 nK

the number of such strings is the number
of permutat ions of N indistinguishable ob-
jects and K - 1 indistinguishable objects,
namely,

L f (N + K - 1) ! [N + K - 1)
N ! (K - 1) ! = ~ K - 1 _"

T h e number of possible states, L, can be
large even for relatively small systems; for
example, when N ffi K = 10, L is approxi-
mately 92,000. For an open system, where
N itself can change, the number of possible
states can be considerably larger. We will
be greatly concerned with the computa-
tional feasibility of solutions over this state
space.

State Transition Balance

In the following discussion, k, n, and m
denote distinct system states. If the system
moves from state n to s tate m without
passing through any observable intermedi-
ate state, a one-s tep s ta te t rans i t ion (from
n to m) has occurred. Let C(n, m) denote
the number of one-step state transitions
observed from n to m; since no transition
implies no state change, C(n, n) = 0.

Now, if job flow is balanced, the number
of arrivals at every device is the same as
the number of departures. This means tha t
n~(0) = n,(T) for each device i, or equiva-
lently tha t n(0) ffi n(T). In moving from its
initial state to its final state, the system
must leave every state once for every entry.
Hence job flow balance is equivalent to the

Computing Surveys, Vol. 10, No. 3, September 1978

248 P. J. Denning and J. P. Buzen

Principle of State Transition Balance:
The number of entries to every state is
the same as the number of exits from
that state during the observation
period.

From now on we will use the term flow
balance to mean that arrivals equal depar-
tures at every device or system state. With
the flow balance principle we can write
"conservation of transition" equations:

C(k,n) ffi~C(n,m) all n.
k m

For given n, both sides of this equation are
0 if and only if T(n) = 0.

If we use these equations without flow
balance, the only error would be a + 1 (or
-1) term missing on the right side if n is
the final (or initial) state of the system for
the observation period. This error is not
significant if the initial and final states are
visited frequently during the observation
period. (The error is zero if the initial and
final states are the same--i.e., flow is bal-
anced.) As we noted in discussing job flow
balance, choosing the observation period so
that flow is balanced is not a new notion.

The "transition rate" from n to m is the
number of transitions per unit time while n
is occupied:

r (n , m) ffi C(n , m) / T (n) ;

it is not defined if T(n) ffi 0. The transition
conservation equations can be re-expressed
a s

Y. T(k) r(k, n) -- T(n) ~ r(n, m),
k m

for all n from which exit rates r(n, m) are
defined; note T(n) ffi 0 if r(n, m) is not
defined. Substituting T(n) -- p(n)T and
cancelling T, we obtain the

STATE SPACE BALANCE
EQUATIONS

p(k) r(k, n) = p(n) ~ r(n, m)
k m

for all n in which r(n,.) is defined.

Because the T(n) sum to T, we can aug-
ment these equations with the normalizing
condition

p(n) = 1.
n

If the system can move from any n to any
m, then these are L - 1 linearly independent
balance equations; only one set ofp(n) can
satisfy them and the normalizing condition

simultaneously. (Our definitions imply p(n)
= 0 for states not included in these balance
equations.)

Solving the Balance Equations

The state space balance equations are op-
erational relationships expressing the val-
ues of p(n) in terms of the r(n, m). This
form of expression is generally not useful
since the analyst does not have the values
of r(n, m). Instead, the analyst wishes to
express the r(n, m) in terms of available
quantities such as visit ratios and the ser-
vice functions, and then solve for the p(n).

To avoid a lot of symbol manipulation,
we will outline the steps of the solution; the
details are found in [DENN77a]. The solu-
tion uses two additional assumptions about
system's behavior. The first is:

One-Step Behavior: The only observ-
able state changes result from single
jobs either entering the system, or mov-
ing between pairs of devices in the sys-
tem, or exiting from the system.

The hypothesis of one-step behavior asserts
that simultaneous job-moves will not be
observed; it reduces the number of nonzero
rates r(n, m) that must be considered. For
example, when a job moves from device i
to device j, the system moves from state n
to its "neighbor," n,j, where

n = (nl , , n,, , nj, , nK)
n,~ffi (n l , . . , n , - 1 , . . , n j + 1, ,nK) .

The nonzero transition rates correspond to
(i, j) job moves under the one-step assump-
tion. Thus there are about LK "~ rates to
specify, rather than L e. (L is the size of the
state space.) With this assumption, r(n, n,j)
depends only on the rate of job flow from
device i to device j. The one-step property
is met in many real systems.

To specify the transition rates in terms
of routing frequencies and service func-
tions, we need to remove the conditioning
on the total system state. The assumptions
that do this are called "homogeneity" be-
cause they assert that, for given n,, device
i is influenced equally by all system states:

Devtce Homogeneity: The output rate of
a device is determined completely by its
queue length, and is otherwise indepen-
dent of the system's state.

Computing Surveys, Vo|. 10, No. 3, September 1978

The Operational Analys i s of Queueing Network Mode ls 249

Rout ing Homogeneity: The routing fre-
quencies for a given total load (N) are
independent of the system's state.

Device homogeneity is a reasonable as-
sumption for systems in which no device
can block any other. 3 Routing homogeneity
is a reasonable assumption for most sys-
tems because job transitions generally de-
pend on the intrinsic demands of jobs but
not on instantaneous queue lengths.

The stochastic counterpart of routing ho-
mogeneity is the assumption that job tran-
sitions among devices follow an ergodic
Markov chain. The stochastic counterpart
of device homogeneity is that interdepar-
ture times of a device are exponentially
distributed. Because they are operationally
testable, homogeneity assumptions are fun-
damentally different from their stochastic
counterparts. The example of the next sub-
section (based on Figure 15) illustrates a
homogeneous system. It is impossible to
determine whether or not this system sat-
isfies any stochastic assumptions.

Device homogeneity asserts that the
ratio C(n, n~j)/T(n) is the same as
C,~(nJ/T~(n,). Routing homogeneity asserts
that the count Cu(nt) is the same as q,jCt(n,).
Both assertions imply

r(n, n,~) = qJS~(n,).

With this substitution, the state space bal-
ance equations reduce to a set of "homog-
enized balance equations" [DENN77a]. The
resulting solution forp(n) is of the so-called
product form because it separates into K
factors, one for each device, as shown in the
box below [BASK75, COFF73, GORD67,
JACK63, KLEI75].

-.PRODUCT FORM SOLUTION
p(n) = F~(n~)F2(n2) .. Fg(ng)/G

where the factor for device t is
I1, n -- 0

F,(n) ~- X~S,(n)S,(n _ 1) S,(1), n > 0

and G is a normalizing constant. The S~(n)
are the service functions. The X, are a so-
lution of the job flow balance equations; for
an open system X~ = V, Xo, and for a closed
system X~ ffi IT, will do.

Jackson showed that, for open systems, this
solution is separable further into the prod-
uct of the queue-length distributions of the

individual devices [JACK57, KLEI75]. The
operational counterpart of Jackson's result
is proved in [DENN77a]:

p(n) =pl(nl)p2(n2) " pK(n~)

where
p,(n) = F,(n)/G,

N

G, ffi ~ F,(n)
n~O

and N is the maximum number of jobs
observed in any queue of the system. The
constant G of the product form solution is
GIG2"" "GK. (Because each n, can range
from 0 to N in an open system, we can
interchange the sums and products in the
definition of G, thereby manipulating G
into the product of the G,.) Note that pt(n)
is exactly the queue length distribution ob-
tained by considering device i as an iso-
lated, single-device network with through-
put Xt [BvzE76b]. Jackson's result shows
that the performance quantities of device i
in an open network are easy to calculate
from these formulae.

For a closed system, p(n) cannot be sep-
arated into the product of the individual
queue length distributions. This is because
the queue lengths are not independent and
the products and sums in the definition of
G cannot be interchanged. More complex
computations are required for closed sys-
tems.

To simplify calculations analysts some-
times use the operational assumption called
homogeneous service times (HST). It as-
serts that the conditional service times
St(n) all have the same value St, which is
the (unconditional) mean time between
completions. (That is, St(n) = St for all n.)
In this case the factor F,(n) becomes (V, St) n
for a closed system and (XtS,) n ffi U, n for an
open system. In obtaining parameters for
the HST solution, the analyst does not need
to know each V, and St; he needs only VtSt,
the mean total time a job requires at de-
vice i. As illustrated in the next subsection,

3 Examples of blockmg are mul t ip le C P U s tha t can
lock one ano the r ou t of the schedul ing queues , or a
s tore-and-forward communica t ions processor t ha t
canno t t r ansmi t a message to t he nex t node because
no buffer space is available a t t ha t node. Device ho-
mogene i ty can also be a poor app rox imahon in a closed
sy s t em if some device h a s a very h igh var iance in t he
t imes be tween the comple t ions of reques t s for i ts
service.

Computing Surveys. VoL 10, No. 3, September 1978

250 P. J. Denning and J. P. Buzen

the H S T assumption may cause significant
errors in the queue length distributions.

Open and closed networks with more
than one class of jobs (workloads) exhibit
similar product form solutions. The major
difference is tha t there is a factor corre-
sponding to each job class at each device
[BASK75].

An Example

Figure 15 illustrates a simple system with
K ffi 2 and N -- 2. The timing diagram
shows a possible behavior. The numbers
inside the diagram show which job is using
a device, and shaded portions show idle-
ness. The observation period lasts 20 sec-
onds. All three possible states--(nln2) ffi 20,
11, and 02--are observed; they are dis-
played along the bot tom of the diagram.

We will compare the actual performance
quantities with the model 's estimates. The
actual proport ions of time of state occu-
pancy are

p(20) ffi T(20)/T ffi 16/20 = .80
p(11) ffi T(11)/T-- 3/20--.15
p(02) -- T(O2)/T = 1/20 = .05

The transition rates are:

r(20,11) ffi T(20,11)/T(20) = 2/16 = .125
r(11,02) ffi T(11,02)/T(11) = 1/3 -- .333
r(02,11) ffi T(O2,11)/T(02) ffi 1/1 ffi 1.000
r(11,20) ffi T(ll,20)/T(11) ffi 2/3 = .667

The state space balance equations are:
p(11)(2/3) ffi p(20)(2/16)
p(20)(2/16) + p(02)(1) = p(11)(1/3 + 2/3)
p(11)(1/3) = p(02)(1)
p(20) +p(11) +p(02) = 1

I t is easily verified that the actual p(n)
satisfy these equations.

Because the initial and final states of the
observation period are the same, the system
is flow balanced. Because there are no rout-
ing choices (q12 = q21 = 1) , and because the
state is fully determined by either queue
length (nl ffi 2 - n 2) , the system is homo-
geneous. 4 Therefore, the product form so-
lution is exact. We will verify this. The
device service functions are:

n St(n) S~(n)

1 3/1 = 3.0 3/2 = 1.5 (seconds)
2 16/2 = 8.0 1/1 = 1.0

Since I11 ffi V2 ffi 1, the device factors are:

n Fl(n) F~(n)

0 1.0 1.0
1 3 . 0 1 .5

2 24.0 1.5

The normalizing factor is
G -- F](2)F2(0) + F](1)F2(1) + F](0)F2(2)

: (24.0)(1.0) + (3.0)(1.5) + (1.0)(1.5)
: 30

(This illustrates that a system can be homogeneous
without its devices having to satisfy assumphons of
exponentially distributed mterdeparture times.

×o
.el

Device I

Device 2

STATES :

K = 2 N = 2

T
0 I0 II 12 13 19 2 0

I I I I I I I i i ~ / j i . • i i i i

I 2 ~ / I 2
,

20 II 02 II 20 II 20
FIGURE 15. A two-device system and observed behavior.

Computing Surveys, Vol. 10, No. 3, September 1978

The Operat ional Analys is o f Queueing Ne twork Mode l s

T h e s ta te occupancies are as observed:
p(20) -- F~(2)F2(O)/G

-- (24.0)(1.0)/30--.80
p(11) -- F~(1)F2(1)/G

= (3.0)(1.5)/30 = .15

p(02) -- FI(O)F2(2)/G

ffi (1.0)(1.5)/30 = .05

Next, we will compare with the solution
based on homogeneous service t imes
(HST). Because the service t ime functions
are not constant, this solution is not exact
for this system. T h e uncondit ional mean
service t imes are

$1 = B1/C1 ffi 19/3 = 6.333 seconds

$2 = B2/C2 = 4/3 = 1.333 seconds

T h e H S T transi t ion ra tes are
r(20,11) = r(11,02) ffi 1/$1

r(02,11) ffi r(11,20) = 1/$2

There are significant errors be tween these
and the actual rates:

HST
r(n, m) Actual Model Error

r(20,11) .125 . 1 5 8 +26.4%
r(ll,02) .333 .158 -52.5%
r(02,11) 1.000 .750 -25.0%
r(ll,20) .667 .750 +12.5%

In the H S T model, the device factors are of
the form F,(n) ffi (V, S J n, which works out
to be:

n Fdn) F2(n)

0 1 1
1 19/3 4/3
2 361/9 16/9

T h e normalizing factor is
G -- Fl(2)F2(0) + Fz(1)F2(1) + F~(0)F2(2)

= (361/9)(1) + (19/3)(4/3) + (1)(16/9)
ffi 453/9

With the formula p(nln2) = FI(n])F2(n2)/G
we can calculate the s ta te occupancies ac-
cording to the H S T model:

HST
p(n]n2) Actual Model Error

p(20) .800 .797 -0.4%
p(l l) .150 .168 +11.8%
p(02) .050 .035 -29.3%

This shows tha t the H S T model can make
significant errors in the queue length dis-

251

tr ibutions, e.g.,p](n) = p(n, 2 - n). However
these errors are less serious than the ones
in t ransi t ion rates, and they hardly affect
the model ' s es t imates of utilizations (U] =
1 - p (0 2) , /-?2 = 1 - p (2 0)) :

HST Error U~ Actual Model

U1 .950 .965 +1.5%
U2 .200 .203 +1.5%

T h e model es t imates tha t X0 ffi U1/S1 ffi
U2/$2 ffi .152 jobs /second, which is 1.5%
higher t han actual. T h e m e a n queue
lengths are calculated as

f~l ffi 2.p(20) + 1 .p(l l)

h2 = 2 - fil

T h e y work out as follows:

l IST Error
fz, Actual Model

ft~ 1.750 1.762 +0.7%
h2 .250 .238 -4.8%

T h e m e a n response t ime in the sys tem is R
= 2/Xo. T h e H S T model es t imates t ha t R
= 13.2 seconds, which is abou t 1.3% less
t han the actual of 13.3 seconds.

This example i l lustrates wha t is observed
f requent ly in practice: the H S T model gives
excellent approximat ions of utilizations and
sys tem response times, fair to good approx-
imat ions for m e a n queue lengths (and re-
sponse times) a t devices; and fair to poor
approximat ions to the queue length distri-
butions.

Accuracy of the Analysis

Flow balance, one-step behavior , and ho-
mogene i ty are the weakes t known assump-
t ions leading to a p roduc t fo rm solution for
p (n) . T h e balance assumpt ions introduce
no error if the observat ion period is chosen
so t ha t the initial s ta te of the sys t em is the
same as the final. Otherwise, the error will
be small if the observat ion per iod s tar ts and
ends on f requent ly visited states.

One-s tep behav ior is a p roper ty of m a n y
real systems. In m a n y others, the n u m b e r
of s imul taneous job t ransi t ions are a small
fract ion of the total n u m b e r of s ta te
changes. (There are, however, sys tems in
which "bulk arr ivals" allow groups of jobs
to make t ransi t ions together , in violation of

t

Computing Surveys, Vol. 10, No. 3, September 1978

252 P. J. Denning a n d J. P. Buzen

the one-step assumption. Such cases can be
treated by introducing new operational as-
sumptions to characterize the bulk ar-
rivals.)

Homogeneity is often a reasonable ap-
proximation. In systems where devices can-
not block each other, a device's service
function may not be influenced significantly
by queueing at other devices. Routing fre-
quencies seldom depend on local queue
lengths. If used, the homogeneous ser-
vice time (HST) approximation can intro-
duce further errors; these errors affect
queue length distributions the most, utili-
zations the least. HST models seldom esti-
mate utilizations with errors exceeding
10%, but they may make larger errors in
estimating mean queue lengths (as much as
30%).

As we will see in the section on decom-
position, device homogeneity is equivalent
to the assumption that a device's service
function S,(n) is the same whether the de-
vice is observed online, or offline under a
constant load of n requests. For single-
server devices an offiine experiment will
report that S,(n) is the mean of request
sizes regardless of the queue length--an
HST assumption. In reality, the relation
between the distribution of request sizes
and the service function is more complex.

7. COMPUTATION OF PERFORMANCE
QUANTITIES

The product form solution forp(n) is math-
ematically neat but not obviously useful:
computing a utilization U,, for example,
seems to require first computing the nor-
malizing constant G, then summing the
p(n) for those n in which n, _ 1. For a
closed system with homogeneous service
times, a direct computation requires

[N + K - 1)
L---~ K - 1

additions, and N - 1 multiplications for
each addition--a total of L N arithmetic
operations. This computation would be pro-
hibitively expensive for reasonable choices
of N and K.

In 1971 Buzen developed a fast algorithm
for computing G [BuzE71b, B~ZE73]. For a
system with homogeneous service times, it

requires about 2 K N arithmetic operations;
a utilization (U,) can be computed with 2
more operations, and a mean queue length
(fz,) with 2N more. For systems whose de-
vices have load dependent service func-
tions, the computation of G increases to
about N 2 K operations.

The next two subsections review the es-
sentials of these computations for two kinds
of systems with homogeneous service times:
a closed system and a terminal-driven sys-
tem. A third subsection surveys the general
algorithms and returns to the example of
Figure 13.

Closed System with Homogeneous Service
Times

Figure 16 shows the essence of the result
developed by Buzen [Buzz71b, BUZE73].
The algorithm fills in numbers in a two-
dimensional matrix g. The columns of g
correspond to devices, rows to loads. The
computation starts with ls in the first row
and 0s in the first column below the first
row. A typical interior element is ,computed
from

g(n, k) ffi g(n, k - 1) + Ykg(n - 1, k),

where Yk ffi VkSk. The normalizing constant
G is g(N, K) . It can be computed in 2KN
arithmetic operations.

The algorithm actually requires much
less storage than Figure 16 suggests. Be-
cause the matrix can be filled one column
at a time, we need only store the column
currently being computed. Let G[0 N],
initially 0, denote a vector array represent-
ing a current column of g, and let Y[1 K]
denote another vector containing

O E V I C E S

0 t 2 ... k-t k ... K

, 0 ii 0

A

O o(n-i, k)
$ n-t .~¥,

n C
fl(n. k - I I ¢(n. k) g(n,K)

• I
O(N,K) • G

N o I

FmURE 16. Algorithm for computing g(n, k) of
closed system with homogeneous servme times.

Computing Surveys, Vol. 10, No. 3, September 1978

T h e O p e r a t i o n a l A n a l y s i s o f Q u e u e i n g N e t w o r k M o d e l s

VIS1, • • -, VKSK. T h e n the a lgor i thm is

(initialize:} G[0] :-- 1
f o r k:= I to K do {compute kth column}

for n : f l t o N d o
{ G [n - 1] contains g(n - 1, k);

G[n] c o n t a i n s g(n, k - 1)}
G[n] := Gin] + Y[k]*G[n - 1]

e n d
e n d

When this procedure terminates , G[N] con-
tains the normalizing constant.

T h e impor tance of this a lgor i thm is not
only tha t it computes g (n , K) = Gin]
quickly, but tha t the m e a n queue lengths
and the utilizations can be expressed as
s imple functions o fg(n , K) [BvzE71b]. T h e
results are shown below.

Proportion
of time
n,>_n

Utilization

System
through- Xo
put

Mean queue -

Q,(n) = Y," g (N - n, K)
g(N, K)

U, = Q,(1) = Y, g (N - 1, K)
g iN, K)

= g (N - 1, K)
g(N, K)

N
length n, = ~ y , , g (N - n, K)

.-z giN, K)

T h e formula for fz, can be rewri t ten as a
recursion,

fi,(N) = U,(N)(1 + f~,iN - 1)),

wi th in i t ia l condit ion f~,(O) = O. Th is shows
that f~,(N) can be calculated i te ra t ive ly
with 2N ar i thmet ic operations.

Example : For the example of Figure 15, we
had:

Y~ = VIS1 = 19/3 = 6.33 seconds
Y2 = V2S2 = 4/3 = 1.33 seconds.

The table below shows the matrix g for
loads N = 1, ,5:

N

0

0
1 0
2 0
3 0
4 0
5 0

1 2 Xo(N)

1.00 1.00 I
6.33 7.67 .130

40.1 50.3 I .152
254. 321. 1 . 1 5 7

1609. 2037. .158
10190. 12906. .158

The numbers in the Xo column are com-
puted from the system throughput formula
for the given N. For example, when N = 2,

253

g(1,2)
X0(2) = - - = 7.67/50.3 = .152

g(2,2)
which is the value obtained previously for
the HST model of Figure 15. The mean
queue length at device 1 when N = 2 is

2

ftl = ~. Y1 n g(2 - n, 2)
.-1 g(2, 2)
(6.33)(7.67) + (6.33)2(1.00)

50.3

= 1.762
which is the same as the value obtained
previously. Observe that the model predicts
that X0 saturates at 1/V1S1 = 0.158
jobs/second for N ~ 4. The actual system is
on the verge of saturation when N = 2, for
U1 = 0.95.

Terminal Driven System with Homogeneous
Service Times

Now we consider an i n te rac t i ve system of
the fo rm of Figure 17. Each of the M ter-
minals has think t ime Z. T h e n u m b e r of
act ive jobs is denoted by N, and the number
of thinking terminals by M - N . T h e central
subsys tem has K devices with homogene-
ous service t imes and visit rat ios indepen-
dent of N.

By t reat ing the terminals as a "device"
whose service function is Z / n when there
are n thinkers, we can employ efficient
computa t iona l procedures to compute a
normalizing cons tant for this sys tem
[WILL76]. T h e a lgor i thm fills in a mat r ix h
as suggested in Figure 18. T h e rows corre-
spond to number s of terminals , columns to
devices in the central subsystem. Init ially
row 0 and column 0 are all ls. A typical
interior e lement is computed f rom

m Y ,
h(m, k) = h(m, k - 1) + T h i m - 1, k),

I
M - N Thinkers N Active Jobs /

1
M Termmaq$ Centrol Subsystem

Z Th~nk T~me

FmURE 17. Termina l -dr iven s y s t e m wi th central
s u b s y s t e m replaced by an equiva lent device.

Computing Surveys, Vol. 10, No. 3, September 1978

254 P. J. Denning a n d J. P. B u z e n

0 t 2

0 I I

N I
0

2

T :
E
R

M
I

N m
&

L

S

t~

D E V I C E S

* . , ~-f It • . . K

n(M,K)
0

FIGURE 18. Algorithm for computing h(m, k) of ter-
minal driven system with homogeneous service
times.

where Yk = VkSk. When this computa t ion
terminates , the per formance measures can
be compu ted f rom the formulae below.

Proportion of p(0) ffi 1/h(M, K)
time central
subsystem is
idle

M h (M - 1, K)
Throughput X(M) ffi

Z h(M, K)

Response time R(M) = M/X(M) - Z
Mean active fV ffi M - ZX(M)

load

Example : We used this algorithm to corn-

pute h(M, K) for the system of Figure 11(a),
calculating the response time R(M) for
M = 1, 2, . - - , 50. The result is plotted in
Figure 19. Note that the curve approaches
the asymptote M - 20, is predicted in Figure
11(b). For M ffi 18, the formulae in the box
yield these values:

X(18) = .715 jobs/second
R(18) = 5.2 seconds

p(0) = .062
N = 3.7 jobs

We used these throughput and response
time values previously in our discussion of
Figure 11. The model calculates that the
central subsystem is idle for 6.2% of the time
and that there are 3.7 active jobs on average.

Figure 17 suggests tha t the ent i re central
subsys t em can be replaced with an equiva-
lent device whose service function is
S (N) = 1/Xo(N), Xo(N) being the through-
pu t of the centra l subsys tem under a con-
s t an t load N. Only if the actual sys tem is
homogeneous will this r ep lacement be ex-
act. (We will explain why in the next sec-
tion.) Wi th homogenei ty , the distr ibution
of act ive loads, p (N) , satisfies the s ta te-
space balance equat ion

- N + I
P (N) X ° (N) = p (N - 1) M Z

Using the value of p(0) f rom the box, we

(n

o

z

o

(.3

tJJ

(n

J

25"

20-

IO

0
0 IO I,~ 2 0 Z2 ~ 3 0 3 5 4 0

(M j)

N O . T E R M I N A L S (M

FIGURE 19. Response time for example network.

Computing Surveys, Vol. 10, No. 3, September 1978

The Operational Analysis of Queueing Network Models 255

can calculate p(N) iteratively from this bal-
ance equation. Note, however, that the
measures shown in the box do not require
calculating Xo(N) orp (N) first.

Example: Figure 20 shows the throughput
function Xo(N) for the central subsystem of
the example of Figure 11(a), computed as if
this subsystem were closed. The figure also
displays p(N), computed for M = 18 using
the iterative formula. The straight line is
the equation (M - N)/Z, which is the job
submission rate of the thinking terminals;
this line crosses Xo(N) at N = 3, which is
19% less than the model's ,~ ffi 3.7. The
crossing point represents the most favored
value of N, the load that balances job sub-
mission rate with job completion rate. In
many cases it is a good estimate of N (see
[CouR75, COUR77]). The tick-marks indi-
cate crossing points for other values of M.
In the case shown, the model estimates that
the load does not exceed 6 jobs for 97% of
the time--nearly all the time at most 1/3 of
the terminals are awaiting a response. (The
tendency for p(N) to be a normal distribu-
tion has been confirmed as long as the var-
iance of execution times is less than 10 times
the mean [BALB78].)

General Systems

The computational procedures have been
studied and refined extensively. They now

deal with open and closed networks, various
queueing disciplines at the individual de-
vices, and multiple classes of jobs (work-
loads) with class changes allowed. Some are
available today as commercial queueing
network evaluator packages [BuzE78b].
Comprehensive treatments of these algo-
rithms have been given by Shum [SHUM76]
and by Reiser and Sauer [Rzxs78]. One of
the fastest algorithms has been reported by
Balbo, et al. [BALB77]. (See also [CHAN75a,
GELE76a, HERZ75, REIS75, WILL76].) The
remarkable speed with which the perform-
ance quantities of complex networks can be
calculated is an important reason that
queueing network models have become so
widely used.

Example: We have applied these algo-
rithms to the problem of Figure 13 under
the additional assumption that the average
batch multiprogramming level is 10. The
results are summarized in Table IV. The
exact results confnTn the approximate anal-
ysis given before: the faster CPU helps the
batch workload, as planned, but hurts the
interactive workload. The disk queue is
longer after the change because the CPU is
no longer the bottleneck for the batch work-
load; but the longer disk queue interferes
with the I/O-bound interactive jobs,
thereby increasing interactive response time
from 4 to 10 seconds. Whereas the total

"° t X o (N)

o ~

7-" " .4t I ~ : \ m-N
n,. 0 3
o m ' 2 0

o o
~ "" .

N

0 2 4 6 8 I0 12 14 16 18 20 22 24 26 28

N U M B E R O F A C T I V E J O B S

FIGURE 20. Load distribution in example network.

Computing Surveys, Vol. 10, No. 3, September 1978

256 P. J. Denning and J. P. Buzen

TABLE IV. EXACT RESULTS FOR EXAMPLE OF FIGURE 13

Throughput (job/sec)
Response Time (sec)
CPU utihzation (%)
CFU Queue Length (mean jobs)
Disk Utilization (%)
Disk Queue Length (mean jobs)

Ortginal System

Int. Batch. Total

.735 .926 1.66
4.0 10.8 - -
7.4 92.6 100.0

.9 9.8 10.7
66,2 8.3 74.5

2.1 .3 2.4

CPU 5× Faster

Int. Batch Total

.623 4.64 5.26
10.1 2 2 - -
1.2 92.8 94.0

1 5.2 5 3
56.1 41,8 97,9

6.3 4.8 11 1

throughput increased by a factor of 3.2
(from 1.66 to 5.26 jobs/second), the batch
throughput increased by a factor of 5.01
(from .926 to 4.64 jobs/second). The batch
throughput was speeded up by more than
the CPU speedup factor--at the expense of
the interactive workload.

This example illustrates why it is safer to
employ the analytic tool than to trust one's
untrained intuition. Many analysts find this
example surprising, until they realize that
the ratios of throughputs for the different
workloads are not invariant under the
change of CPU.

8. DECOMPOSITION

The formulae derived from the product
form solution will be more accurate when
used with the online service functions of
devices, obtained by stratified sampling
while devices are in operation. However,
for performance prediction, the analyst
must estimate the actual service functions
from the data on request sizes, a task com-
plicated by the lack of a simple relationship
between request sizes and intercompletion
times. Decomposition is an important
method of establishing such a relation.

Offline Experiments

Figure 21 shows that decomposition can be
applied to a subsystem of one or more de-
vices. The principle is to study the subsys-
tem offline, that is, independently of any
interactions with its environment. To do
this, the analyst subjects the subsystem to
a series of controlled experiments; each is
based on measuring the subsystem's output
rate when put under constant load. The
"experiment" may be conceptual rather
than physical, conducted with a model
rather than a measurement.

ORIGINAL
SYSTEM

EQUIVALENT
DEVtCE

OFF-LINE
EXPERIMENT
(Iood = N)

FIGURE 21. Pnnclple of decomposition.

In an offline experiment, the subsystem
is operated under a constant load of N jobs.
Immediately after each job completion, the
analyst adds another job to keep the load
equal to N. If, during T seconds of such an
experiment, the analyst counts C comple-
tions, he sets the conditional output rate to
be X(N) = C/T. The subsystem is then
replaced by an "equivalent device" whose
load-dependent service function is S(N) ffi
1/X(N). Note that arrivals and completions
are synchronized in this kind of experiment.

A subsystem may be replaced exactly by
an equivalent device only when the subsys-
tem's output rate is completely determined
by its given load (N) and is otherwise in-
dependent of the state of the whole system.
In this case the distribution of jobs outside
the subsystem cannot be influenced by the
distribution of jobs inside, and the queue
distribution p,(n) of any external device is
the same whether the equivalent device or
the real subsystem is online. It also means

Computing Surveys, Vol. 10, No 3, September 1978

The Operational Analysis of Queueing Network Models • 257

that the subsystem responds the same to
any environment that subjects it to the
given N and, hence, the offiine experiment
must reveal the online service function. In
other words, homogeneity asserts exact de-
composability for a device.

It is clear that any subnetwork of a sys-
tem whose devices and routing frequencies
are homogeneous is perfectly decomposable
from the system. This has also been proved
by Chandy, Herzog, and Woo, who showed
that, in a product form solution, the factors
corresponding to devices in the subnetwork
can be coalesced into a single factor whose
service function is obtained from an offiine
experiment [CHAN75a]. ~ This result ex-
plains why the decomposition used at Fig-
ure 17 (to replace the central subsystem of
Figure 11) introduced no new error beyond
what already resulted from the homogene-
ity assumptions. The converse of this result
is not true: a perfectly decomposable sub-
system need not comprise a network of
homogeneous devices.

Decomposition gives a good approxima-
tion when the number of state changes
within the subsystem between interactions
with the environment is reasonably large
[CouR77], for then the aggregated behavior
dominates the possible influence of any in-
dividual subsystem state. In the example of
Figure 11, each job causes an average of V0
+ I11 + V2 + V4 = 40 state transitions in the
central subsystem; hence we could expect
reasonable results from the decomposition
of Figure 17 even if the central subsystem
were not internally homogeneous.

The online service function may depend
on the variance of the distribution of re-
quest sizes: an occasional very long job will
cause a long queue to build, whereupon
longer interdeparture times may be ob-
served for longer queue lengths. By intro-
ducing the concept of stages of service, the
effect of variance can be represented in the
equivalent device. (See [BASK75, CHP~N75b,
GELE76a,b, KLEI75, LAzo77a,b, SEVC77,

In fact, ff n denotes a s ta te of a subne twork contain-
ing N jobs, where the p(n) s u m to p (N) , the ou t pu t
ra te is

X0(N) = ~p(n)/p{N) ~ q,o/S,(n,),

whmh is complete ly de te rmined by N

SHUM76, SHUM77].) A detailed treatment
of these topics has been given recently by
Chandy and Sauer [CHAN78].

Applications

The major application of decomposition is
simplifying problems through modnlariza-
tion. In his definitive treatment, Courtois
has shown that significant reductions in
solution times can be obtained by employ-
ing decomposition; indeed, for systems with
very large state spaces, decomposition may
be the only computationally feasible ap-
proach to a solution whose accuracy can be
guaranteed. [CouR77].

The most important applications of de-
composition have been for virtual memory
systems, blocking, and other behaviors
which cannot be represented directly in the
queueing network model.

The difficulty in virtual memory systems
is that the fixed size of real memory causes
the visit ratio at the swapping device to
increase with the multiprogramming level.
This effect was first treated in a queueing
network model by Buzen [BuzE71b,
BvzE71c]. Courtois made a significant con-
tribution by using decomposition to treat
systems whose multiprogramming level
varied during the observation period; he
also used decomposition to construct an
elegant analysis of the dynamics of thrash-
ing [CouR75, COUR77]. Others have ex-
tended the method to study optimal
multiprogrammed memory management
[BRAN74, BRAN77, DEI,~N75b, DEAN76].
(For a survey, see [DENN78].)

In systems where blocking occurs, the
device homogeneity assumption may be se-
riously violated. Blocking may occur when
a load controller stops admitting new jobs
to active status because memory is fully
committed [BRAN74, COUR75, DENN75b,
DENN76]; or when an I /O channel may be
temporarily blocked by some of the devices
it controls [BRow75, BROW77]; or when the
geometry of a rotating drum prevents it
from serving its separate sector queues si-
multaneously [DENs72]. In such cases, an
offline experiment may be used to replace,
with an equivalent device, the subsystem in
which blocking occurs.

Computing Surveys, Vol. 10, No. 3, September 1978

258 P. J. Denning and J. P. Buzen

Decomposition can be applied repeat-
edly: a system containing devices equiva-
lent to subsystems may be replaced by an
equivalent device. [BRow75, BROW77,
COUR77]. Decomposition has been used to
replace a subsystem of a simulation,
thereby speeding up the simulator
[ScHw78].

CONCLUSIONS

Operational queueing network theory is
based on the premise of testability. All the
basic performance quantities (Table
II)--utilizations, completion rates, mean
queue sizes, mean response times, load dis-
tributions--are defined as they would be in
practice from data taken over a finite pe-
riod. The analyst can test whether the basic
assumptions--flow balance, one-step be-
havior, and homogeneity--hold in any ob-
servation period.

The operational laws (Tables I and III)
are identities among operational quantities.
They are a consistency check--a failure to
satisfy an operational law reveals an error
in the data. They simplify data collection
by showing alternatives for computing per-
formance quantities.

Job flow balance implies that the
throughputs everywhere in a system are
determined by the throughput at any one
point in the system. Since an increasing
load will drive some device into saturation,
this assumption allows determining asymp-
totes on throughput and response time; the
only data needed for such a "bottleneck
analysis" are the visit ratios and saturation
output rates at the devices.

Job flow analysis does not account for
the effects of queueing in the system at
intermediate loads, which must be studied
in terms of the system's state space. Each
state n •ffi (nl, • • ", nx) represents a possible
distribution of jobs among the devices, and
p(n) represents the proportion of time state
n is occupied. The objective is to express
thep(n) directly in terms of the operational
parameters of the system.

Under the additional assumptions of one-
step behavior and homogeneity, we can fred
balance equations relating the p(n) to the
operational visit ratios and service time
functions. These appear to be the weakest

assumptions leading to the product form
solution forp(n). By exploiting the product
form of the solution, we can devise efficient
methods for calculating performance quan-
tities without having to compute the p(n)
explicitly. Indeed, the remarkable speed
with which performance quantities can be
computed using queueing network formu-
lae is an important reason that this tech-
nology is so widely used.

Most errors with these results arise from
the homogeneity assumptions. Homogene-
ity asserts that there is no interaction be-
tween a device and the rest of the system,
except for dependence on the local queue
length. In a real system the service function
will depend on the pattern by which the
rest of the system sends requests to a de-
vice, and that pattern may depend on the
form of the request size distribution of that
device.

In practice, errors from these assump-
tions are not serious. Even when the addi-
tional assumption of homogeneous service
times is used to simplify the analysis fur-
ther, these models estimate utilizations,
throughputs, and system response times
typically to within 10%, and mean queue
lengths and device response times typically
to within 30% [BuzE75, GIAM76, HUGH73,
LIPS77]. Refining the model of devices to
make explicit the effect of the request size
distribution increases the accuracy, espe-
cially in predicting queue length distribu-
tions [BASK75, CHAN75b, LAZO77a, REIS76,
SEvc77]. Very little is known about re-
sponse time distributions for these sys-
tems. (However, see [CHOw77, LAzo77b,
WOSG77].)

To use these results for performance pre-
diction, the analyst must estimate the pa-
rameter values for the projection period;
then use these estimates in the equations
to calculate the estimated performance
measures in the projection period. We have
offer~i no definitive treatment of the pa-
rameter estimation problem. Nor can we: it
is in the realm of inductive mathematics,
whereas operational analysis is a branch of
deductive mathematics. (See [GARD76].)
We have illustrated in the examples the
kinds of invariance assumptions analysts
use to estimate parameters.

Stochastic queueing theory makes some

Computing Surveys, Vol. 10, No. 3, September 1978

The Operational Analysis of Queueing Network Models 259

analysts more comfortable when estimating
parameters, since the theory tells how to
deduce confidence intervals to bound the
uncertainty in estimates derived from data
taken in a finite baseline period. However,
the stochastic model employs a hidden in-
ductive assumption: that the values of the
stochastic parameters in the projection pe-
riod are known functions of the correspond-
ing values in the baseline period. In fact,
there is no way to know this for sure. Thus,
the stochastic analyst faces exactly the BALE77
same uncertainties as the operational ana-
lyst; both must estimate unknown values
for the projection period from values ob-
served in the baseline period. Dealing with
uncertainties in estimation is a very impor- BALB78
tant problem, but it is beyond the pale of
the deductive mathematical system in
which relationships among variables are de-
rived. (For a complete discussion of these BASK75
points, see [BUzE77, BuzE78a, GARD76].)

With its weaker basis, operational
queueing network theory applies to a wider
class of computer systems than Markovian BouH78
queueing network theory. Conversely, Mar-
kovian theory includes assumptions not
present in the operational framework of BRAN74
this paper. Markovian queueing network
theory, for example, allows deriving differ-
ential equations relating time dependent BRAN77
probabilities p(n, t) to their derivatives; in
principle, we can then solve for the tran- BRow77
sient behavior of the system. As presented
in this paper, operational analysis contains
no concept like p(n, t). It gives no infor- BRow75
mation about a system's transient behavior.

These limitations, however, apply only to
the formulation presented in this paper.
Within the basic requirement of opera-
tional testability, it is possible to make fur-
ther assumptions to deal with transient be-
havior. Transient behavior might be
modeled as job flows "diffusing" in a system
[KLEI75], or as sequences of homogeneous
behaviors through successively higher
levels of aggregation of system states
[CouR77].

The path to further knowledge awaits
exploration. BuzE73

ACKNOWLEDGMENTS

We are grateful to the following individuals for their BuzE75
patience, constructive criticisms, wisdom, and insights:

G. Balbo; S. C. Bruell; J. C. Browne; K. M. Chandy; P.
J. Courtois; M. A. Franklin; W. D. Frazer; E. Gelenbe;
R. P. Goldberg; G. S. Graham; D. L. Iglehart; K. C.
Kahn; R. M. Keller; L. Kleinrock; E. D. Lazowska; J.
Leroudier; I. Mitrani; R. R. Muntz; D. Potier; M.
Reiser; D. B. Rubin; A. Schroeder; H. S. Schwenk; H.
D. Schwetman; K. C. Sevcik; J. Shore; A. W. C. Shum;
J. W. Wong; and L. S. Wright. Special thanks go to
G. S. Graham and E. D. Lazowska for carefully reading
earlier versions of this manuscript.

BuzE71a

BuzE71b

BUZE71C

REFERENCES
BALBO, G.; BRUELL, S. C.; AND SCHWET-
MAN, H. D. "Customer classes and
closed network models--a solution tech-
nique," in Proc. IFIP Congress 77,
North-Holland Publ. Co., Amsterdam,
The Netherlands, pp. 559-564.
BALBO, G.; AND DENNING, P. J.
Approxtmating load distributions m
time sharing systems, Tech. Rep. CSD-
TR-259, Computer Science Dept., Pur-
due Univ., W. Lafayette, Ind., March
1978.
BASKETT, F.; CHANDY, K. M.; MUNTZ,
R. R.; AND PALACIO8, J. "Open, closed,
and mixed networks with different
classes of customers," J. ACM 22, 2
(April 1975), 248-260.
BOUHANA, J. "Operational aspects of
centralized queuemg networks," PhD
Thesis, Computer Science Dept., Univ.
Wisconsin, Madison, Jan. 1978.
BRANDWAJN, A. "A model of a time
sharing system solved using equivalence
and decomposition methods," Acta Inf.
4, 1 (1974), 11-47.
BRANDWAJN, A.; AND MOUNIEX, B. "A
study of a page-on-demand system," Inf.
Process. Lett. 6, 4 (Aug. 1977), 125-132.
BROWN, R. M.; BROWNE, J. C.; AND
CHANVY, K. M. "Memory manage-
ment and response time," Commun.
ACM 20, 3 (March 1977), 153-165.
BROWNE, J. C.; CHANDY, K. M.; BROWN,
R. M.; KELLER, T. W.; TOWSLEY, D. F.;
AND DlSSLY, C.W. "Hierarchical tech-
niques for the development of realistic
models of complex computer systems,"
Proc. IEEE 63, 6 (June 1975), 966-976.
BUZEN, J .P. "Analysts of system bot-
tlenecks using a queueing network
model," in Proc. ACM SIGOPS Work-
shop System Performance Evaluation,
1971, ACM, New York, pp. 82-103.
BUZEN, J. P. "Queuemg network
models of multiprogramming," PhD
Thests, Div. Eng. and Applied Physics,
Harvard Univ., Cambridge, Mass., May
1971. (NTIS #AD 731 575, Aug. 1971.)
BUZEN, J.P. "Optimizing the degree of
multiprogramming in demand paging
systems," in Proc. IEEE COMPCON,
1971, IEEE, New York, pp. 139-140.
BUZEN, J. P. "Computational algo-
rithms for closed queueing networks with
exponential servers," Commun. ACM 16,
9 (Sept. 1973), 527-531.
BUZEN, J. P. "Cost effective analytic
tools for computer performance evalua-

Computing Surveys, Vol. 10, No. 3, September 1978

260

BUZE76a

BuzE76b

BUZE77

Buzz78a

BUZE78b

CHAN75a

CHAN75b

CHAN78

CHAN74

CHOW77

COEF73

COUR75

COUR77

DENN72

DENN75a

DENN75b

DENN76

P. J. Denning and J. P. Buzen

tion," in Proe. IEEE COMPCON, 1975,
IEEE, New York, pp. 293-296.
BUZEN, J.P. "Operational analysis: the
key to the new generation of perform-
ance prediction tools," in Proc. IEEE
COMPCON, 1976, IEEE, New York.
BUZEN, J. P. "Fundamental opera-
tional laws of computer system perform-
ance," Acta Inf. 7, 2 (1976), 167-182.
BUZEN, J .P . "Principles of computer
performance modeling and prediction,"
in Infotech state of the art report on
performance modehng and prediction,
Infotech Int. Ltd., Maidenhead, UK, DENN78
1977, pp. 3-18.
BUZEN, J.P. "Operatlonal analysm: an
alternative to stochastic modeling," in
Proc. Int. Conf Performance Computer
Installations, 1978, North-Holland Publ.
Co., Amsterdam, The Netherlands, pp. GARD76
175-194.
BUZEN, J. P., et al. "BEST/l--design
of a tool for computer system capacity
planning," in Proc." 1978 AFIPS Na.
ttonal Computer Conf., Vol. 47, AFIPS
Press, Montvale, N.J., pp. 447-455.
CHANDY, K. M., HERZOG, U., AND Woo,
L. "Parametric analysis of queueing
networks," IBM J. Res. Dev. 19, 1 (Jan.
1975), 36-42.
CHANDY, K. M.; HERZOG, U.; AND Woo,
L. "Approximate analysis of general GIAM76
queueing networks," IBM J Res Dev.
19, 1 (Jan. 1975), 43-49.
CHANDY, K. M., AND SAUER, C. H
"Approximate methods for analyzing GORD67
queuelng network models of computer
systems," Comput. Surv. 10, 3 (Sept.
1978), 281-317
CHANG, A.; AND LAVENBERG, S. "Work HERZ75
rates in closed queueing networks with
general mdependent servers," Oper. Res.
22, 4 (1974), 838-847.
CHow, W. The cycle time dtstr~but~on HUGH73
of exponential central server queues,
IBM Res. Rep. RC 6765, 1977.
COFFMAN, E G., JR., AND DENNING, P.
J. Operating systems theory, Prentice-
Hall, Englewood Cliffs, N.J., 1973. IGLE78
COURTOIS, P. J. "Decomposability,
instabilities, and saturation in multipro-
grammed systems," Commun. ACM 18,
7 (July 1975), 371-377.
COURTOIS, P. J. Decomposabihty.
queueing and computer .system appl¢- JACK57
cations, Academic Press, New York,
1977. JACK63
DENNING, P. J. "A note on paging
drum efficiency," Comput. Surv. 4, 1
(March 1972), 1-3. KLE[68
DENNING, P. J.; AND KAHN, K.C. Some
distribution-free properties of through-
put and response ame, Tech. Rep. CSD-
TR-159, Computer Science Dept., Pur-
due Univ., W. Lafayette, Ind., May 1975. KLE175
DENNING, P. J.; AND GRAHAM, G S.
"Multlprogramrned memory manage- KLEI76
ment," Proc IEEE 63, 6 (June 1975),
924-939 LAZO77a
DENNING, P. J.; KAHN, K. C., LEROU-
DIER, J ; POTIER, D., AND SURI, S
"Optimal multiprogramming," Acta Inf.
7, 2 (1976), 197-216.

DENN77a

DENN77b

GELE76a

GELE76b

DENNING, P. J.; AND BUZEN, J. P.
"Operational analysis of queueing net-
works," in Proc. Third Int. Symp. Com-
puter Performance Modeling, Measure-
ment, and Evaluatlon, 1977, North-Hol-
land Publ. Co., Amsterdam, The Neth-
erlands.
DENNING, P J.; AND BUZEN, J.P. "An
operational overview of queueing net-
works," in Infotech state of the art report
on performance modeling and predic-
tion, Infotech Int. Ltd., Maidenhead,
UK, 1977, pp. 75-108.
DENNING, P. J. "Optimal multipro-
grammed memory management," in
Current trends m programming meth.
odology III, K. M. Chandy and R. Yeh
(Eds.), Prentice-Hall, Englewood Cliffs,
N.J., 1978, pp. 298-322.
GARDNER, M. "Mathematical games:
On the fabric of inductive logic, and some
probability paradoxes," Scz. Am 234, 3
(March 1976), 119-122.
GELENRE, E.; AND MUNTZ, R. R.
"Probability models of computer sys-
tems I. exact results," Acta Inf. 7, 1 (May
1976), 35-60.
GELENBE, E., AND PUJOLLE, G. "The
behavior of a single queue in a general
queueing network," Acta Inf. 7, 2 (1976),
123-136.
GIAMMO, T. "Validation of a computer
performance model of the exponential
queueing network family," Acta Inf. 7, 2
(1976), 137-152.
GORDON, W. J.; AND NEWELL, G. F.
"Closed queueing systems with exponen-
tial servers," Oper. Res. 15 (1967),
254-265.
HERZOG, U.; Woo, L.; AND CHANDY, K.
M. "Solution of queueingproblems by
a recursive technique," IBMJ. Res. Dev.
19, 3 (May 1975), 295-300.
HUGHES, P. H.; AND MOE, G. "A struc-
tural approach to computer performance
analysm," in Proc 1973 AFIPS National
Computer Conf, Vol. 42, AFIPS Press,
Montvale, N.J., pp. 109-119.
IGLEHART, D. L. "The regenerative
method for simulation analysis," in Cur.
rent trends in programming methodol-
ogy III, K. M. Chandy and R. Yeh (Eds.),
Prentice-Hall Englewood, Cliffs, N.J.,
1978, pp. 52-71.
JACKSON, J. R. "Networks of waiting
lines," Oper. Res. 5 (1957), 518-521.
JACKSON, J.R. "Jobshop like queueing
systems," Manage. Scl. 10 (1963),
131-142.
KLEINROCK, L. "Certain analytic re-
sults for time shared processors," in
Proc. IFIP Congress 1968, North-Hol-
land Pubi. Co., Amsterdam, The Neth-
erlands, pp. 838-845.
KLEINROCK, L. Queuemg systems I,
John Wiley, New York, 1975.
KLEINROCK, L. Queuemg systems II,
John Wiley, New York, 1976.
LAZOWSKA, E.D. "The use of percen-
tiles m modelingCPU service time dis-
tributions," in Proc. Int. Syrup. Com-
puter Performance Modeling, Measure-
ment, and Evaluation, 1977, North-Hol-

Computing Surveys, Vol. 10, No. 3, September 1978

The Operational Analysis of Queueing Network Models 261

LAzo77b

LIPS77

Mooa71

MUNT74

MUNT75

REIS75

REIS78

RosE78

land Publ. Co., Amsterdam, The Neth-
erlands, pp. 53-66.
LAZOWSKA, E.D. "Characterizing ser-
vice time and response time distributions SCHE67
in queueing network models of computer
systems," PhD Thesis, Univ. Toronto,
Toronto, Ont., Canada. (Computer Sys- SCHW78
terns Research Group, Tech. Rep.
CSRG-85, Oct. 1977.)
LIFSKY, L.; AND CHURCH, J. D. Szvc77
"Applications of a queuemg network
model for a computer system," Comput.
Surv. 9, 3 (Sept. 1977), 205-222.
MOORE, C. G., III Network models for
large-scale t,me sharing systems, Tech.
Rep. 71-1, Dept. Industrial Eng., Univ.
Michigan, Ann Arbor, April 1971, PhD
Thesm. SHUM76
MUNTZ, R, R.; AND WONG, J. W.
"Asymptotic properties of closed
queueing network models," m Proc. 8th
Princeton Conf. Informatmn Sciences
and Systems, 1974, Dept. EECS, Prince- SHUM77
ton Univ., Princeton, N.J., pp. 348-352.
MUNTZ, R. R. "Analytic modeling of
interactive systems," Proc IEEE 63, 6
(June 1975), 946-953.
REISER, M.; AND KOBAYSHI, H.
"Queueing networks with multiple
closed chains: theory and computation
algorithms," IBM J. Res. Dev. 19 (May
1975), 283-294. WILL76
REISER, M.; AND SAUER, C. H.
"Queuemg network models: methods of
solution and their program implementa-
tions," in Current trends in program-
mmg methodology III, K. M. Chandy
and R. Yeh (Eds.), Prentice-Hall, Engle-
wood Cliffs, N.J., 1978, pp. 115-167.
ROSE, C.A. "Measurement procedure

WONG77

for queueing network models of com-
puter systems," Comput Surv. 10, 3
(Sept. 1978), 263-280.
SCHERR, A. L An analysis of time
shared computer systems, MIT Press,
Cambridge, Mass., 1967.
SCHWETMAN, H. D. "Hybrzd swnula-
tlon models of computer systems," Com-
mun. ACM 21 (1978), to appear.
SEVCIK, K.; LEVY, A. I., TRIPATHI, S. K.;
AND ZAHORJAN, J. L. "Improving ap-
proxtmations of aggregated queuemg
network subsystems," in Proc. Int.
Symp. Computer Performance Model-
rag, Measurement, and Evaluation,
1977, North-Holland Publ. Co., Amster-
dam, The Netherlands, pp. 1-22.
SHUM, A. W.C. "Queueing models for
computer systems with general service
time distributions," PhD Thesis, Div.
Eng. and Applied Physms, Harvard
Univ., Cambridge, Mass., Dec. 1976.
SHUM, A. W. C.; AND BUZEN, J .P . "The
EPF technique: a method for obtaining
approximate solutions to closed
queueing networks with general service
times," in Proc. Int. Symp. Computer
Performance Modeling, Measurement,
and Evaluation, 1977, North-Holland
Publ. Co., Amsterdam, The Netherlands,
pp. 201-222.
WILLIAMS, A. C.; AND BHANDIWAD, R.
A. "A generating function approach to
queueing network analysis of multipro-
grammed computers," Networks 6, 1
(1976), 1-22.
WONG, J .W. "Distribution of end-to-
end delay in message-switched net-
works," Comput. Networks 2, 1 (Feb.
1978), 44-49.

RECEIVED AUGUST 30, 1977; FINAL REVISION ACCEPTED MAY 16, 1978.

Computing Surveys, Vol. 10, No. 3, September 1978

