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Queueing network models have proved to be cost effectwe tools for analyzing modern 
computer systems. This tutorial paper presents the basic results using the operational 
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homogeneity are then used to relate the proportions of time that  each system state is 
occupied to the parameters of job demand and to dewce charactenstms Efficmnt methods 
for computing basic performance quantities are also described. Finally the concept of 
decomposition is used to stmphfy analyses by replacing subsystems with equivalent 
devices. All concepts are illustrated liberally with examples 
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INTRODUCTION 

Queueing networks are used widely to an- 
alyze the performance of multiprogrammed 
computer systems. The theory dates back 
to the 1950s. In 1957, Jackson published an 
analysis of a multiple device system 
wherein each device contained one or more 
parallel servers and jobs could enter or exit 
the system anywhere [JACK57]. In 1963 
Jackson extended his analysis to open and 
closed systems with local load-dependent 
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service rates at all devices [JACK63]. In 
1967, Gordon and Newell simplified the no- 
tational structure of these results for the 
special case of closed systems [GORD67]. 
Baskett, et al. extended the results to in- 
clude different queueing disciplines, multi- 
ple classes of jobs, and nonexponential ser- 
vice distributions [BASK75]. 

The first successful application of a net- 
work model to a computer system came in 
1965 when Scherr used the classical ma- 
chine repairman model to analyze the MIT 
time sharing system, CTSS [SCHE67]. How- 
ever, the Jackson-Gordon-Newell theory 
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lay dormant until 1971 when Buzen intro- 
duced the central server model and fast 
computational algorithms for these models 
[BuzE71a, BuzE71b, BUZE73]. Working 
independently, Moore showed that 
queueing network models could predict the 
response times on the Michigan Terminal 
System (MTS) to within 10% [MooR71]. 
Extensive validations since 1971 have veri- 
fied that these models reproduce observed 
performance quantities with remarkable 
accuracy [BuzE75, GIAM76, HUGH73, 
LII's77, ROSE78]. Good surveys are 
[GELE76a, KLEI75, KLEI76, and MONT75]. 

Many analysts have experienced puzzle- 
ment at the accuracy of queueing network 
results. The traditional approach to deriv- 
ing them depends on a series of assump- 
tions used in the theory of stochastic proc- 
esses: 

• The system is modeled by a stationary 
stochastic process; 

• Jobs are stochastically independent; 
• Job steps from device to device follow 

a Markov chain; 
• The system is in stochastic equilib- 

rium; 
• The service time requirements at each 

device conform to an exponential dis- 
tribution; and 

• The system is ergodic--i.e., long-term 
time averages converge to the values 
computed for stochastic equilibrium. 

The theory of queueing networks based 
on these assumptions is usually called 
"Markovian queueing network theory" 
[KLEI75]. The italicized words in this list of 
assumptions illustrate concepts that the an- 
alyst must understand to be able to deploy 
the models. Some of these concepts are 
difficult. Some, such as "equilibrium" or 
"stationarity," cannot be proved to hold by 
observing the system in a finite time period. 
In fact, most can be disproved empirically 
--for  example, parameters change over 
time, jobs are dependent, device to device 
transitions do not follow Markov chains, 
systems are observable only for short pe- 
riods, service distributions are seldom ex- 
ponential. It is no wonder that many people 
are surprised that these models apply so 
well to systems which violate so many as- 
sumptions of the analysis! 

In applying or validating the results of 
Markovian queueing network theory, ana- 
lysts substitute operational (i.e., directly 
measured} values for stochastic parameters 
in the equations. The repeated successes of 
validations led us to investigate whether 
the traditional equations of Markovian 
queueing network theory might also be re- 
lations among operational variables, and, if 
so, whether they can be derived using dif- 
ferent assumptions that  can be directly ver- 
ified and that are likely to hold in actual 
systems. This has proved to be true 
[BuzE76a,b,c; and DENN77]. 

This tutorial paper outlines the opera- 
tional approach to queueing network 
modeling. All the basic equations and re- 
sults are derived from one or more of three 
operational principles: 

• All quantities should be defined so as 
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to be precisely measurable, and all as- 
sumptions stated so as to be directly 
testable. The validity of results should 
depend only on assumptions which can 
be tested by observing a real system 
for a finite period of time. 

• The system must be flow balanced-- 
i.e., the number of arrivals at a given 
device must be (almost) the same as 
the number of departures from that 
device during the observation period. 

• The devices must be homogeneous-- 
i.e., the routing of jobs must be inde- 
pendent of local queue lengths, and the 
mean time between service comple- 
tions at a given device must not depend 
on the queue lengths of other devices. 

These operational principles, which will be 
discussed at length in later sections, lead to 
the same mathematical equations as the 
traditional Markovian assumptions. How- 
ever, the operational assumptions can be 
tested, and there are good reasons to be- 
lieve that they often hold. This is why 
operational queueing network analysis ex- 
plains the success of validation experi- 
ments. It is now possible to use the 
queueing network technology with much 
more confidence and understanding. 

1. THE BASIS FOR OPERATIONAL 
ANALYSIS 

Throughout this paper we will be concerned 
with deriving equations that characterize 
the performance of actual computer sys- 
tems during given time periods. To do this, 
we need a mathematical framework in 
which we can define formal variables, for- 
mulate hypotheses, and prove theorems. 

The theory of stochastic processes has 
traditionally been used as such a frame- 
work. Most analyses of performance begin 
with the 

Stochastic Hypothesis: The behavior 
of the real system during a given period 
of time is characterized by the proba- 
bility distributions of a stochastic 
process. 

Supplementary hypotheses are usually also 
made. These hypotheses, which concern 
the nature of the stochastic process, typi- 
cally introduce concepts such as steady 

state, ergodicity, independence, and the dis- 
tributions of specific random variables. All 
these hypotheses constitute a stochastic 
model. 

Observable aspects of the real system--  
e.g., states, parameters, and probability dis- 
tributions--can be identified with quanti- 
ties in the stochastic model, and equations 
relating these quantities can be derived. 
Although formally applicable only to the 
stochastic process, these equations can also 
be applied to the observable behavior of 
the system itself under suitable limiting 
conditions [BuzE78a]. 

Stochastic models bestow bountiful 
benefits. Independent and dependent vari- 
ables can be defined precisely, hypotheses 
can be stated succinctly, and a considerable 
body of theory can be called on during 
analysis. However, stochastic modeling has 
certain disadvantages, the most important 
being the impossibility of validating the 
Stochastic Hypothesis and the supplemen- 
tary hypotheses that depend on it. 

The Stochastic Hypothesis is an asser- 
tion about the causes underlying the behav- 
ior of a real system. Because one cannot 
prove asserted causes by studying observed 
effects, the truth or falsehood of the Sto- 
chastic Hypothesis and its dependent sup- 
plementary hypotheses--for a given system 
and time period--can never be established 
beyond doubt through any measurement. 1 
This is true even if measurement error is 
assumed to be zero and every conceivable 
measurement is assumed to be taken. 

Thus, an analyst can never be certain 
that an equation derived from a stochastic 
model can be correctly applied to the ob- 
servable behavior of a real system. 

Operational Variables, Laws, and Theorems 

Hypotheses whose veracity can be estab- 
lished beyond doubt by measurement will 
be called operationally testable. Opera- 
tional analysis provides a rigorous mathe- 
matical discipline for studying computer 
system performance based solely on oper- 
ationally testable hypotheses. 

] For example, one can never establish through mea- 
surement that a set of observed service times ts or is 
not a sample from a sequence of independent expo- 
nentially distributed random variables. 
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In operational analysis there are two 
basic components to every problem: a sys-  
t em,  which can be real or hypothetical, and 
a time period, which may be past, present, 
or future. The objective of an analysis is 
equations relating quantities measurable in 
the system during the given time period. 

The finite time period in which a system 
is observed is called the observation period. 
An operational variable is a formal symbol 
that stands for the value of some quantity 
which is measurable during the observation 
period. It has a single, specific value for 
each observation period. 

Operational variables are either basic 
quanti t ies,  which are directly measured 
during the observation period, or derived 
quantit ies,  which are computed from the 
basic quantities. Figure 1 shows a single- 
server queueing system with four basic 
quantities: 

T-- the  length of the observation period; 
A-- the  number of arrivals occurring dur- 

ing the observation period; 
B- - the  total amount of time during 

which the system is busy during the 
observation period (B _< T); and 

C--the number of completions occurring 
during the observation period. 

Four important derived quantities are 
ffi A / T ,  the arrival  rate 

(jobs/second); 
X = C/T ,  the output  rate 

(jobs/second); 
U ffi B / T ,  the uti l izat ion (fraction 

of time system is busy); and 
S ffi B /C ,  the mean service t ime 

per completed job. 

The basic quantities (A, B, C) are typical 
of "raw data" collected during an observa- 
tion, and the derived quantities (~, X, U, S) 
are typical of "performance measures." All 
these quantities are variables which may 

queue 

FIGURE 1 

s e r v e r  
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Single server queuelng system. 

× 
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change from one observation period to an- 
other. 

It is easy to see that the derived quanti- 
ties satisfy the equation 

U = XS. 

Thus, if the system is completing 3 jobs/  
second, and if each job requires 0.1 second 
of service, then the utilization of the system 
is 0.3 or 30%. An equation such as this, 
which expresses an identity among opera- 
tional quantities, is called an operational  
law or operat ional  identity. This is because 
the relation must hold in every observation 
period, regardless of the values observed. 
The identity U = X S  is called the utiliza- 
tion law. We will encounter various other 
operational laws later. 

Now, suppose that we assume that the 
number of arrivals is equal to the number 
of completions during the observation pe- 
riod. That  is, we assume 

A ffi C. 

This assumption is called job  f low balance 
because it implies ~ ffi X. Job flow balance 
holds only in some observation periods. 
However, it is often a very good approxi- 
mation, especially if the observation period 
is long, because the ratio of unfinished to 
completed jobs, (A - C)/C, is typically 
small. Job  flow balance is an example of an 
operationally testable assumption: it need 
not hold in every observation period, but 
an analyst can always test whether or not 
it does--or  how much error is made by 
assuming it does. 

Under the assumption of job flow bal- 
ance, it is easy to see that 

U ffi AS. 

This is an example of an operat ional  theo- 
rem: a proposition derived from operational 
quantities with the help of operationally 
testable assumptions. 

In a stochastic analysis of Figure 1, 
would be interpreted as the reciprocal of 
the mean time between arrivals, S as the 
mean amount of service requested by jobs, 
and U as the steady-state probability that 
the system has at least one job in it. The 
statement U = AS is a limit theorem for 
stochastic steady state [KLEI75]. In gen- 
eral, a steady-state stochastic theorem is a 
statement about a collection (ensemble) of 
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possible infinite behavior sequences, but it 
is not guaranteed to apply to a particular 
finite behavior sequence. An operational 
theorem is a statement about the collection 
of behavior sequences, finite or infinite, 
that satisfy the given operational assump- 
tions: it is guaranteed to apply to every 
behavior sequence in the collection. (For 
detailed comparisons between stochastic 
and operational modeling, see [BouH78, 
BuzE78a].) 

Application Areas 

There are three major applications for op- 
erational results such as the utilization law: 

• Performance Calculation. Operational 
results can be used to compute quan- 
tities which were not measured, but 
could have been. For example, a mea- 
surement of U is not needed in a flow- 
balanced system if k and S have been 
measured. 

• Consistency Checking. A failure of the 
data to verify a theorem or identity 
reveals an error in the data, a fault in 
the measurement procedure, or a viola- 
tion of a critical hypothesis. For ex- 
ample, U ~ kS would imply an error if 
observed in a flow-balanced system. 

• Performance Prediction. Operational 
results can be used to estimate per- 
formance quantities in a future time 
period (or indeed a past one) for which 
no directly measured data are avail- 
able. For example, the analyst can es- 
timate k and S for the future time 
period, and then predict that U will 
have the value kS in that time period. 
(Although the analyst may find ways 
of estimating U directly, it is often 
easier to calculate it indirectly from 
estimates of k and S.) 

The first two applications are straightfor- 
ward, but the third is actually a two-step 
process. The first step is estimating the 
values of k and S for the future time period; 
the second step is calculating U. Our pri- 
mary concern in this paper is deriving the 
equations which can be used for perform- 
ance calculation, consistency checking, and 
the second step in performance prediction. 

Parameter estimation, the first step in 
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performance prediction, is a problem of in- 
duction-inferring the characteristics of an 
unseen part of the universe on the basis of 
observations of another finite part. Gardner 
has an interesting discussion of why no one 
has found a consistent system of inductive 
mathematics [GARD76]. Various techniques 
for dealing with the parameter estimation 
problem will be discussed throughout this 
paper. 

Prior Work in Operational Analysis 

Many textbooks illustrate the ideas of prob- 
ability with operational concepts such as 
"relative frequencies" and "proportions of 
time." In addition, the derivations of many 
well-known results in the classical theory of 
stochastic processes are based, in part, on 
operational arguments. However, the ex- 
plicit recognition that  operational analysis 
is a separate branch of applied mathemat- 
ics -qui te  apart from the theory of stochas- 
tic processes--is a more recent develop- 
ment. 

The concept of operational analysis as a 
separate mathematical discipline was first 
proposed by Buzen [BuzE76b], who char- 
acterized the real-world problems that 
could be treated with operational tech- 
niques, and derived operational laws and 
theorems giving exact answers for a large 
class of practical performance problems. At 
about the same time, operational argu- 
ments leading to upper and lower bounds 
on the saturation behavior of computer sys- 
tems were presented by Denning and Kahn 
[DENN75a]. These arguments were the op- 
erational counterpart of similar results de- 
veloped by Muntz and Wong [MUNT74]. 
The only operational assumption used at 
this point was job flow balance. 

These early operational results dealt ex- 
clusively with mean values of quantities 
such as throughput, response time, and 
queue length. The theory was soon ex- 
tended so that complete operational distri- 
bu t ions-as  well as mean values--could be 
derived for operational analogs of the 
"birth-death process" and the "M/M/1  
queueing process" [BUzE76a, BUZE78a]. 
These extensions introduced two new 
analysis techniques: the application of 
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"flow balance" in the logical state space of 
the system (as contrasted with the physical 
system itself) and the homogeneity assump- 
tions, which are the operational counter- 
parts of Markovian assumptions in stochas- 
tic theory. These techniques form the basis 
for the operational treatment of many prob- 
lems which are conventionally analyzed 
with ergodic Markovian models. 

The results in [BuzE76a and Buzz78a] 
applied only to single-resource queueing 
systems. The same analysis techniques 
were applied to multiple-resource queueing 
networks by Denning and Buzen 
[DENN77a], who showed that the "product 
form solution," encountered in Markovian 
queueing networks, holds in general 
queueing networks with flow balance and 
homogeneity; this result is more general 
than can be derived in the Markovian 
framework. This work also introduced a 
new operational concept, "online ffi offline 
behavior," which characterizes the way an- 
alysts use decomposition to estimate pa- 
rameters of devices and subsystems. The 
operational treatment of queueing network 
models is discussed in detail in the rest of 
this paper. Additional points about the the- 
ory and applications of operational analysis 
have been given in [BOUH78, BUZE77, 
BuzE78a]. 

2. VALIDATION AND PREDICTION 

We have noted three uses of models in 
studying computer performance: calcula- 
tion, consistency-checking, and prediction 
of performance measures. Validation refers 
to extensive testing of a model to determine 
its accuracy in calculating performance 
measures. Predictzon refers to using a val- 
idated model to calculate performance 
measures for'a time period (usually in the 
future) when the values of parameters re- 
quired by the model are uncertain. 

Figure 2 illustrates the steps followed in 
a typical validation. First, the analyst runs 
an actual workload on an actual system. 
For the observation period, he measures 
performance quantities, such as throughput 
and response time, and also the parameters 
of the devices and the workload. Then the 
analyst applies a model to these param- 
eters, and compares the results against the 

measured performance quantities. If, over 
many different observation periods, the 
computed values compare well with actual 
(measured) values, the analyst will come to 
believe that  the model is good. Thereafter, 
he will employ it confidently for predicting 
future behavior and for evaluating pro- 
posed changes in the system. 

The scheme of Figure 2 is used to validate 
many types of models, including highly de- 
tailed deterministic models, simulation 
models, and queueing network models. In 
general, the more parameters used by the 
model, the greater is its accuracy in such 
validations. 

Performance prediction typically follows 
the scheme of Figure 3. The analyst begins 
with a set of workload and device param- 
eters for a particular observation period, 
known as the baseline period. He then 
carries out a modification analysis to esti- 
mate the values these parameters are ex- 
pected to have in the projection period, 
which is another time period for which he 

~ ( )  meosurem4mt Per focmotce Col¢~ato~ MODEL VALID C~ Q P 

FIGURE 2. Typical validation scheme. 

? 

MODIFICATION ANALYSIS 

FIGURE 3. Typical performance prediction scheme. 
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desires to know performance quantities. (In 
the projection period, the same system may 
be processing a changed workload, or a 
changed system may be processing the 
same workload, or both.) The analyst ap- 
plies the validated model to calculate per- 
formance quantities for the projection pe- 
riod. If the modification is ever imple- 
mented, the predictions can be validated by 
comparing the actual workload and system 
parameters against the project values (#1) 
and the actual performance quantities 
against the projected quantities (#2). 

A variety of invariance assumptions are 
employed in the modification analysis. 
These assumptions are typically that device 
and workload parameters do not change 
unless they are explicitly modified--the an- 
alyst may assume, for example, that the 
mean disk service time will be invariant if 
the same disk is present in both the baseline 
and projection periods, or that the mean 
number of requests for each disk will be 
invariant if the same workload is present in 
both periods. Though usually satisfactory, 
such assumptions can lead to trouble if a 
given change has side effects--for example, 
increasing the number of time-sharing ter- 
minals may unexpectedly reduce the batch 
multiprogramming level even though the 
batch workload is the same. 

The wise analyst will make all his invar- 
iance assumptions explicit. Otherwise, he 
will have difficulty in explaining a failure in 
Validation #1, which will cause a failure in 
Validation #2--even though previous tests 
of the model were satisfactory (Figure 2). 

In some prediction problems there is no 
explicit baseline period. In these cases, the 
analyst must estimate parameters for the 
projection period by other means. For ex- 
ample, he can estimate the mean service 
time for a disk from published specifica- 
tions of seek time, rotation time, and data 
transfer rate; and he can estimate the mean 
number of disk requests per job from an 
analysis of the source code of representative 
programs. Usually, however, the modifica- 
tion analysis is more accurate when it be- 
gins with a measured baseline period. 

A model's quality depends on the number 
of parameters it requires. The more infor- 
mation the model requires about the work- 
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load and the system, the greater the accu- 
racy attainable in its calculations. However, 
when there are many parameters, there 
may be a lot of uncertainty about whether 
all are correctly estimated for a projection 
period; the confidence in the predictions 
may thereby be reduced. Queueing network 
models isolate the few critical parameters. 
They permit accurate calculation and cred- 
ible prediction. 

Additional issues of performance calcu- 
lation and parameter estimation will be dis- 
cussed as they arise throughout the paper. 
(See also [BuzE77, BUZE78a].) 

3. OPERATIONAL MEASURES OF 
NETWORKS 

Figure 1 illustrated a "single resource" 
queueing model consisting of a queue and 
a service facility. This model can be used 
to represent a single input/output (I/O) 
device or central processing unit (CPU) 
within a computer system. A model of the 
entire computer system can be developed 
by connecting single-resource models in the 
same configuration as the devices of an 
actual computer system. A set of intercon- 
nected single-resource queueing models 
comprises a multiple-resource queueing 
network. 

Types of Networks 

Figure 4 shows two of K devices in a mul- 
tiple-resource network. A job enters the 
system at IN. It circulates around in the 
network, waiting in queues and having ser- 
vice requests processed at various devices. 
When done, it exits at OUT. The network 
is operationally connected in that  each de- 
vice is visited at least once by some job 
during the observation period. 

The model assumes that no job overlaps 
its use of different devices. In practice, few 
applications programs ever achieve more 
than a few per cent overlap between CPU 
and I/O devices: the error introduced by 
this assumption is usually not significant. 2 
The model also assumes that  a device is 

2 Measurements  taken at the Purdue Umverslty Com- 
puter Center reveal that  the average overlap of CPU 
and I/O within a job is between 4 and 6 per cent. 
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.~-~ Device [ X~ ~ / / ~  

• • / qlJ 

Xj 

" ' "  qo, I qoi . . . . . .  qlo 

IN OUT 

( c l o s e d )  

FIGURE 4. Two devices in a queueing network. 

. . .  

busy if a request is pending theremno part 
of the system can block progress in another 
part. This assumption is not met by all real 
systems; for example, the CPU might be 
unable to continue if an I/O buffer is full. 

A job is "in queue" at device i if it is 
waiting for or receiving service there. We 
let n, denote the number of jobs in queue 
at device i, and N = n l +  • • • +nK denote the 
total number of jobs in the system. The 
s y s t e m  o u t p u t  rate ,  Xo, is the number of 
jobs per second leaving the system. If the 
system is open,  Xo is known and N varies 
as jobs enter or leave the system. If the 
system is closed,  the number of jobs N is 
fixed; this is modeled by connecting the 
output back to the input, as suggested by 
the dashed arrow in Figure 4. 

An analysis of an open system assumes 
that X0 is known and seeks to characterize 

the distribution of N. An analysis of a closed 
system begins with N given and seeks to 
determine the resulting X0 along the OUT/ 
IN path. Other quantities such as queue 
lengths and response times at the devices 
may be sought in both cases. 

Example: Figure 5 shows a common type 
of network, the "central server." Device 1 
is the CPU, devices 2, • , K are I/O sta- 
tions. A job begins with a CPU service 
interval (burst) and continues with zero or 
more I/O service intervals which alternate 
with further CPU bursts. The quantities 
qu are called the "routing frequencies" and 
the S, the "mean service times." Definitions 
for these quantities will be given shortly. 

In the closed central server network of 
Figure 5, a new job enters the system as 
soon as an active job terminates. This be- 
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IN 

qlO + q12 + ""  + q lK  ffi I 

Si qlo 

Xo 

q l K  

SK 

q l2  ~~--'~-~ 
S2 

OUT 

FIGURE 5. Centra l  server  network. 

havior typically occurs in a batch process- 
ing system operating under a backlog. The 
throughput of the system under these con- 
ditions is denoted by X0. 

Time sharing systems which are driven 
by interactive terminals can also be repre- 
sented as closed networks. Figure 6 depicts 
the structure. The model is separated into 
two {open) subnetworks: the central sub- 
system, which consists of I/O devices and 
the CPUs, and the terminal subsystem. 
Each terminal is manned by a user who 
alternates between thinking and waiting. 
In the thinking state, the user is contem- 
plating what job next to submit, and the 
central subsystem is performing no work 
for him. On submitting a next job, the user 
enters the waiting state, where he remains 
until the central subsystem completes the 
job for him. The mean time a user spends 
in a thinking interval is called the think 
time; we denote it by Z. The mean time a 

user spends in a waiting interval is called 
the response time (of the central subsys- 
tem); we denote it by R. Since users think 
independently, the think time Z is indepen- 
dent of M. Because jobs delay each other 
while contending for resources in the cen- 
tral subsystem, R is a function of M. 

It is also possible to define mixed systems 
which are open for some workloads and 
closed for others. Figure 7 illustrates a typ- 
ical case. The interactive workload com- 
prises the jobs associated with the M inter- 
active terminals. The batch workload com- 
prises jobs submitted by other means, for 
example, remote job entry stations. The 
number of interactive jobs in the network 
(including the terminal subnetwork) is fixed 
at M, but the number of batch jobs may be 
variable. The batch throughput (Xo) is 
given, but the interactive throughput (Xo') 
depends on X0 and on the other parameters 
of the network. 
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FmURE 6. Termmal-driven system. 
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FIGURE 7. Mixed sys tem.  

Basic Operational Quantities 

Suppose that  the system is measured dur- 
ing an observation period of T seconds and 

that  these data are collected for each device 
i ffi 1 . . . .  , K: 

A, --number of arrivals; 
B, - - to ta l  busy time (time during which 

n, > 0); 
C,~--number of times a job requests ser- 

vice at device j immediately after 
completing a service request at de- 
vice i. 

These are similar to data specified in Figure 
1, but here we are not requiring device i to 
be a single server. If we treat the "outside 
world" as device "O", we can define also 

Aoj--number of jobs whose first service 
request is for device j; 

C,o--number of jobs whose last service 
request is for device i. 

We will assume that Coo = 0, because other- 
wise there would be jobs that used no re- 
sources before departing. However, it is 
possible that  C, > 0 for any device i since 
a job could request another burst of service 
from a device which had just completed a 
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request  for tha t  job. The  number  of com- 
pletions at  device i is 

K 
C,=ECv, t = l  . . . . .  K. 

j - -0  

The  number  of arrivals to, and departures  
from, the system are, respectively, 

K K 

A0 = ~ Ao~, Co=~C,o.  
j --1 t - I  

From Figure 4 it  is clear tha t  Ao = Co in a 
closed system. 

In terms of these basic data, four derived 
operational  quantit ies are defined: 

U, ffi utilization of device i 
= B , / T .  

S, ffi mean  service t ime between 
completions of requests  at  
device i 

= B,/C~ 

X, = output rate of requests from 
device i 

= C , / T  
qu ---- routing frequency, the fraction 

of jobs proceeding next  to 
device j on completing a 
service request  at  device i 

fC , /C , ,  i f / - -  1 . . . . .  K 
= "--LAoj/Ao, if i = 0. 

nt(t) 
A / \ 

B, 

( t )  

6 

5 

4- 

3- 

2 .  

I -  

0 
5 I0 15 20  

FIGURE 8. Example of a device's operation. 

Note  that ,  for any i, q,o + qtl + . . .  + qtK = 

1. Note  tha t  q,0 is an output  routing fre- 
quency (fraction of completions from de- 
vice i corresponding to the final service 
request  of some job) and q0j is an input  
routing f requency (fraction of arrivals to 
the system which proceed first to device j) .  
Note  also tha t  the system output  rate is 
defined as Xo -- Co/T. It  is easy to deduce 
the operational law 

K 

Xo = ~ X,q,o. 
t - 1  

Note  tha t  X0, X1 . . . . . .  X r  cannot  be inter- 
preted as " throughputs"  because no as- 
sumption of job flow balance has been 
made. I t  is clear tha t  the utilization law 

U, = X,S, 
holds at  every device. 

We let n, denote  the queue length at  
device i; it includes jobs waiting for and 
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receiving service. Somet imes  we write n,(t) 
to make explicit the t ime dependence.  (An 
example n,(t) appears in Figure 8.) To  cal- 
culate mean queue length and response 
t ime at  a device, analysts usually introduce 
the basic measure W,, which is the area 
under  the graph of n,(t) during the obser- 
vation period. Since f~,, the mean  queue 
length at  device i, is the average height of 
this graph, 

ft, = WJT. 

The  mean response t ime at  device i, de- 
noted by R,, is also related to W, in a simple 
way. Note  tha t  W~ can be interpreted as 
the total  number  of "job-seconds" accu- 
mula ted  at  device i during the observation 
period ( if j  jobs are at  a device for s seconds, 
j s  job-seconds accumulate).  R, is defined as 
the  average amount  of t ime accumulated at 
device i per  completed request.  Thus  

R, = W,/C,. 

An immediate  consequence of these defi- 
nitions is the operational  law 

6, = X~R,, 

which is called Little's Law. 
Example:  Figure 8 shows device t and a 
possible observation of its queue length for 
a period of 20 seconds. The basic measures 
a r e  

A, = 7 jobs, B, = 16 seconds, C, ffi 10 jobs. 
Note that n,(0) ffi 3 and that 

n,(20) ffi n,(0) + A, - C~ = 0. 
The basic operational performance measures 
a r e  
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U, -- 16 /20  St = 1 6 / 1 0  X, ffi 1 0 / 2 0  

= 0.80 --- 1.6 -- 0.5 

seconds jobs/second 
The total area under n,(t) in the observation 
period is 

W~ -- 40 job-seconds. 
Thus the mean queue length is 

ht = W,/T ffi 2 jobs, 
and the mean response time per service 
completion is: 

R, ffi WJC, = 4 seconds. 

4. JOB FLOW ANALYSIS 

Given the mean service times (S,) and the 
routing frequencies (q,j), how much can we 
determine about  overall device completion 
rates (XJ or response times (RJ? These  
questions are usually approached through 
the operational hypothesis  known as the 

Prmciple of  Job Flow Balance: For 
each device i, Xt is the same as the 
total  input ra te  to device i. 

This  principle will give a good approxima- 
tion for observation periods long enough 
tha t  the difference between arrivals and 
completions, At - C, is small compared to 
C~. I t  will be exact if the initial queue length 
n~(0) is the same as the final n,(T). Choosing 
an observation period so that  the initial and 
final states of every  queue are the same is 
not  as strange as it might seem. This  notion 
underlies the highly successful "regenera- 
tion point" method  of conducting simula- 
tions [IGLE78]. 

When job flow is balanced, we refer to 
the X, as device throughputs. Expressing 
the balance principle as an equation, 

K 

C j f A j =  Z C,j, t = O  . . . .  g 
t--O 

(Note tha t  job flow balance allows us to 
substi tute Coj for Ao~.) With the definition 
qtj = CJC, ,  we may  write 

K 

Cj = E C,q,j. 
tmO 

Employing the definition X~ ffi C,/T, we 
obtain 

JOB FLOW BALANCE EQUATIONS 
K 

X+ffi Y,X,q,~, /ffiO . . . . .  g 
tmO 

If the network is open, the value of X0 is 
externally specified and these equations 
will have a unique solution for the un- 
knowns X,. However,  if the network is 
closed, Xo is initially unknown, and the 
equations have no unique solution; this can 
be verified by  showing tha t  the sum of the 
Xj-equations f o r j  ffi 1 . . . .  , K reduces to the 
Xo-equation. In a closed network, there  are 
K independent  equations but  K + 1 un- 
knowns. Nonetheless,  the job flow balance 
equations contain information of consider- 
able value. 

Visit Ratios 

T h e  "visit ratio," which expresses the mean 
number  of requests  per job for a device, can 
always be calculated uniquely from the job 
flow balance equations. With the mean ser- 
vice times, they  can be used to determine 
the throughputs  and response t imes of sys- 
tems under  very  light or very heavy loads. 
Define 

V, = X , /Xo;  

V~ is the job flow through device t relative 
to the system's ou tput  flow. Our definitions 
imply tha t  V, ffi C,/Co, which is the mean  
number  of completions at  device i for each 
complet ion f rom the system. Since V, can 
be interpreted as the mean number  of visits 
per job to device i, we call it the visit ratio. 

The  relation X, ffi V, Xo is an operational 
law, called the Forced Flow Law. It  s tates 
tha t  the flow in any one par t  of the system 
determines the flows everywhere in the sys- 
tem. 

E x a m p l e :  Consider the performance ques- 
tion: "Jobs generate an average of 5 disk 
requests and disk throughput is measured 
as 10 requests/second; what is the system 
throughput?" This question seems momen- 
tartly frivolous, since nothing is stated about 
the relation between the disk and any other 
part of the system. Yet the forced flow law 
gives the answer precisely. Let subscript t 
refer to the disk: 

Xo ffi X,/ V, 
ffi 10 requests/second 

5 requests/job 
ffi 2 jobs/second. 

On replacing each X, with V, Xo in the job 
flow balance equations, we obtain the 
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VISIT RATIO EQUATIONS 
170=1 

K 

V~=qoj+ ~ V,q,j, 1 = 1  . . . . .  K 

These are K + 1 independent  equations 
with K + 1 unknowns: a unique solution is 
always possible assuming the network is 
operationally connected. These  equations 
show the relation between the network's  
"connective structure,"  represented by the 
q,j, and the visit ratios. Although V~ = 
X, /Xo  is an operational law, the iT, satisfy 
the visit ratio equations only if job flow is 
balanced in the network. 

Example: The central server network 
(Figure 5) has these job flow equations: 

Xo = Xlqlo 

XI f Xo + X2 + . . .  + X~ 

X ,=XIqI , ,  iffi2 . . . . .  K. 

Setting X, = V, Xo, these equations reduce 
to 

1 = Vlqlo 

V]= I + V2+ . . .  + VK 

V , =  Vlq~,, t = 2  . . . . .  K .  

It is easy to see that 

V1 -- 1/qlo 

V, = ql,/qlo, i = 2 . . . . .  K. 

In this case, only K of the possible routing 
frequencies q~j are nonzero; these q~, can be 
determined uniquely if the 17, are given. 
This is not so in a general network, where 
K visit ratios are insufficient to determine 
the (K + 1) 2 unknown routing frequencies. 

As we shall see, all the performance quan- 
tities can be computed using only the visit 
ratios and the mean service times S, as 
parameters.  The  visit ratio equations are 
used to prove tha t  this is so. In practice, the 
analyst  may  be able to extract  the visit 
ratios directly from workload data, thereby 
avoiding computing a solution of the visit 
ratio equations. 

System Response Time 

One method of computing the mean re- 
sponse t ime per job, R, for an open or closed 
system is to apply Little 's law to the system 
as a whole, 

R = ~ f /Xo ,  
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where fil = fh + . . .  + fix. I f /g/or  Xo are not  
known, an al ternate  me thod  can be used. 
Since h, = X,R, from Little 's law at  device 
i, and X, = V, Xo from the forced flow law, 
we have f i , /Xo = V,R,. This  reduces [V/Xo 
to the G e n e r a l  R e s p o n s e  T t m e  Law:  

K 

R f  Y. V~R,. 
t l l  

This  law holds even if job flow is not  bal- 
anced. 

Little 's law can be used to compute  the 
central subsystem's response t ime R in the 
terminal driven system of Figure 6. Th e  
mean time for a user to complete a think- 
wait cycle is Z + R. When job flow is 
balanced, X0 will denote  the rate at which 
cycles are completed. By Little 's law, 
(Z  + R)Xo  must  be the mean number  of 
users observed to be in a think-wait  cycle; 
but  all the users are in such cycles, hence, 
M = (Z + R)Xo.  Therefore ,  

R ffi M / X o -  Z .  

This  is called the I n t e r a c t i v e  R e s p o n s e  
T i m e  F o r m u l a .  

Examples 

This section's three examples illustrate per- 
formance calculation and performance pre- 
diction using the operational  laws summa- 
rized in Table  I. The  first example illus- 
t rates  a simple performance calculation; a 
few measured data  are used to find the 
mean response time. The  second example 
illustrates a performance calculation for a 
system with an interactive and a batch 
workload; it also illustrates a performance 
prediction, estimating the effect of tripled 

TABLE I. OPERATIONAL EQUATIONS* 

Utthza t ton  L a w  U, = X,S,  

Ltttle'  s L a w  f~ ffi X ,R,  

Forced  F low L a w  X~ ffi V, Xo 
K 

Output  F low  L a w  Xo ffi ~ X,q,o 

K 

General  Response  T tme  L a w  R ffi ~ V,R, 

In teract tve  Response  T ime  R - M/Xo  - Z 
Formula  (Assumes flow bal- 
ance) 

* Operational derivations for most  of these equations 
were fLrst presented In [BuzE76b]. 
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batch throughput on interactive response 
time. The third example illustrates a more 
complex prediction problem, estimating the 
effect of consolidating two separate time 
sharing systems; it illustrates the use of 
invariance assumptions in the modification 
analysis. 

For the first example, we suppose that 
these data have been measured on a time 
sharing system: 

Each job generates 20 disk requests; 
The disk utilization is 50%; 
The mean service time at the disk is 25 

milliseconds; 
There are 25 terminals; and 
Think time is 18 seconds. 

We can calculate the response time after 
first calculating the throughput. Let sub- 
script i refer to the disk. The forced flow 
and utilization laws imply 

Xo = X, /V ,  ffi u J v ,  s,. 

From the data, 
(.5) 

Xo ffi - -  ffi 1 job/second. 
(20)(.025) 

From the interactive response time for- 
mula, 

R ffi 20/1 - 18 ffi 2 seconds. 

Our second example considers a mixed 
system of the type shown in Figure 7. These 
data are collected: 

There are 40 terminals; 
Think time is 15 seconds; 
Interactive response time is 5 seconds; 
Disk mean service time is 40 milliseconds; 
Each interactive job generates 10 disk 

requests; 
Each batch job generates 5 disk requests; 

and 
Disk utilization is 90%. 

We would like to calculate the throughput 
of the batch system and then estimate a 
lower bound on interactive response time 
assuming that batch throughput is tripled. 
The interactive response time formula gives 
the interactive throughput: 

Xo' ffi M / ( Z  + R') 
ffi 40/(15 + 5) 
ffi 2 jobs/second. 

Let subscript i refer to the disk. The disk 
throughput is X,  + X,',  where X, is the batch 
component and X / i s  the interactive com- 
ponent. The utilization law implies 

X, + X ;  ffi U,/S, 
ffi (.9)/(.04) 
ffi 22.5 requests/second. 

The forced flow law implies that the inter- 
active component is 

X," ffi V,'Xo' ffi (10)(2) ffi 20 requests/second, 

so that the batch component is 

X, -- 22.5 - 20 ffi 2.5 requests/second. 

Using the forced flow law again, we find the 
batch throughput: 

Xo ffi X J V ,  ffi 2.5/5 ffi 0.5 jobs/second. 

Now consider the effect of tripling the 
batch throughput. If X0 were changed to 1.5 
jobs/second without changing V, then X, 
would become V~0 ffi 7.5 requests/second. 
Assuming that the increased throughput 
does not change the disk service time, the 
maximum completion rate at the disk is 
1/S~ ffi 25 requests/second; this implies that  
the completion rate of the interactive work- 
load, X/, cannot exceed 25 - 7.5 ffi 17.5 
requests/second. Therefore 

Xo' = X , ' /V ;  <- 17.5/10 ffi 1.75 jobs/second 

and 

R' ffi M/Xo" - Z >_ 40/1.75 - 15 
ffi 7.9 seconds. 

Tripling batch throughput increases inter- 
active response time by at least 2.9 seconds. 

Notice that  the validity of these esti- 
mates depends on the assumptions that  the 
parameters M, Z, 11,, and S, are invariant 
under the change of batch throughput. Al- 
though these are often reasonable assump- 
tions, the careful analyst will check them 
by verifying that  the internal policies of the 
operating system do not adjust to the new 
load, and that interactive users are inde- 
pendent of batch users. 

For the third example, we consider a 
computer center which has two time shar- 
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ing systems; each is based on a swapping 
disk whose mean service t ime per request  
is 42 msec. The  mean think t ime in both 
systems is Z - 15 seconds. These  data  have 
been collected: 

System A System B 
16 terminals 10 terminals 
25 disk requests/job 16 disk requests/job 
80% disk utilization 40% disk utilization 

In order  to reduce disk rentals, manage- 
ment  is proposing to consolidate the two 
systems into one with 26 terminals and 
using only one of the disks. We would like 
to est imate the effect on the response t imes 
for the two classes of users. 

We let subscript i refer to the disk, and 
use primed symbols to refer to System B. 
T he  formula X0 = U,/V~S, gives through- 
puts for the two systems: 

(.8) 
X o - - - -  

(25)(.042) 
= 0.77 jobs/second (System A) 

(.4) 
Xo' 

(16)(.042) 
= 0.60 jobs/second (System B) 

The  response t imes are 

R --- 16/(.77) - 15 
= 5.8 seconds (System A) 

R'ffi 10/(.6) - 15 

= 1.1 seconds (System B) 

Over an observation period of T seconds 
there  would be X,T  disk requests serviced 
in Sys tem A, and X { T  in System B; the 
fraction of all disk requests which are A- 
requests would be 

X~T/(X,T + X{T) ffi U,/(U, + U{) = 2/3. 

In order  to est imate the effect of consol- 
idation, we need to know the disk comple- 
t ion rates for each workload when both  
workloads share the one disk. Because the 
characteristics of the users and the disk are 
the same before and after  the change, it  is 
reasonable to make this invariance assump- 
tion: In the consolidated system, 2/3 of the 
disk requests  will come from the A-users. I t  
is also reasonable to assume tha t  the disk 
utilization will be nearly 100% in the con- 
solidated system. This  implies tha t  the total  
disk throughput  will be 1/S, -- 1/(.042) = 
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24 requests/second.  Of this total, the 
throughputs  of the two types of users are 

X, = (2/3)(24) 
= 16 requests/second (A-users) 

X{=  (1/3)(24) 
ffi 8 requests/second (B-users) 

This  implies tha t  the system throughputs  
are 

Xo = XJV~ 
= 16/25 
ffi 0.64 jobs/second (A-users) 

Xo' = X/ /V/  
= 8/16 
-- 0.5 jobs/second (B-users) 

and tha t  the response t imes are 

R = 16/(.64) - 15 
= 10 seconds (A-users) 

R ' =  10/(.5) - 15 
= 5 seconds (B-users) 

Note  tha t  the two types of users experience 
different response times. This  is because 
the B-users, who generate less work for the 
disk, are delayed less at the disk than  the 
A-users. 

Once again it is worth noting explicitly 
tha t  the parameters  V,, ]7,', S,, and Z are 
assumed to be invariant  under  the proposed 
change. The  careful analyst  will check the 
validity of these assumptions. Th e  assump- 
tion tha t  the ratio of Sys tem A to System 
B throughputs  is invariant  under  the 
change should be approached with caution; 
it  is typical  of the  assumptions a skilled 
analyst  will make when given insufficient 
data  about  the problem. We will present  an 
example shortly in which a faster  CPU af- 
fects two workloads differently: the ratio of 
interactive to batch th roughput  changes. 

Bottleneck Analysis 
This  section deals with the asymptot ic  be- 
havior  of th roughput  and response t ime of 
closed systems as N, the number  of jobs in 
the system, increases. We will assume tha t  
the  visit ratios and mean  service t imes are 
invariant  under  changes in N. 

Note  tha t  the ratio of complet ion rates 
for any two devices is equal  to the ratio of 
their  visit ratios: 
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X, IXj = V, IV~. 

Since/.7, ffi X,S,, a similar property holds for 
utilizations: 

u , / v ~  = v , s , / y ~ s , .  

Our invariance assumptions imply that 
these ratios are the same for all N. 

Device i is sa turated  if its utilization is 
approximately 100%. If U, ffi 1, the utiliza- 
tion law implies that  

X, = l / S , ;  

this means that the saturated device is com- 
pleting work at its capacity--an average of 
one request each S, seconds. In general, 
U, -< 1 and X, <_ 1/S,. 

Let the subscript b refer to any device 
capable of saturating as N becomes large. 
Such devices are called bottlenecks because 
they limit the system's overall performance. 
Every network has at least one bottleneck. 

Since the ratios U,/Uj are fixed, the de- 
vice i with the largest value of V,S, will be 
the first to achieve 100% utilization as N 
increases. Thus we see that, whenever de- 
vice b is a bottleneck, 

VbSb ffi max { V1S, ..... VKSK}. 

The bottleneck(s) is (are) determined by 
device and workload parameters. 

Now: if N becomes large we will observe 
Ub = 1 and Xb ffi 1/Sb; since Xo/Xb ffi 1/Vb, 
this implies 

Xo-..= 1 /VbSb 

is the maximum possible value of system 
throughput. Since V,S, is the total of all 
service requests per job for device i, the 
s u m  

Ro ffi V,S, + + VKSK, 

which ignores queueing delays, denotes the 
smallest possible value of mean response 
time. In fact, Ro is the response time when 
N = i. This implies that Xo = I/Ro when 
N = I .  

The properties of Xo are summarized in 
Figure 9. As a function of N, Xo rises 
monotonically from I/Ro at N -- 1 to the 
asymptote I/VbSb. It stays below the line 
of slope i/Ro emanating from the origin: 
Job interference via queueing when N ffi k 
usually prevents throughput from achiev- 
ing k/Ro. 

Were we to hypothesize that  k jobs al- 
ways managed to avoid delaying each other 
in the network, so that Xo ffi k/Ro, the 
saturation asymptote requires that k /Ro <-- 
1/ VbSb, or 

k < N* ffi Ro = V'S' + + VrSr 
- -  VbSb  VbSb  -= K. 

In words, k > N* would imply with cer- 
tainty that  jobs queue somewhere in the 
system. Since N* thus represents the load 
beyond which queueing is certain to be 
observed, we call N* the saturation po in t  
of the system. 

These results extend to the response time 
of the terminal driven system (Figure 6). 
For M terminals and think time Z, the mean 
response time is R = M/Xo  - Z. When M 
ffi 1, R must be Ro. Since Xo cannot exceed 
l / V b S b ,  

R >_ M V b S b  - Z >- M V ,  S, - Z, l f f i l ,  - ,K .  

As M becomes large, R approaches the 
asymptote MVbSb - Z. These facts are 
summarized in Figure 10. 

Notice that the response time asymptote 
intersects the horizontal axis at 

Mb = Z/VbSb. 

lObS/sec 

vbs, 

L o a d  
D 

I N ~' N 

FIGURE 9. System throughput 

Ro / / I Number of 
i Iv Termlno~$ 
l M~ M~ M M 

FIGURE I0. Response time 
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This is a product of a waiting time at the 
terminals (Z) and a saturation job flow 
through the terminals (1/VbSD; by Little's 
law, Mb denotes the mean number of think- 
ing terminals when the system is saturated. 
The response time asymptote crosses the 
minimum response time R0 at 

Mb* = (Ro + Z}/VbSb = N* + Mb. 

when there are more than Mb* terminals, 
queueing is certain to be observed in the 
central subsystem. 

Notice that the response time asymp- 
totes and intersections M0 and M0* depend 
only on M, Z, V0, and S0. The only assump- 
tions needed to compute them are job flow 
balance and invariance of the visit ratios 
and mean service times under changes in 
load. Note also that when Z = 0 these 
results yield the response time asymptotes 
of a closed central system. These results 
may be extended to include the case where 
service times are not strictly invariant, but 
each S, approaches some limit as the queue 
length at device i increases [MUNT74, 
DENN75a].  

To summarize: the workload parameters 
or the visit ratio equations allows the ana- 
lyst to determine the visit ratios, V,. Device 
characteristics allow determination of the 
mean service time per visit, S,. The largest 
of the products V,S, determines the bottle- 
neck device, b. The sum of these products 
determines the smallest possible response 
time, R0. The system throughput is 1/VoSb 
in saturation. The saturation point N* of 
the central subsystem is Ro/VbSb; and 
N* + Z/VoSo terminals will begin to satu- 
rate the terminal driven system. 

An analysis leading to sketches such as 
Figures 9 and 10 may give some gross guid- 
ance on effects of proposed changes. For 
example, reducing V,S, for a device which 
is not a bottleneck (e.g., by reducing the 
service time or the visit ratio) will not affect 
the bottleneck; it will make no change in 
the asymptote 1/VoSo and will generally 
produce only a minor change in minimal 
response time R0. Reducing the product 
V,S, for all the bottleneck devices will re- 
move the bottleneck(s); it will raise the 
asymptote 1/VbS0 and reduce R0. However, 
this effect will be noticed only as long as 
VbSb remains the largest of the V,S,: too 
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much improvement at device b will move 
the bottleneck elsewhere. These points will 
be illustrated by the example of the next 
section. 

The property that 1/VbSb limits system 
throughput was observed by Buzen for 
Markovian central server networks 
[BvzE71a]. It was shown to hold under very 
general conditions by Chang and Laven- 
berg [CHAN74]. Muntz and Wong used it in 
bottleneck analysis of general stochastic 
queueing networks [MUNT74, MUNT75]; 
Denning and Kahn derived the operational 
counterpart [DENN75a]. Response time 
asymptotes were observed by Scherr for his 
model of CTSS [SCHE67], and by Moore 
for his model of MTS [Moon71]. The 
concept of saturation point was introduced 
by Kleinrock [KLEI68], who also studied 
all these results in detail in his book 
[KLEI76]. 

Examples 

This section illustrates the applications of 
bottleneck analysis for the three cases of 
Figures 11 through 13. For each, we con- 
sider a series of questions as might be posed 
by a computing center's managers, who 
seek to understand the present system and 
to explore the consequences of proposed 
changes. 

Figure ll(a) depicts a central server sys- 
tem driven by a set of interactive terminals. 
The visit ratio equations for this network 
are 

V0 = 1 = .05VI 
Vl = Vo + V~ + V3 
v2 = .55V, 
V3 = .40V~ 

i 
FIGURE ll(a). 

q J2 

Q*a 

$a "  04t .~ 

An example system. 
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FIGURE 11(C). Response t ime asymptotes. 

T h e  solution is 

V1=20, V ~ = l l ,  V3=8. 

T h e  V,S, products  are 

V~S~ = (20)(.05) 
ffi 1.00 seconds (Total CPU time) 

V2S2 = (11)(.08) 
-- .88 seconds (Total Disk time) 

V~S3 ffi (8)(.04) 

= .32 seconds (Total Drum time) 

These  products  sum to the minimal  re- 
sponse t ime 

R0 ffi 2.2 seconds. 

T h e  largest  product  is ~S1;  therefore  
b ffi 1 and  the  C P U  is the  bott leneck.  (The  
sys tem is " C P U  bound.")  

Figure 11(b) shows the a sympto tes  of  the 
response t ime curve. T h e  num ber  of think- 
ing terminals  in sa tura t ion is 

M1 = Z/VISI = 20 terminals. 

T h e  sa tura t ion  point  of  the central  subsys- 
t em is 

N* ffi Ro/V]S1 = 2.2 jobs. 

T h e  n u m b e r  of  terminals  required to begin 
sa tura t ing  the  ent i re  sys tem is 

Ml* ffi 22.2. 

Q u e s t i o n :  Throughput is measured as 
O. 715jobs~second and mean response time 
as 5.2 seconds. What  is the mean number 
of users logged in during the observation 
period? T h e  interact ive response t ime for- 
mula  can be solved for the  (mean) number  
of  active terminals ,  

M = (R + Z ) / X o  

ffi (5.2 + 20)/(.715) 
ffi 18 terminals. 

Q u e s t i o n :  Is 8-second response time 
feasible when 30 users are logged in? I f  
not, what minimum amount of  CPU 
speedup is required? Since the response 
t ime a sympto t e  requires  that ,  for M ffi 30, 

R >_ (30)(1.00) - 20 ffi 10 seconds, 

the  8-second requ i rement  cannot  be  met.  I f  
$1' is the  service t ime of a faster  CPU,  we 
need 

MV1SI' - Z ~ 8 seconds, 

o r  

$1' < .047 seconds. 

This  gives a speedup factor  of  S1/SI' - 1.07; 
the  new C P U  mus t  be a t  least  7% faster. 
Since V]S]' ffi (20) (.047) = .93, the sys tem 
would still be C P U - b o u n d  with this faster  
processor  (see Figure 11(c)); therefore  the 
change is feasible. 

Q u e s t i o n :  Is lO-second response time 
feasible when 50 users are logged in? I f  
not, what minimum amount of CPU 
speedup is required? I f  the C P U  were infi- 
nitely fast  (S1 ffi 0), the  disk would be the  
bot t leneck (see Figure 11(c)). In this case 

R >_ MV2S~ - Z. 
For  M ffi 50, 

R _> (50)(.88) - 20 = 24 seconds. 

Thus ,  no a m o u n t  of  C P U  speedup will 
make  10-second response feasible when 
M =  50. 

Our second example  concerns the 25-ter- 
minal  t ime sharing sys tem of Figure 12. A 
m e a s u r e m e n t  has  revealed tha t  jobs require 

Computmg Surveys, Vol 10, No. 3, September 1978 



The Operational Analysis of Queueing Network Models 243 

25 Termmall 

FIGURE 12. 

I  loTl 
I I °- 

R =  5 1 1 ¢  

A time sharing system. 

a mean  total  CPU t ime of 240 msec, tha t  
CPU utilization is 30%, and tha t  response 
t ime is 5 seconds. T h e  th roughpu t  and 
think t ime are 

Xo ffi U,/ V, SI 
ffi (.30)/(.24) ffi 1.25 j o b s / s e c o n d  

Z ffi M/Xo - R 
ffi 25/1.25 - 5 -- 15 seconds. 

Question: The CPU utilization seems 
low. What  effect would a cheaper CPU of 
hal f  speed have on response time? Install- 
ing a CPU of half  speed cannot  increase 
sys tem throughput ,  nor  can it reduce 
th roughpu t  below half  its original value. (If 
all service times, including Z, were doubled, 
th roughput  would be exactly half  the orig- 
inal value.) Therefore ,  

0.625 _< Xo ~ 1.25 jobs/second 

af ter  the  change. (With U~ = XoVIS~ this 
implies 0.3 _< /31 -< 0.6 af ter  the change.) 
Applying the response t ime formula,  

5.0 _ R _< 25.0 seconds. 

T h e  slower CPU will have  no effect on 
response t ime if some other  device is satu- 
ra ted  (no change in Xo); otherwise, it could 
cause response t ime to increase by  as much  
as a factor  of five. 

Th is  example  i l lustrates why sys tem bot- 
t lenecks can confuse the unwary  analyst.  I f  
some device (not the CPU) is sa turated,  
lowering CPU speed will increase CPU uti- 
lization without  observable  effect on re- 
sponse time. CPU utilization can be a de- 
ceptive measure  of a sys tem's  performance.  

Our third example  concerns the sys tem 
of Figure 13, which has two workloads. I t  
will i l lustrate how a faster  device m a y  affect 

pe r formance  adversely.  Each  ba tch  job re- 
quires one disk-swap followed by  an unin- 
t e r rup ted  CPU execution burs t  averaging 1 
second. Each  interact ive job requires an 
average  of 10 page swaps f rom the disk, 
each followed by  a shor t  C P U  burs t  aver- 
aging 10 msec. 

Pr imed  symbols  refer  to the  interact ive 
workload. I t  is easy to see f rom Figure 13 
t ha t  the ba tch  visit rat ios are V, ffi 112 = 1, 
and the  interact ive visit rat ios are Vf  ffi V2' 
ffi 10. T h e  tota l  of t imes  required by  jobs a t  
the  devices are: 

Disk CPU 
Batch V~S~ ffi .09 sec. V2S2 ffi 1.0 sec. 
Interactive V,'S,' ffi .90 sec. V2'$2' ffi .1 sec. 

Evident ly  the  interact ive workload is 
disk-bound and the ba tch  workload CPU-  
bound.  This  is a good mixture  of jobs in the 
system. 

Question: A measurement reveals that 
the CPU is saturated, and that interactive 
response time is 4 seconds. What  ~s batch 
throughput? Disk utilization? We can solve 
the interact ive response t ime formula  for 
the interact ive throughput :  

Xo' ffi M/(R' + Z) 
ffi 25/(4 + 30) = .735 jobs/second. 

Since Xo' = X2'/V2', the interact ive com- 
ponent  of  CPU th roughpu t  is X2' ffi 7.35 
reques ts /second,  and the  utilization due to 
interact ive jobs is 

U2' ffi X{S2' = (7.35)(.01) ffi .074. 

Since total  utilization is 1.00, the  com- 
ponen t  due to ba t ch  jobs  m u s t  be  Us = .926. 
Thus  the ba tch  th roughpu t  is 

Xo = X1 ffi X2 = U2/$2 = .926 jobs/second. 

T h e  utilization of the  disk is 
X,S~ + X{SI' = (.926)(.09) + (7.35)(.09) ffi .745. 

Question: An  analysis of  batch back- 
logs reveals that the computing center 
needs to support a batch throughput of at 
least 4.S jobs~second. Is this feasible in the 
present system? I f  there  were no interact ive 
jobs, the highest  possible C P U  ba tch  
th roughpu t  would be X2 = 1/82 = 1 j o b /  
second. T h e  required ba tch  th roughpu t  
cannot  be  achieved. 

Question: A CPU 5 times faster is avail- 
able. What  happens if  batch throughput of  
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FIGURE 13. 

I n t e r o c h v e  Workload 

4 ~  B o t c h  W o r k l o a d  

A system with two workloads. 

4 . 5 j o b s ~ s e c o n d  is ach i eved  w i th  th i s  CPU?  
With the new CPU, the ba tch  CPU burst  
becomes  $2 ffi .2 second, and the interactive 
CPU burst  $2' = .002 second. With a forced 
ba tch  flow of X0 ffi X1 = X2 = 4.5 jobs /  
second, the ba tch  components  of disk and 
CPU utilization would be 

U~ = X~S~ = (4.5)(.09) ffi .41 
U2 ffi X2S2 ffi (4.5)(.20) = .90 

This  gives bounds for the interactive com- 
ponents  of throughput :  

Xl' ffi UI'/S~' ~- (1 - .41)/(.09) 
= 6.61 requests/second 

X2' = U2'/$2' <- (1 - .90)/(.002) 
= 50 requests/second. 

Since XI'  = X2', the  maximum possible in- 
teract ive job flow at  the CPU is 6.61 re- 
quests /second,  and the  maximum possible 
interact ive th roughput  is 0.66 jobs/second.  

This  implies a lower bound on the interac- 
tive response time: 

R' = M/Xo' - Z ~_ 25/.66 - 3 0  = 7.8 seconds. 

T h e  interesting feature of this example is 
tha t  the added capaci ty in the system ac- 
tually hur ts  the  performance of the inter- 
active workload. T h e  reason is tha t  speed- 
ing up the CPU alleviates the ba tch  bottle- 
neck there,  allowing more ba tch  jobs to 
queue up at  the disk. Th e  additional disk 
queueing interferes with the already disk- 
bound interact ive jobs. To  achieve Xo = 4.5 
jobs / second  in the ba tch  s t ream wi thout  
affecting interact ive response time, the  sys- 
t em needs a faster disk as well. T h e  disk 
must  suppor t  X1 + XI' ffi 4.5 + 7.35 = 11.85 
reques ts / second total, which means  tha t  its 
service t ime must  not  exceed 1/11.85 sec- 
ond (85 msec). We will re turn  to this ex- 
ample later. 
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Summary 

By augmenting the basic operational defi- 
nitions with the assumption that job flow is 
balanced in the system, the analyst can use 
visit ratios, via the forced flow law, to de- 
termine flows everywhere in the network. 
Response times of interactive systems can 
also be estimated. Table I summarized the 
principal equations. 

When the available information is insuf- 
ficient to determine flows in the network at 
a given load, the analyst can still approxi- 
mate the behavior under light and heavy 
loads. For light loads the lack of queueing 
permits determining response time and 
throughput directly from the products V~S,. 
For heavy loads, a saturating device limits 
the flow at one point in the network, 
thereby limiting the flows everywhere; 
again, response time and throughput can be 
computed easily. For intermediate loads, 
further assumptions about the system are 
needed. 

5. LOAD DEPENDENT BEHAVIOR 

The examples of the preceding section were 
based on assumptions of invariance for ser- 
vice times, visit ratios, and routing frequen- 
cies. These assumptions are too rigid for 
many real systems. For example, if the mov- 
ing-arm disk employs a scheduler that min- 
imizes arm movement, a measurement of 
the mean seek time during a lightly loaded 
baseline period will differ significantly from 
the average seek time observed in a heavily 
loaded projection period. Similarly, the 
visit ratios for a swapping device will differ 
in baseline and projection periods having 
different average levels of multiprogram- 
ming. 

These two examples illustrate load de- 
pendent behavior. To cope with it, the an- 
alyst replaces the simple invariance as- 
sumptions with conditional invariance as- 
sumptions that express the dependence of 
important parameters on the load. Instead 
of asserting that the disk's mean seek time 
is invariant in all observation periods, the 
analyst asserts that the mean seek time is 
the same in any two intervals in which the 
disk's queue length is the same. That is, the 
average seek time, whenever the disk's 

queue length is n (for any integer n), is 
assumed to be the same in both the baseline 
and the projection period, but the propor- 
tion of time that  the queue length is n may 
differ in the two periods. Similarly, the 
swapping device's visit ratio whenever the 
multiprogramming level is N is assumed to 
be the same in both the baseline and the 
projection period, but the proportion of 
time that  the multiprogramming level is N 
may differ in the two periods. 

Tables II and III summarize the opera- 
tional concepts needed to express condi- 
tional invariants and to work with load 
dependent behavior. Table II shows that 
each of the basic quantities (C,j, B,) is re- 
placed with a function of the load. Thus 
C,j(n) counts the number of times t at which 
jobs request service at devicej immediately 
on completing a service request at device i, 
given that  n, ffi n just before each such 
time t. The function T,(n) specifies the total 
time during which n, ffi n. 

Table III shows the various operational 
measures which can be derived from the 
basic quantities of Table II. There are two 
new concepts here. The first is the service 
function, S~(n) ffi 1/X,(n), which measures 
the mean time between completions when 
n, = n; if device i can process several service 
requests at once, S,(n) can be less than the 
mean amount of service required by a re- 
quest. The second concept is the queue 
length distribution, p,(n), which measures 
the proportion of time during which n, ffi n. 
That  the mean queue length f~, ffi W,/T  is 
equivalent to the usual definition E,>o 
np,(n) can be seen from the definition of 
W, in Table II. 

The method of partitioning the data ac- 
cording to time intervals in which n,(t) = n 
is called stratified sampling. The sets of 
intervals in which n,(t) ffi n are called the 
"strata" of the sample. All data in the same 
stratum are aggregated to form the mea- 
sures of Tables II and III. 

Our analytic methods can deal with only 
two kinds of load dependent behavior: a 
device's service function may depend on 
the length of that  device's queue; the visit 
ratios and routing frequencies may depend 
on the total number of jobs in the system. 
Thus quantities like q,~(n) = C~(n)/C,(n) or 
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TABLE II. BASXC MEASURES 

Completion Counts 

Interdevice 

Device, conditional 

Device, unconditional 

Arrwal  Counts 
To a device 

To the system 
Busy Ttmes 

Conditional 

Unconditional 

Routing Frequencws 

Originating in system 

Originating outside system 

Accumulated Waiting Ttme 

iffi l  . . . . .  K jffi0 . . . . .  K 

C,j(n) 

C,(n) 

C, 

Ao~ 

Ao 

T,(n) 

B, 

qv 

qo~ 

W, 

ffi Number of times t at which a job requests service at device j 
next after completing a service request at devlce i, given n, 
s n just before t. 

K 

= ~ C.j(n) 
j-o 

ffi ~ C,(n) 
n>0 

ffi Number of times t at which an arrwing job uses devicej for its 
first service request. 

E 

== ~ A o j  
j l l  

ffi Total time dunng which n, ffi n. 

= ~ T,(n) = T -  T,(0) 
n>0 

1 ~ C,j(n) [Undefined if C, ffi 0] 
--~ C , n > O  

ffi AoJAo [Undefined ff Ao -- 0] 

= ~ nT,(n) 
n:>O 

TABLE Ill. OPERATIONAL PERFORMANCE MEASURES 

i ff i l  . . . . .  K yffi0 . . . .  K 
[Any quantity whose denominator would be zero is undefined ] 

Request Completton Rates 
Conditional X,(n) ffi C,(n)/T,(n) 
Unconditional, dewce* X, - C J T  

K 

Unconchtlonal, system Xo = ~. X,q,0ffi ColT 
#--l Mean Service Time Between Completions 

Conditional S,(n) ffi T,(n)/C,(n) 
Unconditional S, ffi B,/C, 

Queue Size Dtstrtbutwn p,(n) ffi T,(n)/T 
Utthzation U, ffi B , / T  ffi 1 -p,(O) 
Mean Queue Length fz, ffi W , / T  
Mean Response Time R, ffi W,/C, 

* Note that X, ffi ~ X,(n) p,(n) is an identity. 
n>0 

V,(n)  ffi C , ( n ) l C o  c a n n o t  be  hand led .  Be- 
cause  r o u t i n g  f requenc ies  a n d  visi t  ra t ios  
o rd ina r i l y  d e p e n d  on ly  on  t he  in t r ins ic  de- 
m a n d s  of jobs  a n d  n o t  on  local  queue  
lengths ,  such  q u a n t i t i e s  are  of  l i t t le  in te res t .  
However ,  q u a n t i t i e s  l ike q v ( N )  a n d  V , ( N )  
do arise f r equen t ly - - e . g . ,  w h e n  the  d e m a n d  
for swapp ing  d e p e n d s  o n  the  m u l t i p r o g r a m -  
m i n g  level  N [DE~N75b,  D E s ~ 7 6 ] - - a n d  
these  q u a n t i t i e s  c an  be h a n d l e d  in  the  
models .  

E x a m p l e :  An initially idle device i is ob- 
served for 16 seconds. At t -- 0, 1, 2, and 3 

jobs arrive. Each job requires exactly 4 sec- 
onds of service. (This implies that  comple- 
tions occur at times t -- 4, 8, 12, and 16.) 
The resulting n,(t) is sketched in Figure 14. 
The  load dependent quantities are: 

n C,(n) T,(n) Sf(n) Xf(n) p,(n) 

0 0 0 - - 0 
1 1 5 5 1/5 5/16 
2 1 5 5 1/5 5/16 
3 1 5 5 1/5 5/16 
4 1 1 1 1 1/16 

Totals:  C, ffi4 T ffi 16 - - 16/16 
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A queueing at a device. 

Note that C,(0) = 0 since departures from 
an idle device are impossible. The uncon- 
ditional mean service time is, as expected, 

S, ffi B,/C, ffi 16/4 = 4 seconds. 

Notice, however, that S,(n) is not 4 for any 
value of n. The accumulated waiting time 
is: 

W, = Y. n T,(n) = 34 job-seconds. 
n > 0  

Therefore the mean queue length and re- 
sponse time are: 
~, = W , / T  R,  = W , / C ,  

= 34/16 = 34/4 
-- 2.125 jobs = 8.5 seconds. 
If the arrivals were synchronized with the 

departuresmi.e., occurring at t = 0, 4, 8, and 
12--then n,(t) = I throughout the 16-second 
observation period. In this case S, (1) = 4 
seconds, S,(n) = 0 for n > 1, f~, = 1, and 
R, = 4 seconds. 

This  example illustrates two impor tant  
points. First, the amount  of queueing de- 
pends on the nature  of the arrivals and 
departures.  Different  pat terns  of arrival of 
the same jobs may produce different mea- 
sures of mean  queue length and response 
time, even while producing the same 
throughput  and utilization. This  is why an 
analyst  who seeks to measure queueing 
(e.g., wi thp,(n) ,  or fz,, or R,) needs to make 
more assumptions. 

T he  example also illustrates tha t  the ob- 
served service function S,(n) depends on 
the arrival pat tern,  even though all the jobs 
may have identical service requirements.  
There  is, in general, no simple relationship 
between S,(n)  and the service times re- 
quired by jobs. 

6. SOLVING FOR STATE OCCUPANCIES 

T he  assumption of job flow balance is in- 
sufficient to find flows in a closed network, 

or to compute  response t imes accurately.  
These  quantit ies depend on how jobs dis- 
t r ibute throughout  the network; the job 
flow balance equations do not. To  represent  
the job distribution, we define a "s ta te"  of 
the system: a vector  

n - -  ( n l ,  . . . .  nx) 

in which n, __ 0 is the number  of jobs in 
queue at  device i, and N = n~ + . . . + n K  is 
the total  number  of jobs in the system. 

The  set of all s tates n is called the "sys- 
t em state space." Th e  number  of possible 
states is usually quite large. We observe 
tha t  each state can be encoded by a binary 
string of N ls  and K - 1  0s, 

11...1011...10...011...1 ; 

nl  n2 nK 

the number  of such strings is the number  
of permutat ions  of N indistinguishable ob- 
jects and K - 1  indistinguishable objects, 
namely, 

L f ( N + K - 1 ) !  [ N + K - 1 )  
N ! ( K - 1 ) !  = ~  K - 1  _" 

T h e  number  of possible states, L, can be 
large even for relatively small systems; for 
example, when N ffi K = 10, L is approxi- 
mately  92,000. For  an open system, where 
N itself can change, the number  of possible 
states can be considerably larger. We will 
be greatly concerned with the computa-  
tional feasibility of solutions over this state 
space. 

State Transition Balance 

In the following discussion, k, n, and m 
denote  distinct system states. If  the system 
moves from state n to s tate  m without  
passing through any observable intermedi- 
ate state, a one-s tep  s ta te  t rans i t ion  (from 
n to m) has occurred. Let  C(n, m) denote  
the number  of one-step state  transitions 
observed from n to m; since no transition 
implies no state change, C(n, n) = 0. 

Now, if job flow is balanced, the number  
of arrivals at  every device is the same as 
the number  of departures.  This  means  tha t  
n~(0) = n,(T) for each device i, or equiva- 
lently tha t  n(0) ffi n(T).  In moving from its 
initial state to its final state, the system 
must  leave every state once for every entry.  
Hence job flow balance is equivalent  to the 
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Principle of State Transition Balance: 
The number of entries to every state is 
the same as the number of exits from 
that  state during the observation 
period. 

From now on we will use the term flow 
balance to mean that arrivals equal depar- 
tures at every device or system state. With 
the flow balance principle we can write 
"conservation of transition" equations: 

C(k,n) ffi~C(n,m) all n. 
k m 

For given n, both sides of this equation are 
0 if and only if T(n) = 0. 

If we use these equations without flow 
balance, the only error would be a + 1 (or 
-1) term missing on the right side if n is 
the final (or initial) state of the system for 
the observation period. This error is not 
significant if the initial and final states are 
visited frequently during the observation 
period. (The error is zero if the initial and 
final states are the same--i.e., flow is bal- 
anced.) As we noted in discussing job flow 
balance, choosing the observation period so 
that flow is balanced is not a new notion. 

The "transition rate" from n to m is the 
number of transitions per unit time while n 
is occupied: 

r (n ,  m )  ffi C(n ,  m ) / T ( n ) ;  

it is not defined if T(n) ffi 0. The transition 
conservation equations can be re-expressed 
a s  

Y. T(k) r(k, n) -- T(n) ~ r(n, m), 
k m 

for all n from which exit rates r(n, m) are 
defined; note T(n) ffi 0 if r(n, m) is not 
defined. Substituting T(n) -- p(n)T and 
cancelling T, we obtain the 

STATE SPACE BALANCE 
EQUATIONS 

p(k) r(k, n) = p(n) ~ r(n, m) 
k m 

for all n in which r(n,.) is defined. 

Because the T(n) sum to T, we can aug- 
ment these equations with the normalizing 
condition 

p(n) = 1. 
n 

If the system can move from any n to any 
m, then these are L - 1  linearly independent 
balance equations; only one set ofp(n) can 
satisfy them and the normalizing condition 

simultaneously. (Our definitions imply p(n) 
= 0 for states not included in these balance 
equations.) 

Solving the Balance Equations 

The state space balance equations are op- 
erational relationships expressing the val- 
ues of p(n) in terms of the r(n, m). This 
form of expression is generally not useful 
since the analyst does not have the values 
of r(n, m). Instead, the analyst wishes to 
express the r(n, m) in terms of available 
quantities such as visit ratios and the ser- 
vice functions, and then solve for the p(n). 

To avoid a lot of symbol manipulation, 
we will outline the steps of the solution; the 
details are found in [DENN77a]. The solu- 
tion uses two additional assumptions about 
system's behavior. The first is: 

One-Step Behavior: The only observ- 
able state changes result from single 
jobs either entering the system, or mov- 
ing between pairs of devices in the sys- 
tem, or exiting from the system. 

The hypothesis of one-step behavior asserts 
that simultaneous job-moves will not be 
observed; it reduces the number of nonzero 
rates r(n, m) that  must be considered. For 
example, when a job moves from device i 
to device j, the system moves from state n 
to its "neighbor," n,j, where 

n = (nl ,  , n,, , nj, , nK) 
n,~ffi ( n l , . .  , n , - 1 , . .  , n j +  1, ,nK) .  

The nonzero transition rates correspond to 
(i, j )  job moves under the one-step assump- 
tion. Thus there are about LK "~ rates to 
specify, rather than L e. (L is the size of the 
state space.) With this assumption, r(n, n,j) 
depends only on the rate of job flow from 
device i to device j. The one-step property 
is met in many real systems. 

To specify the transition rates in terms 
of routing frequencies and service func- 
tions, we need to remove the conditioning 
on the total system state. The assumptions 
that  do this are called "homogeneity" be- 
cause they assert that, for given n,, device 
i is influenced equally by all system states: 

Devtce Homogeneity: The output rate of 
a device is determined completely by its 
queue length, and is otherwise indepen- 
dent of the system's state. 
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Rout ing  Homogeneity: The routing fre- 
quencies for a given total load (N) are 
independent of the system's state. 

Device homogeneity is a reasonable as- 
sumption for systems in which no device 
can block any other. 3 Routing homogeneity 
is a reasonable assumption for most sys- 
tems because job transitions generally de- 
pend on the intrinsic demands of jobs but 
not on instantaneous queue lengths. 

The stochastic counterpart of routing ho- 
mogeneity is the assumption that job tran- 
sitions among devices follow an ergodic 
Markov chain. The stochastic counterpart 
of device homogeneity is that interdepar- 
ture times of a device are exponentially 
distributed. Because they are operationally 
testable, homogeneity assumptions are fun- 
damentally different from their stochastic 
counterparts. The example of the next sub- 
section (based on Figure 15) illustrates a 
homogeneous system. It is impossible to 
determine whether or not this system sat- 
isfies any stochastic assumptions. 

Device homogeneity asserts that the 
ratio C(n, n~j)/T(n) is the same as 
C,~(nJ/T~(n,). Routing homogeneity asserts 
that the count Cu(nt) is the same as q,jCt(n,). 
Both assertions imply 

r(n, n,~) = qJS~(n,). 

With this substitution, the state space bal- 
ance equations reduce to a set of "homog- 
enized balance equations" [DENN77a]. The 
resulting solution forp(n) is of the so-called 
product  form because it separates into K 
factors, one for each device, as shown in the 
box below [BASK75, COFF73, GORD67, 
JACK63, KLEI75]. 

-.PRODUCT FORM SOLUTION 
p(n) = F~(n~)F2(n2) .. Fg(ng)/G 

where the factor for device t is 
I1, n -- 0 

F,(n) ~- X~S,(n)S,(n _ 1) S,(1), n > 0 

and G is a normalizing constant. The S~(n) 
are the service functions. The X, are a so- 
lution of the job flow balance equations; for 
an open system X~ = V, Xo, and for a closed 
system X~ ffi IT, will do. 

Jackson showed that, for open systems, this 
solution is separable further into the prod- 
uct of the queue-length distributions of the 

individual devices [JACK57, KLEI75]. The 
operational counterpart of Jackson's result 
is proved in [DENN77a]: 

p(n) =pl(nl)p2(n2) " pK(n~) 

where 
p,(n) = F,(n)/G, 

N 

G, ffi ~ F,(n) 
n~O 

and N is the maximum number of jobs 
observed in any queue of the system. The 
constant G of the product form solution is 
GIG2"" "GK. (Because each n, can range 
from 0 to N in an open system, we can 
interchange the sums and products in the 
definition of G, thereby manipulating G 
into the product of the G,.) Note that pt(n) 
is exactly the queue length distribution ob- 
tained by considering device i as an iso- 
lated, single-device network with through- 
put Xt [BvzE76b]. Jackson's result shows 
that the performance quantities of device i 
in an open network are easy to calculate 
from these formulae. 

For a closed system, p(n) cannot be sep- 
arated into the product of the individual 
queue length distributions. This is because 
the queue lengths are not independent and 
the products and sums in the definition of 
G cannot be interchanged. More complex 
computations are required for closed sys- 
tems. 

To simplify calculations analysts some- 
times use the operational assumption called 
homogeneous service times (HST). It as- 
serts that the conditional service times 
St(n) all have the same value St, which is 
the (unconditional) mean time between 
completions. (That is, St(n) = St for all n.) 
In this case the factor F,(n) becomes ( V, St) n 
for a closed system and (XtS,) n ffi U, n for an 
open system. In obtaining parameters for 
the HST solution, the analyst does not need 
to know each V, and St; he needs only VtSt, 
the mean total time a job requires at de- 
vice i. As illustrated in the next subsection, 

3 Examples  of  blockmg are mul t ip le  C P U s  tha t  can 
lock one ano the r  ou t  of  the  schedul ing queues ,  or  a 
s tore-and-forward communica t ions  processor  t ha t  
canno t  t r ansmi t  a message  to t he  nex t  node because  
no buffer  space is available a t  t ha t  node. Device ho- 
mogene i ty  can also be a poor app rox imahon  in a closed 
sy s t em if some  device h a s  a very h igh  var iance in t he  
t imes  be tween the  comple t ions  of  reques t s  for i ts 
service. 
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the H S T  assumption may  cause significant 
errors in the queue length distributions. 

Open and closed networks with more 
than one class of jobs (workloads) exhibit 
similar product  form solutions. The  major  
difference is tha t  there is a factor corre- 
sponding to each job class at  each device 
[BASK75]. 

An Example 

Figure 15 illustrates a simple system with 
K ffi 2 and N -- 2. The  timing diagram 
shows a possible behavior. The  numbers  
inside the diagram show which job is using 
a device, and shaded portions show idle- 
ness. The  observation period lasts 20 sec- 
onds. All three possible states--(nln2) ffi 20, 
11, and 02--are  observed; they are dis- 
played along the bot tom of the diagram. 

We will compare  the actual performance 
quantities with the model 's  estimates. The  
actual proport ions of time of state occu- 
pancy are 

p(20) ffi T(20)/T ffi 16/20 = .80 
p(11) ffi T(11)/T-- 3/20--.15 
p(02) -- T(O2)/T = 1/20 = .05 

The  transition rates are: 

r(20,11) ffi T(20,11)/T(20) = 2/16 = .125 
r(11,02) ffi T(11,02)/T(11) = 1/3 -- .333 
r(02,11) ffi T(O2,11)/T(02) ffi 1/1 ffi 1.000 
r(11,20) ffi T(ll,20)/T(11) ffi 2/3 = .667 

The  state space balance equations are: 
p(11)(2/3) ffi p(20)(2/16) 
p(20)(2/16) + p(02)(1) = p(11)(1/3 + 2/3) 
p(11)(1/3) = p(02)(1) 
p(20) +p(11) +p(02) = 1 

I t  is easily verified that  the actual p(n)  
satisfy these equations. 

Because the initial and final states of the 
observation period are the same, the system 
is flow balanced. Because there are no rout- 
ing choices (q12 = q21 = 1) ,  and because the 
state is fully determined by either queue 
length (nl ffi 2 - n 2 ) ,  the system is homo- 
geneous. 4 Therefore,  the product  form so- 
lution is exact. We will verify this. The  
device service functions are: 

n St(n) S~(n) 

1 3/1 = 3.0 3/2 = 1.5 (seconds) 
2 16/2 = 8.0 1/1 = 1.0 

Since I11 ffi V2 ffi 1, the device factors are: 

n Fl(n) F~(n) 

0 1.0 1.0 
1 3 . 0  1 .5  

2 24.0 1.5 

The  normalizing factor is 
G -- F](2)F2(0) + F](1)F2(1) + F](0)F2(2) 

: (24.0)(1.0) + (3.0)(1.5) + (1.0)(1.5) 
: 30 

(This illustrates that a system can be homogeneous 
without its devices having to satisfy assumphons of 
exponentially distributed mterdeparture times. 

×o 
.el 

Device I 

Device 2 

STATES : 

K = 2  N = 2  

T 
0 I0 II 12 13 19 2 0  

I I I I I I I i i ~ / j  i . • i i i i 

I 2 ~ /  I 2 
, 

20 II 02 II 20 II 20 
FIGURE 15. A two-device system and observed behavior. 
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T h e  s ta te  occupancies  are as observed: 
p(20) -- F~(2)F2(O)/G 

-- (24.0)(1.0)/30--.80 
p(11) -- F~(1)F2(1)/G 

= (3.0)(1.5)/30 = .15 

p(02) -- FI(O)F2(2)/G 

ffi (1.0)(1.5)/30 = .05 

Next,  we will compare  with the solution 
based on homogeneous  service t imes 
(HST).  Because the  service t ime functions 
are not  constant,  this solution is not  exact  
for this system. T h e  uncondit ional  mean  
service t imes are 

$1 = B1/C1 ffi 19/3 = 6.333 seconds 

$2 = B2/C2 = 4/3 = 1.333 seconds 

T h e  H S T  transi t ion ra tes  are 
r(20,11) = r(11,02) ffi 1/$1 

r(02,11) ffi r(11,20) = 1/$2 

There  are significant errors  be tween these 
and  the  actual  rates: 

HST 
r(n, m) Actual Model Error 

r(20,11) .125 . 1 5 8  +26.4% 
r(ll,02) .333 .158 -52.5% 
r(02,11) 1.000 .750 -25.0% 
r(ll,20) .667 .750 +12.5% 

In the  H S T  model,  the device factors  are of  
the form F,(n) ffi (V, S J  n, which works out  
to be: 

n Fdn) F2(n) 

0 1 1 
1 19/3 4/3 
2 361/9 16/9 

T h e  normalizing factor  is 
G -- Fl(2)F2(0) + Fz(1)F2(1) + F~(0)F2(2) 

= (361/9)(1) + (19/3)(4/3) + (1)(16/9) 
ffi 453/9 

With  the  formula  p(nln2) = FI(n])F2(n2)/G 
we can calculate the  s ta te  occupancies ac- 
cording to the  H S T  model:  

HST 
p(n]n2) Actual Model Error 

p(20) .800 .797 -0.4% 
p( l l )  .150 .168 +11.8% 
p(02) .050 .035 -29.3% 

This  shows tha t  the  H S T  model  can make  
significant errors  in the queue length dis- 
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tr ibutions,  e.g.,p](n) = p(n,  2 - n). However  
these errors  are less serious than  the  ones 
in t ransi t ion rates,  and they  hardly  affect  
the  model ' s  es t imates  of  utilizations (U] = 
1 - p ( 0 2 ) ,  /-?2 = 1 - p ( 2 0 ) ) :  

HST Error U~ Actual Model 

U1 .950 .965 +1.5% 
U2 .200 .203 +1.5% 

T h e  model  es t imates  tha t  X0 ffi U1/S1 ffi 
U2/$2 ffi .152 jobs /second,  which is 1.5% 
higher t han  actual.  T h e  m e a n  queue 
lengths are calculated as 

f~l ffi 2.p(20) + 1 .p( l l )  

h2 = 2 - fil 

T h e y  work out  as follows: 

l IST  Error 
fz, Actual Model 

ft~ 1.750 1.762 +0.7% 
h2 .250 .238 -4.8% 

T h e  m e a n  response t ime in the  sys tem is R 
= 2/Xo. T h e  H S T  model  es t imates  t ha t  R 
= 13.2 seconds, which is abou t  1.3% less 
t han  the  actual  of  13.3 seconds. 

This  example  i l lustrates wha t  is observed 
f requent ly  in practice: the  H S T  model  gives 
excellent approximat ions  of  utilizations and 
sys tem response times, fair to good approx-  
imat ions  for m e a n  queue lengths (and re- 
sponse times) a t  devices; and fair to poor  
approximat ions  to the  queue length distri- 
butions.  

Accuracy of the Analysis 

Flow balance,  one-step behavior ,  and  ho- 
mogene i ty  are the  weakes t  known assump-  
t ions leading to a p roduc t  fo rm solution for 
p (n) .  T h e  balance assumpt ions  introduce 
no error  if the  observat ion  period is chosen 
so t ha t  the initial s ta te  of  the  sys t em is the  
same as the  final. Otherwise,  the  error  will 
be small  if the  observat ion per iod s tar ts  and  
ends on f requent ly  visited states.  

One-s tep behav ior  is a p roper ty  of m a n y  
real  systems.  In  m a n y  others,  the  n u m b e r  
of  s imul taneous  job t ransi t ions are a small  
fract ion of the  total  n u m b e r  of  s ta te  
changes.  (There  are, however,  sys tems  in 
which "bulk  arr ivals" allow groups of jobs  
to make  t ransi t ions  together ,  in violation of 

t 
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the one-step assumption. Such cases can be 
treated by introducing new operational as- 
sumptions to characterize the bulk ar- 
rivals.) 

Homogeneity is often a reasonable ap- 
proximation. In systems where devices can- 
not block each other, a device's service 
function may not be influenced significantly 
by queueing at other devices. Routing fre- 
quencies seldom depend on local queue 
lengths. If used, the homogeneous ser- 
vice time (HST) approximation can intro- 
duce further errors; these errors affect 
queue length distributions the most, utili- 
zations the least. HST models seldom esti- 
mate utilizations with errors exceeding 
10%, but  they may make larger errors in 
estimating mean queue lengths (as much as 
30%). 

As we will see in the section on decom- 
position, device homogeneity is equivalent 
to the assumption that a device's service 
function S,(n) is the same whether the de- 
vice is observed online, or offline under a 
constant load of n requests. For single- 
server devices an offiine experiment will 
report that S,(n) is the mean of request 
sizes regardless of the queue length--an 
HST assumption. In reality, the relation 
between the distribution of request sizes 
and the service function is more complex. 

7. COMPUTATION OF PERFORMANCE 
QUANTITIES 

The product form solution forp(n) is math- 
ematically neat but  not obviously useful: 
computing a utilization U,, for example, 
seems to require first computing the nor- 
malizing constant G, then summing the 
p(n) for those n in which n, _ 1. For a 
closed system with homogeneous service 
times, a direct computation requires 

[ N + K -  1) 
L---~ K - 1  

additions, and N - 1 multiplications for 
each addition--a total of L N  arithmetic 
operations. This computation would be pro- 
hibitively expensive for reasonable choices 
of N and K. 

In 1971 Buzen developed a fast algorithm 
for computing G [BuzE71b, B~ZE73]. For a 
system with homogeneous service times, it 

requires about 2 K N  arithmetic operations; 
a utilization (U,) can be computed with 2 
more operations, and a mean queue length 
(fz,) with 2N more. For systems whose de- 
vices have load dependent service func- 
tions, the computation of G increases to 
about N 2 K  operations. 

The next two subsections review the es- 
sentials of these computations for two kinds 
of systems with homogeneous service times: 
a closed system and a terminal-driven sys- 
tem. A third subsection surveys the general 
algorithms and returns to the example of 
Figure 13. 

Closed System with Homogeneous Service 
Times 

Figure 16 shows the essence of the result 
developed by Buzen [Buzz71b, BUZE73]. 
The algorithm fills in numbers in a two- 
dimensional matrix g. The columns of g 
correspond to devices, rows to loads. The 
computation starts with ls in the first row 
and 0s in the first column below the first 
row. A typical interior element is ,computed 
from 

g(n, k) ffi g(n, k - 1) + Ykg(n - 1, k), 

where Yk ffi VkSk. The normalizing constant 
G is g(N,  K) .  It can be computed in 2KN 
arithmetic operations. 

The algorithm actually requires much 
less storage than Figure 16 suggests. Be- 
cause the matrix can be filled one column 
at a time, we need only store the column 
currently being computed. Let G[0 N], 
initially 0, denote a vector array represent- 
ing a current column of g, and let Y[1 K] 
denote another vector containing 

O E V I C E S 

0 t 2 ... k-t  k ... K 

, 0  . . . .  ii 0 

A 

O o(n-i, k) 
$ n-t .~¥, 

n C 
fl(n. k - I I  ¢(n. k) g(n,K)  

• I 
O(N,K) • G 

N o I 

FmURE 16. Algorithm for computing g(n, k) of 
closed system with homogeneous servme times. 
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VIS1, • • -,  VKSK.  T h e n  the a lgor i thm is 

(initialize:} G[0] :-- 1 
f o r  k:= I to K do {compute kth column} 

for  n : f l t o N d o  
{ G [ n -  1] contains g(n - 1, k); 

G[n] c o n t a i n s  g(n, k - 1)} 
G[n] := Gin] + Y[k]*G[n - 1] 

e n d  
e n d  

When this procedure  terminates ,  G[N]  con- 
tains the  normalizing constant.  

T h e  impor tance  of this a lgor i thm is not  
only tha t  it computes  g ( n , K )  = Gin]  
quickly, but  tha t  the m e a n  queue lengths 
and the  utilizations can be expressed as 
s imple functions o fg(n ,  K)  [BvzE71b].  T h e  
results  are shown below. 

Proportion 
of time 
n,>_n 

Utilization 

System 
through- Xo 
put 

Mean queue - 

Q,(n) = Y," g (N  - n, K) 
g(N, K) 

U, = Q,(1) = Y, g ( N -  1, K)  
g iN,  K) 

= g (N  - 1, K) 
g(N, K) 

N 
length n, = ~ y , ,  g (N  - n, K)  

.-z giN,  K)  

T h e  formula  for fz, can be rewri t ten as a 
recursion, 

fi,(N) = U,(N)(1 + f~,iN - 1)), 

wi th  in i t ia l  condit ion f~,(O) = O. Th is  shows 
that  f~,(N) can be calculated i te ra t ive ly  
with 2N ar i thmet ic  operations.  

Example :  For the example of Figure 15, we 
had: 

Y~ = VIS1 = 19/3 = 6.33 seconds 
Y2 = V2S2 = 4/3 = 1.33 seconds. 

The table below shows the matrix g for 
loads N = 1, ,5: 

N 

0 

0 
1 0 
2 0 
3 0 
4 0 
5 0 

1 2 Xo(N) 

1.00 1.00 I 
6.33 7.67 .130 

40.1 50.3 I .152 
254. 321. 1 . 1 5 7  

1609. 2037. .158 
10190. 12906. .158 

The numbers in the Xo column are com- 
puted from the system throughput formula 
for the given N. For example, when N = 2, 
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g(1,2) 
X0(2) = - -  = 7.67/50.3 = .152 

g(2,2) 
which is the value obtained previously for 
the HST model of Figure 15. The mean 
queue length at device 1 when N = 2 is 

2 

ftl = ~.  Y1 n g(2 - n, 2) 
.-1 g(2, 2) 
(6.33)(7.67) + (6.33)2(1.00) 

50.3 

= 1.762 
which is the same as the value obtained 
previously. Observe that the model predicts 
that X0 saturates at 1/V1S1 = 0.158 
jobs/second for N ~ 4. The actual system is 
on the verge of saturation when N = 2, for 
U1 = 0.95. 

Terminal Driven System with Homogeneous 
Service Times 

Now we consider an i n te rac t i ve  system of 
the  fo rm of Figure 17. Each  of the  M ter- 
minals  has  think t ime Z. T h e  n u m b e r  of 
act ive jobs  is denoted  by  N, and the number  
of thinking terminals  by M - N .  T h e  central  
subsys tem has  K devices with homogene-  
ous service t imes and visit rat ios indepen- 
dent  of N. 

By t reat ing the  terminals  as a "device" 
whose service function is Z / n  when there  
are n thinkers,  we can employ  efficient 
computa t iona l  procedures  to compute  a 
normalizing cons tant  for this sys tem 
[WILL76]. T h e  a lgor i thm fills in a mat r ix  h 
as suggested in Figure 18. T h e  rows corre- 
spond to number s  of terminals ,  columns to 
devices in the  central  subsystem.  Init ially 
row 0 and column 0 are  all ls. A typical 
interior e lement  is computed  f rom 

m Y ,  
h(m, k) = h(m, k -  1) + T h i m -  1, k), 

I 
M - N  Thinkers N Active Jobs / 

1 
M Termmaq$ Centrol Subsystem 

Z Th~nk T~me 

FmURE 17. Termina l -dr iven  s y s t e m  wi th  central  
s u b s y s t e m  replaced by an  equiva lent  device. 
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FIGURE 18. Algorithm for computing h(m, k) of ter- 
minal driven system with homogeneous service 
times. 

where  Yk = VkSk. When  this computa t ion  
terminates ,  the  per formance  measures  can 
be compu ted  f rom the formulae  below. 

Proportion of p(0) ffi 1/h(M, K) 
time central 
subsystem is 
idle 

M h ( M  - 1, K) 
Throughput X(M) ffi 

Z h(M, K) 

Response time R(M) = M/X(M) - Z 
Mean active fV ffi M - ZX(M) 

load 

Example :  We used this algorithm to corn- 

pute h(M, K) for the system of Figure 11(a), 
calculating the response time R(M) for 
M = 1, 2, . - - ,  50. The result is plotted in 
Figure 19. Note that the curve approaches 
the asymptote M -  20, is predicted in Figure 
11(b). For M ffi 18, the formulae in the box 
yield these values: 

X(18) = .715 jobs/second 
R(18) = 5.2 seconds 

p(0) = .062 
N = 3.7 jobs 

We used these throughput and response 
time values previously in our discussion of 
Figure 11. The model calculates that the 
central subsystem is idle for 6.2% of the time 
and that there are 3.7 active jobs on average. 

Figure 17 suggests tha t  the  ent i re  central  
subsys t em can be replaced with an equiva- 
lent  device whose service function is 
S ( N )  = 1/Xo(N),  Xo(N) being the through-  
pu t  of  the  centra l  subsys tem under  a con- 
s t an t  load N. Only if the  actual  sys tem is 
homogeneous  will this r ep lacement  be  ex- 
act. (We will explain why  in the  next  sec- 
tion.) Wi th  homogenei ty ,  the  distr ibution 
of act ive loads, p ( N ) ,  satisfies the  s ta te-  
space balance  equat ion 

- N + I  
P ( N ) X ° ( N ) = p ( N - 1 )  M Z 

Using the  value of p(0) f rom the box, we 
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FIGURE 19. Response time for example network. 
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can calculate p(N)  iteratively from this bal- 
ance equation. Note, however, that  the 
measures shown in the box do not require 
calculating Xo(N) orp (N)  first. 

Example: Figure 20 shows the throughput 
function Xo(N) for the central subsystem of 
the example of Figure 11(a), computed as if 
this subsystem were closed. The figure also 
displays p(N), computed for M = 18 using 
the iterative formula. The straight line is 
the equation (M - N)/Z, which is the job 
submission rate of the thinking terminals; 
this line crosses Xo(N) at N = 3, which is 
19% less than the model's ,~ ffi 3.7. The 
crossing point represents the most favored 
value of N, the load that balances job sub- 
mission rate with job completion rate. In 
many cases it is a good estimate of N (see 
[CouR75, COUR77]). The tick-marks indi- 
cate crossing points for other values of M. 
In the case shown, the model estimates that 
the load does not exceed 6 jobs for 97% of 
the time--nearly all the time at most 1/3 of 
the terminals are awaiting a response. (The 
tendency for p(N) to be a normal distribu- 
tion has been confirmed as long as the var- 
iance of execution times is less than 10 times 
the mean [BALB78].) 

General Systems 

The computational procedures have been 
studied and refined extensively. They now 

deal with open and closed networks, various 
queueing disciplines at the individual de- 
vices, and multiple classes of jobs (work- 
loads) with class changes allowed. Some are 
available today as commercial queueing 
network evaluator packages [BuzE78b]. 
Comprehensive treatments of these algo- 
rithms have been given by Shum [SHUM76] 
and by Reiser and Sauer [Rzxs78]. One of 
the fastest algorithms has been reported by 
Balbo, et al. [BALB77]. (See also [CHAN75a, 
GELE76a, HERZ75, REIS75, WILL76].) The 
remarkable speed with which the perform- 
ance quantities of complex networks can be 
calculated is an important reason that  
queueing network models have become so 
widely used. 

Example: We have applied these algo- 
rithms to the problem of Figure 13 under 
the additional assumption that the average 
batch multiprogramming level is 10. The 
results are summarized in Table IV. The 
exact results confnTn the approximate anal- 
ysis given before: the faster CPU helps the 
batch workload, as planned, but hurts the 
interactive workload. The disk queue is 
longer after the change because the CPU is 
no longer the bottleneck for the batch work- 
load; but the longer disk queue interferes 
with the I/O-bound interactive jobs, 
thereby increasing interactive response time 
from 4 to 10 seconds. Whereas the total 

"° t X o (N) 

o ~ 

7-" " .4t I ~ :  \ m-N 
n,.  0 3  
o m ' 2 0  

o o  
~ "" . 
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FIGURE 20. Load distribution in example network. 
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TABLE IV. EXACT RESULTS FOR EXAMPLE OF FIGURE 13 

Throughput (job/sec) 
Response Time (sec) 
CPU utihzation (%) 
CFU Queue Length (mean jobs) 
Disk Utilization (%) 
Disk Queue Length (mean jobs) 

Ortginal System 

Int. Batch. Total 

.735 .926 1.66 
4.0 10.8 - -  
7.4 92.6 100.0 

.9 9.8 10.7 
66,2 8.3 74.5 

2.1 .3 2.4 

CPU 5× Faster 

Int. Batch Total 

.623 4.64 5.26 
10.1 2 2 - -  
1.2 92.8 94.0 

1 5.2 5 3 
56.1 41,8 97,9 

6.3 4.8 11 1 

throughput increased by a factor of 3.2 
(from 1.66 to 5.26 jobs/second), the batch 
throughput increased by a factor of 5.01 
(from .926 to 4.64 jobs/second). The batch 
throughput was speeded up by more than 
the CPU speedup factor--at the expense of 
the interactive workload. 

This example illustrates why it is safer to 
employ the analytic tool than to trust one's 
untrained intuition. Many analysts find this 
example surprising, until they realize that 
the ratios of throughputs for the different 
workloads are not invariant under the 
change of CPU. 

8. DECOMPOSITION 

The formulae derived from the product 
form solution will be more accurate when 
used with the online service functions of 
devices, obtained by stratified sampling 
while devices are in operation. However, 
for performance prediction, the analyst 
must estimate the actual service functions 
from the data on request sizes, a task com- 
plicated by the lack of a simple relationship 
between request sizes and intercompletion 
times. Decomposition is an important 
method of establishing such a relation. 

Offline Experiments 

Figure 21 shows that decomposition can be 
applied to a subsystem of one or more de- 
vices. The principle is to study the subsys- 
tem offline, that is, independently of any 
interactions with its environment. To do 
this, the analyst subjects the subsystem to 
a series of controlled experiments; each is 
based on measuring the subsystem's output 
rate when put under constant load. The 
"experiment" may be conceptual rather 
than physical, conducted with a model 
rather than a measurement. 

ORIGINAL 
SYSTEM 

EQUIVALENT 
DEVtCE 

OFF-LINE 
EXPERIMENT 
( Iood = N ) 

FIGURE 21. Pnnclple of decomposition. 

In an offline experiment, the subsystem 
is operated under a constant load of N jobs. 
Immediately after each job completion, the 
analyst adds another job to keep the load 
equal to N. If, during T seconds of such an 
experiment, the analyst counts C comple- 
tions, he sets the conditional output rate to 
be X(N)  = C/T.  The subsystem is then 
replaced by an "equivalent device" whose 
load-dependent service function is S(N)  ffi 
1/X(N).  Note that arrivals and completions 
are synchronized in this kind of experiment. 

A subsystem may be replaced exactly by 
an equivalent device only when the subsys- 
tem's output rate is completely determined 
by its given load (N) and is otherwise in- 
dependent of the state of the whole system. 
In this case the distribution of jobs outside 
the subsystem cannot be influenced by the 
distribution of jobs inside, and the queue 
distribution p,(n) of any external device is 
the same whether the equivalent device or 
the real subsystem is online. It also means 
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that the subsystem responds the same to 
any environment that subjects it to the 
given N and, hence, the offiine experiment 
must reveal the online service function. In 
other words, homogeneity asserts exact de- 
composability for a device. 

It is clear that any subnetwork of a sys- 
tem whose devices and routing frequencies 
are homogeneous is perfectly decomposable 
from the system. This has also been proved 
by Chandy, Herzog, and Woo, who showed 
that, in a product form solution, the factors 
corresponding to devices in the subnetwork 
can be coalesced into a single factor whose 
service function is obtained from an offiine 
experiment [CHAN75a]. ~ This result ex- 
plains why the decomposition used at Fig- 
ure 17 (to replace the central subsystem of 
Figure 11) introduced no new error beyond 
what already resulted from the homogene- 
ity assumptions. The converse of this result 
is not true: a perfectly decomposable sub- 
system need not comprise a network of 
homogeneous devices. 

Decomposition gives a good approxima- 
tion when the number of state changes 
within the subsystem between interactions 
with the environment is reasonably large 
[CouR77], for then the aggregated behavior 
dominates the possible influence of any in- 
dividual subsystem state. In the example of 
Figure 11, each job causes an average of V0 
+ I11 + V2 + V4 = 40 state transitions in the 
central subsystem; hence we could expect 
reasonable results from the decomposition 
of Figure 17 even if the central subsystem 
were not internally homogeneous. 

The online service function may depend 
on the variance of the distribution of re- 
quest sizes: an occasional very long job will 
cause a long queue to build, whereupon 
longer interdeparture times may be ob- 
served for longer queue lengths. By intro- 
ducing the concept of stages of  service, the 
effect of variance can be represented in the 
equivalent device. (See [BASK75, CHP~N75b, 
GELE76a,b, KLEI75, LAzo77a,b, SEVC77, 

In fact, ff n denotes  a s ta te  of a subne twork  contain-  
ing N jobs, where  the  p(n)  s u m  to p (N) ,  the  ou t pu t  
ra te  is 

X0(N) = ~p(n)/p{N) ~ q,o/S,(n,), 

whmh is complete ly  de te rmined  by N 

SHUM76, SHUM77].) A detailed treatment 
of these topics has been given recently by 
Chandy and Sauer [CHAN78]. 

Applications 

The major application of decomposition is 
simplifying problems through modnlariza- 
tion. In his definitive treatment, Courtois 
has shown that significant reductions in 
solution times can be obtained by employ- 
ing decomposition; indeed, for systems with 
very large state spaces, decomposition may 
be the only computationally feasible ap- 
proach to a solution whose accuracy can be 
guaranteed. [CouR77]. 

The most important applications of de- 
composition have been for virtual memory 
systems, blocking, and other behaviors 
which cannot be represented directly in the 
queueing network model. 

The difficulty in virtual memory systems 
is that the fixed size of real memory causes 
the visit ratio at the swapping device to 
increase with the multiprogramming level. 
This effect was first treated in a queueing 
network model by Buzen [BuzE71b, 
BvzE71c]. Courtois made a significant con- 
tribution by using decomposition to treat 
systems whose multiprogramming level 
varied during the observation period; he 
also used decomposition to construct an 
elegant analysis of the dynamics of thrash- 
ing [CouR75, COUR77]. Others have ex- 
tended the method to study optimal 
multiprogrammed memory management 
[BRAN74, BRAN77, DEI,~N75b, DEAN76]. 
(For a survey, see [DENN78].) 

In systems where blocking occurs, the 
device homogeneity assumption may be se- 
riously violated. Blocking may occur when 
a load controller stops admitting new jobs 
to active status because memory is fully 
committed [BRAN74, COUR75, DENN75b, 
DENN76]; or when an I /O channel may be 
temporarily blocked by some of the devices 
it controls [BRow75, BROW77]; or when the 
geometry of a rotating drum prevents it 
from serving its separate sector queues si- 
multaneously [DENs72]. In such cases, an 
offline experiment may be used to replace, 
with an equivalent device, the subsystem in 
which blocking occurs. 
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Decomposition can be applied repeat- 
edly: a system containing devices equiva- 
lent to subsystems may be replaced by an 
equivalent device. [BRow75, BROW77, 
COUR77]. Decomposition has been used to 
replace a subsystem of a simulation, 
thereby speeding up the simulator 
[ScHw78]. 

CONCLUSIONS 

Operational queueing network theory is 
based on the premise of testability. All the 
basic performance quantities (Table 
II)--utilizations, completion rates, mean 
queue sizes, mean response times, load dis- 
tributions--are defined as they would be in 
practice from data taken over a finite pe- 
riod. The analyst can test whether the basic 
assumptions--flow balance, one-step be- 
havior, and homogeneity--hold in any ob- 
servation period. 

The operational laws (Tables I and III) 
are identities among operational quantities. 
They are a consistency check--a failure to 
satisfy an operational law reveals an error 
in the data. They simplify data collection 
by showing alternatives for computing per- 
formance quantities. 

Job flow balance implies that the 
throughputs everywhere in a system are 
determined by the throughput at any one 
point in the system. Since an increasing 
load will drive some device into saturation, 
this assumption allows determining asymp- 
totes on throughput and response time; the 
only data needed for such a "bottleneck 
analysis" are the visit ratios and saturation 
output rates at the devices. 

Job  flow analysis does not account for 
the effects of queueing in the system at 
intermediate loads, which must be studied 
in terms of the system's state space. Each 
state n •ffi (nl, • • ", nx) represents a possible 
distribution of jobs among the devices, and 
p(n) represents the proportion of time state 
n is occupied. The objective is to express 
thep(n)  directly in terms of the operational 
parameters of the system. 

Under the additional assumptions of one- 
step behavior and homogeneity, we can fred 
balance equations relating the p(n) to the 
operational visit ratios and service time 
functions. These appear to be the weakest 

assumptions leading to the product form 
solution forp(n). By exploiting the product 
form of the solution, we can devise efficient 
methods for calculating performance quan- 
tities without having to compute the p(n) 
explicitly. Indeed, the remarkable speed 
with which performance quantities can be 
computed using queueing network formu- 
lae is an important reason that this tech- 
nology is so widely used. 

Most errors with these results arise from 
the homogeneity assumptions. Homogene- 
ity asserts that there is no interaction be- 
tween a device and the rest of the system, 
except for dependence on the local queue 
length. In a real system the service function 
will depend on the pattern by which the 
rest of the system sends requests to a de- 
vice, and that pattern may depend on the 
form of the request size distribution of that 
device. 

In practice, errors from these assump- 
tions are not serious. Even when the addi- 
tional assumption of homogeneous service 
times is used to simplify the analysis fur- 
ther, these models estimate utilizations, 
throughputs, and system response times 
typically to within 10%, and mean queue 
lengths and device response times typically 
to within 30% [BuzE75, GIAM76, HUGH73, 
LIPS77]. Refining the model of devices to 
make explicit the effect of the request size 
distribution increases the accuracy, espe- 
cially in predicting queue length distribu- 
tions [BASK75, CHAN75b, LAZO77a, REIS76, 
SEvc77]. Very little is known about re- 
sponse time distributions for these sys- 
tems. (However, see [CHOw77, LAzo77b, 
WOSG77].) 

To use these results for performance pre- 
diction, the analyst must estimate the pa- 
rameter values for the projection period; 
then use these estimates in the equations 
to calculate the estimated performance 
measures in the projection period. We have 
offer~i no definitive treatment of the pa- 
rameter estimation problem. Nor can we: it 
is in the realm of inductive mathematics, 
whereas operational analysis is a branch of 
deductive mathematics. (See [GARD76].) 
We have illustrated in the examples the 
kinds of invariance assumptions analysts 
use to estimate parameters. 

Stochastic queueing theory makes some 
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analysts more comfortable when estimating 
parameters, since the theory tells how to 
deduce confidence intervals to bound the 
uncertainty in estimates derived from data 
taken in a finite baseline period. However, 
the stochastic model employs a hidden in- 
ductive assumption: that the values of the 
stochastic parameters in the projection pe- 
riod are known functions of the correspond- 
ing values in the baseline period. In fact, 
there is no way to know this for sure. Thus, 
the stochastic analyst faces exactly the BALE77 
same uncertainties as the operational ana- 
lyst; both must estimate unknown values 
for the projection period from values ob- 
served in the baseline period. Dealing with 
uncertainties in estimation is a very impor- BALB78 
tant problem, but it is beyond the pale of 
the deductive mathematical system in 
which relationships among variables are de- 
rived. (For a complete discussion of these BASK75 
points, see [BUzE77, BuzE78a, GARD76].) 

With its weaker basis, operational 
queueing network theory applies to a wider 
class of computer systems than Markovian BouH78 
queueing network theory. Conversely, Mar- 
kovian theory includes assumptions not 
present in the operational framework of BRAN74 
this paper. Markovian queueing network 
theory, for example, allows deriving differ- 
ential equations relating time dependent BRAN77 
probabilities p(n, t) to their derivatives; in 
principle, we can then solve for the tran- BRow77 
sient behavior of the system. As presented 
in this paper, operational analysis contains 
no concept like p(n, t). It gives no infor- BRow75 
mation about a system's transient behavior. 

These limitations, however, apply only to 
the formulation presented in this paper. 
Within the basic requirement of opera- 
tional testability, it is possible to make fur- 
ther assumptions to deal with transient be- 
havior. Transient behavior might be 
modeled as job flows "diffusing" in a system 
[KLEI75], or as sequences of homogeneous 
behaviors through successively higher 
levels of aggregation of system states 
[CouR77]. 

The path to further knowledge awaits 
exploration. BuzE73 
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