
Differentiated Strategies for Replicating Web Documents

Guillaume Pierre ∗ Ihor Kuz ∗∗

Maarten van Steen ∗ Andrew S. Tanenbaum ∗

∗ Vrije Universiteit, Division of Mathematics and Computer Science,

de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
∗∗ Faculty of Information Technology and Systems, T.U. Delft,

Zuidplantsoen 4, P.O. Box 356, 2628 BZ Delft, The Netherlands.

Abstract

Replicating Web documents reduces user-perceived delays

and wide-area network traffic. Numerous caching and

replication protocols have been proposed to manage such

replication while keeping the document copies consistent.

We claim, however, that no single caching or replication

policy can efficiently manage all documents. Instead, we

propose that each document be replicated with a policy

specifically tailored to it. We have collected traces on

our university’s Web server and conducted simulations to

determine the performance such tailored policies would

produce, as opposed to using the same policy for all doc-

uments. The results show a significant performance im-

provement with respect to end-user delays, wide-area net-

work traffic and document consistency. We also present

how these results can be used to build adaptive repli-

cated Web documents, capable of automatically selecting

the policy that best suits them.

1 Introduction

Every Web user has experienced slow document
transfers. To reduce the access time, one possible
solution is to replicate the documents. This balances
the load among the servers and prevents repetitive
transfers of documents over the same network links.
However, after a document is updated, users should
not access stale data; the replicated copies should be
either destroyed or updated.

There are numerous protocols available to help
achieve such consistency. In this paper, we assume
that all updates to a document happen at the same lo-
cation, which we call the master ; the other locations
(the replicas) are called slaves. Consistency policies
for replicating Web documents generally fall into the
“pull” or the “push” categories. Push strategies re-

quire the master (or the server hosting it) to keep
track of all slaves, and to contact each slave when the
document is updated. In such cases, it is possible to
multicast the new version, or to request stale copies
to be destroyed. Pull strategies require that slaves
check the master to detect updates. Strategies differ
in when to check for consistency: it can be done pe-
riodically or each time a copy is read. A commonly
used variant is for a copy to destroy itself when it
suspects it is out-of-date without even checking the
master.

Another classification of replication strategies can
be done regarding replicas and caches. A replica site
always holds the document; a cache site may or may
not hold it. Replica sites are sometimes called mir-
rors.

Which replication strategy is the best suited for
Web documents? This is a difficult question, and
much research is being done to answer it. The main
obstacle to a good solution is the heterogeneity of
documents. For example, document sizes, popular-
ity, the geographical location of clients and the fre-
quency of updates vary greatly from one document to
another [19]. Most approaches try to find replication
strategies that can deal with such diverse character-
istics.

In this paper we take a different point of view. We
claim that no single policy can be good enough in
all cases. So, instead of designing some kind of “uni-
versal policy,” we argue that several specialized poli-
cies should be used simultaneously. Depending on its
characteristics, each document should be replicated
using the best-suited policy for that particular docu-
ment.

We will not discuss here how multiple replication
strategies can be supported and integrated in the cur-
rent World-Wide Web. This issue has already been
addressed in papers about GlobeDoc [24]. Using



GlobeDoc, Web pages (or groups of pages) are en-
capsulated into distributed objects. This encapsula-
tion allows one to easily associate an object with any
replication policy [23]. A specialized proxy can then
act as a gateway between the HTTP protocol used
by the browsers, and the distributed-object protocols
used by the documents.

Although the mechanisms for associating custom
replication policies with Web documents are up and
running, the need for differentiated strategies has not
been addressed so far. The aim of this paper is not
to present a complete replication system, but rather
to demonstrate that it makes sense to differentiate
replication strategies. To do so, we monitored our
university’s Web server by keeping track of client re-
quests as well as document updates. Then, for each
document in these traces, we simulated how it would
have behaved if replicated by one of several policies.
We compared the resulting performance of “one-size-
fits-all” strategies with custom strategies. In the first
case, all documents were replicated using the same
strategy; in the second case we chose the “best” strat-
egy for each document, based on a perfect knowledge
of future requests. The results show that custom
strategies provide a clear performance improvement
compared to any one-size-fits-all strategy.

Demonstrating that differentiating replication
strategies makes sense does not solve the issue of how
to find the best strategy for an individual document.
This paper also addresses the question whether past
access patterns can be used to predict which repli-
cation policy will be optimal in the near future. We
propose using adaptive Web documents that are ca-
pable of selecting their own optimal policy. To that
end, each adaptive document is implemented as a dis-
tributed object encapsulating its state as well as past
access data for deciding on the best replication policy.
The document adapts its current policy as appropri-
ate.

We have simulated adaptive documents. The re-
sults show that the predictions are accurate in most
cases. However, our traces do not contain fast traffic
pattern changes commonly known as “flash crowds.”
Further work is needed on this subject.

This paper is organized as follows: Section 2 de-
scribes the configurations we worked with; Section 3
describes our experimental setup; Section 4 discusses
the methods we designed for associating optimal
strategies to documents and presents the simulation
results; Section 5 presents related work. We conclude
in Section 6.

2 System Configurations

In our experiment, the documents were hosted by one
particular server (the Web server of our computer
science department). Clients located worldwide re-
trieved the documents from the server, or from inter-
mediate servers (caches or replicas). We investigated
the effect of interposing replication protocols between
the server and the intermediate servers on the quality
of service perceived by the users.

2.1 System Model

2.1.1 Document Model

We assume that all document are updated at the
main server. The only requirement is that the server
can detect such updates in order to propagate ap-
propriate information to the copies (if the replication
policy needs it).

Although dynamic documents such as CGIs, ASPs
and PHPs are easily embeddable in GlobeDocs, the
simulation of replication for such documents is not
straightforward. To simplify our experiments, we
considered only static documents.

2.1.2 Placement of Intermediate Servers

To reliably simulate replication strategies, we first
had to figure out how many document copies are
necessary and to decide which client will use which
copy. The extent to which this choice is actually re-
alistic strongly determines the validity of the final
results. Therefore, we wanted to take the actual net-
work topology into account in order to let adjacent
clients share a copy, minimize bandwidth, and so on.

We decided to group the clients based on the au-
tonomous systems that hosted them. Autonomous
systems (or ASes) are used to achieve efficient world-
wide routing of IP packets [4]. Each AS is a group
of nodes interconnected by network links. Its man-
agers are responsible for routing inside their domain.
They export only information about their relations
to other ASes, such as which ASes they can receive
packets from, and which ASes they can send pack-
ets to. Worldwide routing algorithms use this infor-
mation to determine the optimal route between two
arbitrary machines on the Internet.

An interesting feature of ASes from our point of
view is that they generally consist of relatively large
groups of hosts close to each other with respect to the
network topology.1 Therefore, we can assume that

1Note that host proximity in terms of network topology
does not imply geographical proximity. For example, all of
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Figure 1: System model

the network connection performance is much better
inside an AS than between two ASes.

This led us to decide to place at most one inter-
mediate server (cache or replica) per AS, and to bind
all users to their AS’s intermediate server (see Fig-
ure 1). This rule has two exceptions. First, it would
be pointless to create an intermediate server in the
same AS as the master server: clients located in this
AS can directly access the master as well. Second, we
decided that the few clients for which we could not
determine the AS also access the server directly.

2.2 Configurations

For each document, we consider a number of setups
likely to optimize the access to that document. All
configurations are based on the same system model;
the only difference between them is the nature of the
intermediate servers and the consistency policy they
use.

The first configuration acts as a baseline configu-
ration:

NoRepl: This configuration uses no caching or repli-
cation whatsoever. All clients contact the server
directly, without any intermediate servers.

2.2.1 Caching Configurations

Caching configurations use proxy caches in place of
intermediate servers. We have considered configura-
tions where the caches use the following policies:

Check: When a cache hit occurs, the cache system-
atically checks the copy’s consistency by send-

a company’s offices worldwide may be topologically but not
geographically close.

ing an If-Modified-Since request to the mas-
ter before answering the client’s request.

Alex: When a copy is created, it is given a time-
to-live proportional to the time elapsed since its
last modification [7]. Before the expiration of
the time-to-live, the cache can deliver copies to
the clients without any consistency checks. At
the expiration of the delay, the copy is removed
from the cache.

In our simulations, we used a ratio of 0.2, as it
is the default in the Squid cache [9]. That is:

Tremoved − Tcached
Tcached − Tlast modification

= 0.2

AlexCheck: This policy is identical to Alex except
that, when the time-to-live expires, the copy is
kept in the cache with a flag describing it as
“possibly stale.” Any hit on a possibly stale
copy causes the cache to check the copy’s con-
sistency by sending an If-Modified-Since re-
quest to the master before answering the client’s
request. This policy is implemented in the Squid
cache [9].

CacheInv: When a copy is created, the cache reg-
isters it at the server. When the master is up-
dated, the server sends an invalidation to the reg-
istered caches to request them to remove their
stale copies. This policy is similar to the AFS
caching policy [22].

2.2.2 Replica Configurations

An alternative to having a cache in an AS is to have
a replica there. Replica servers create permanent
copies of documents. There are a relatively low num-
ber of such servers, which allows us to apply strong
consistency policies that would not be affordable in
the case of caches.

The traces we collected involve clients from a few
thousand different ASes, which led us to consider
caching systems with as many caches as ASes. How-
ever, it would not be feasible to create so many
replication servers. We decided to place replication
servers in the autonomous systems where most of the
requests came from. The rationale for this choice
is that most requests come from a small number of
ASes.

Figure 2 shows the number of incoming requests
per AS (once the ASes were sorted by decreasing
number of requests). In our case, the top 10 ASes
issued 53% of the requests, the top 25 ASes issued
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62% of the requests, and the top 50 ASes issued 71%
of the requests.

We decided to place replication servers only in the
“top ASes.” Clients located inside one of these ASes
would be bound to their local replica. Other clients
would send their requests directly to the server (see
Figure 3).

We distinguished three replica configurations de-
pending on the number of replicas created, which can
be summarized as follows:

Repl10 (or Repl25, Repl50:) Replicas are created
in the top 10 (or 25, 50) ASes. The consistency is
maintained by pushing updates: when the mas-
ter is updated, the server sends updated copies
to the replica servers.

2.2.3 Hybrid Configurations

In the replica configurations presented in the previous
section, many clients access the server directly (e.g.,
clients from autonomous system 3 in Figure 3). The
AS of such clients generates only a few requests to
our server, so it is not worthwhile installing a replica
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Figure 4: Hybrid configuration

there. However, it might benefit from a cache, which
is cheaper to maintain than a replica. To take this
into account, we created “hybrid configurations.”

A hybrid configuration is similar to a replica con-
figuration, but it includes a cache in each autonomous
system which does not have a replica (see Figure 4).
We defined two hybrid configurations depending on
the consistency policy of the caches:

Repl50+Alex: Similar to Repl50, but the au-
tonomous systems which have no replica server
use an Alex cache instead.

Repl50+AlexCheck: Similar to Repl50, but the
autonomous systems which have no replica
server use an AlexCheck cache instead.

3 Experimental Setup

The experiment consisted of simulating the replica-
tion of each document with each of the ten configu-
rations discussed above. We ran one simulation per
document and per strategy, and measured (i) the de-
lay at the clients, (ii) how many clients got stale
copies, and (iii) the network bandwidth consumed.
We then accumulated each of these values over all
runs to determine the performance of any configura-
tion over the entire set of documents.

We kept our simulations as close as possible to the
real system. Therefore, they are not based on sta-
tistical traffic models, but rather on real traces and
performance measurements.

3.1 Collecting Traces

To simulate the replication of documents, we needed
to keep track of each event that can happen to a doc-
ument: creation, update or request. The Web server
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logs gave us the necessary information about the re-
quests for documents: request time and IP address
of the clients. We also monitored the file system to
detect any creation or update of a file located in the
Web server directories. This way, we obtained in-
formation about the update times and the new sizes
of documents. Document creation was handled as a
special case of an update. We also measured the net-
work performance between the server and each AS in
our traces.

3.2 Measuring the Network Perfor-
mance

To measure the network performance from our server
to each AS in our experiment, we randomly chose 5
hosts inside each AS. For each of these hosts, we
sent a number of “ping” packets of different sizes and
measured the round-trip time. By running a linear
regression, we approximated the latency and band-
width of the network connection to these hosts. The
latency corresponds to half of the round-trip delay
for a packet of size 0; the bandwidth corresponds to
additional delays due to packet’s size (see Figure 5).
We assume symmetrical network performances: the
performance from the server to any host is considered
equal to the performance from this host to the server.

3.3 The Simulations

The simulations were based on a modified version
of Saperlipopette, a discrete events simulator of dis-
tributed Web caches [18]. It allows one to simulate
any number of caches, each cache being defined by its
internal policies (replacement, consistency, coopera-
tion) and its dimensioning. When given information
about the network performance, Saperlipopette can
replay trace files and calculate a number of metrics
such as the cache hit rates, document access delays

and the consistency of delivered documents. We ex-
tended this version to implement permanent replicas
in addition to caches. We also added more consis-
tency policies, such as invalidation.

3.3.1 Simulating Caching Configurations

The idea behind the caching configurations is, of
course, not to deploy caches everywhere to access only
our Web server. These caches are supposed to be used
within the AS to access any Web server. As we repro-
duce only part of the traffic managed by each cache,
we cannot simulate cache replacement policies; their
behavior depends on the entire traffic seen by each
cache. Therefore, we simulated caches without any
replacement policy (i.e., caches of infinite size). To
roughly reproduce the behavior of the replacement
policies, we decided that a copy could not stay in a
cache more than seven days, independent of any con-
sistency consideration. This delay is a typical value of
any document’s time-to live inside a Web cache [16].
When the time-to-live value expires, the correspond-
ing copy is removed from the cache.

3.4 Evaluation Criteria

Choosing a replication policy requires making trade-
offs. Replicating a Web document modifies the ac-
cess time, the consistency of copies delivered to the
clients, the master server load, the overall network
traffic, etc. It is generally impossible to optimize all
these criteria simultaneously. Therefore, evaluating
the quality of service of the system should involve
metrics that characterize the different aspects of the
system’s performance. We chose three metrics rep-
resenting the access time, document consistency and
global network traffic:

Total delay: This is the sum of all delays between
the start of a client’s request and the completion
of the response (in seconds).

Inconsistency: This is the total number of outdated
copies delivered to the clients.

Server traffic: This is the total number of bytes ex-
changed between the server and the intermedi-
ate servers or the clients. This metric measures
all the inter-AS traffic, which we consider as the
wide-area traffic; we do not take into account the
traffic between the intermediate servers and the
clients, as it is considered as “local.”

One important remark is that all our metrics are
additive: we can simulate each document separately



Table 1: Characteristics of the collected traces

Number of documents 17,368
Number of requests 2,118,572
Number of updates 9,143
Number of unique clients 107,386
Number of different ASes 2,785

and add the resulting values for each document in
order to get the quality of service of the complete
system. This would not be possible if the metrics
were average values, for example.

4 Results

The result of our experiment is presented as follows:
Section 4.1 gives a brief overview of the traces we
collected; Section 4.2 shows the quality of service ob-
tained when the same strategy is associated to all
documents; Section 4.3 discusses methods for associ-
ating each document with its most-suited replication
policy; Section 4.4 demonstrates the performance im-
provement such methods provide. Finally, Section 4.5
discusses the use of this method for building adaptive
Web documents.

4.1 Collected Traces

We collected traces from Sunday, 29 August 1999 to
Saturday, 3 October 1999 (i.e., 5 weeks). Table 1
shows some statistics about the resulting trace. We
can see that our server handles medium-size traffic,
and that documents are not updated very frequently
(the average life-span is 67 days). We expect large
servers, such as electronic-commerce servers, to have
more heterogeneous document sets than ours. There-
fore, they should benefit more than us from the ability
to choose the replication strategies per document.

4.2 One-size-fits-all Strategies

Table 2 shows the resulting performance when the
same strategy is applied to all documents (one-size-
fits-all strategies). As we expected, the NoRepl
strategy has bad results compared to the others in
terms of delay and traffic. On the other hand, it pro-
vides perfect consistency.

Most policies are good with respect to one or two
metrics, but none of them optimizes on all three met-
rics. For example, Repl50+Alex and Repl50+
AlexCheck provide excellent delays. On the other

Table 2: Performance of the one-size-fits-all strate-
gies.

Configuration Delay Incons. Traffic
(hours) (no.) (GB)

NoRepl 219.0 0 43.91
Check 229.2 0 23.60
Alex 96.4 5211 23.51
AlexCheck 96.6 4821 23.23
CacheInv 93.7 0 23.18
Repl10 177.4 0 43.60
Repl25 145.0 0 48.06
Repl50 121.9 0 55.55
Repl50+Alex 67.5 966 46.93
Repl50+AlexCheck 67.6 941 46.86

hand, they are not so good with respect to inconsis-
tency and traffic. Other configurations have similar
problems.

4.3 Assigning Optimal Strategies to
Documents

Is it possible to find a configuration that provides
good performance with respect to all metrics at the
same time? To answer this question, we propose that
each document has its own replication strategy. We
first describe a method to assign a strategy to each
document. We then compare the performance of cus-
tom configurations to those of one-size-fits-all config-
urations.

4.3.1 Assigning a Strategy to a Document

For a given document, finding the best replication
strategy consists of deciding which strategy provides
the best compromise between different metrics. We
prefer a strategy that is relatively good with respect
to all metrics rather than a strategy that is very good
in one metric and very bad in the others.

We proceed as follows: based on the simulation re-
sults, each strategy is given a score. For a given doc-
ument, the strategy with the lowest score is declared
“optimal.” The score of a strategy is a weighted sum
of the evaluation metrics:

score =
delay

α
+
incons

β
+

traffic
γ

Choosing values for α, β, and γ allows one to de-
termine the relative weight of each metric. The larger
a weight is, the less the associated metric will influ-
ence the final result. Because different metrics are
expressed in different units, the factors α, β and γ



are expressed such that a score is always dimension-
less.

This method is used to assign a strategy to each
document. Using it with the same parameter vec-
tor (α, β, γ) leads to what we call an arrangement :
a parameter-specific set of (document,strategy)-
pairs. Thus for a given (α, β, γ), each arrange-
ment has an associated value, which is expressed as
a vector 〈total(metric1), . . . , total(metricn)〉 where
total(metrick) denotes for metric k the value accu-
mulated over all documents in the arrangement.

An evaluation of our assignment strategy can be
found in an extended version of this paper [17].

4.4 Comparing One-size-fits-all to
Custom Policies

Comparing arrangements is somewhat difficult be-
cause the values of arrangements actually form a
partially ordered set. We prefer comparing each ar-
rangement with an ideal target point. This point cor-
responds to the best achievable delay (obtained by
selecting the policy providing the smallest delay for
each document) and the best achievable traffic (ob-
tained by selecting the policy providing the smallest
traffic for each document). Of course, for a given doc-
ument, the best policy in terms of delay and the best
policy in terms of traffic are not always the same.
Therefore, the target point is generally impossible
to reach. Nevertheless, this point acts as an upper
bound: it is impossible to obtain a better perfor-
mance than the target. We can also use the target
point to compare the arrangements: the closer we get
to that point, the better the arrangement is.

To simplify matters, we chose to give β a very
small value, making the optimization of consistency
an absolute requirement. By subsequently modifying
the relative weights of delay and traffic, we obtain
a number of arrangements which implement various
delay/traffic trade-offs.

Figure 6 shows the performance of arrangements,
in terms of total delay and server traffic. Each
point corresponds to the performance of one par-
ticular arrangement. Arrangements where all doc-
uments are given the same strategy are represented
by a point. Custom arrangements provide a set of
points, each point being obtained with one particular
set of weights (α, β, γ).

Among the one-size-fits-all arrangements, some
have good performance with respect to delay, but
poor performance with respect to traffic; some others
behave the other way round. However, none of them
gets very close to the target. On the other hand,
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we can see that custom arrangements are very close
to the target if we compare them to one-size-fits-all
configuration. This means that selecting replication
strategies on a per-document basis provides a signifi-
cant performance improvement over any one-size-fits-
all configuration.

4.5 Towards Adaptive Web Docu-
ments

The results presented so far are based on a post-
mortem analysis: knowing the past access pattern of
a document we can determine which replication pol-
icy would have been optimal. Now, can we use our
knowledge about past accesses to determine which
policy will be optimal in the near future? Our
hypothesis is that the traffic characteristics do not
change very fast. Therefore, a strategy known to have
been optimal in the recent past should stay close to
the optimum in the near future. In this section, we
consider “adaptive replicated documents.” Such a
document works as follows:

• The author of the document must choose one
particular parameter vector (α, β, γ). The goal
of the adaptive object will be to select the strat-
egy which optimizes the score function, defined
in section 4.3.1.

• When creating a document, we do not know any-
thing about its future access pattern. The doc-
ument uses a default replication policy (in our
simulations, Alex). It also collects traces about
the requests it receives.

• Periodically, the document has the opportunity
to change its replication policy. Based on the



Table 3: Performance of adaptive documents

Period 1 Period 2 Period 3
Configuration Delay Incons. Traffic Delay Incons. Traffic Delay Incons. Traffic

(hours) (no.) (GB) (hours) (no.) (GB) (hours) (no.) (GB)

NoRepl 68.2 0 12.30 78.0 0 15.40 72.8 0 16.20
Check 71.4 0 6.63 81.4 0 7.95 76.4 0 8.03
Alex 30.9 25 6.66 33.8 1320 8.30 29.9 2197 8.16
AlexCheck 30.9 25 6.61 33.8 1214 8.20 29.9 2257 7.93
CacheInv 30.3 0 6.61 35.0 0 8.53 29.3 0 8.04
Repl10 56.4 0 10.80 62.1 0 14.06 58.9 0 15.45
Repl25 46.1 0 9.90 50.8 0 13.72 48.1 0 16.22
Repl50 39.2 0 9.32 43.5 0 12.83 39.2 0 16.96
Repl50+Alex 22.6 6 6.61 22.7 292 9.81 22.6 484 14.13
Repl50+AlexCheck 22.6 6 6.59 22.7 295 9.79 22.5 547 14.07

Adaptive 30.9 25 6.66 25.8 386 7.41 26.1 949 7.65
Optimal 22.6 0 5.34 22.8 0 6.47 23.5 0 7.12

Distance from optimal 37% - 25% 13% - 15% 11% - 7%

traces it has collected, it simulates each replica-
tion strategy, calculates the score for each strat-
egy, and determines which one would have per-
formed the best. It then changes its replication
policy to use this “optimal” one instead of the
current one. Finally, it deletes the traces col-
lected so far and starts collecting new ones.

We decided to use a period of 12 days between
adaptations, so that our traces can be divided into
three periods. Table 3 shows the performance of
adaptive documents, compared with one-size-fits-all
configurations. The “optimal” line in the table rep-
resents the performance of the optimal arrangement,
based on a posteriori analysis. The closer the adap-
tive document performance is to the post-mortem
performance, the more accurate the a priori choice
of policies in the adaptive documents has been. The
“distance from optimal” line shows the accuracy of
the predictions.

During the first period, all adaptive documents use
the default Alex replication policy. Their perfor-
mance is therefore equal to that of the Alex policy.
However, it is far from optimal (e.g., the total delay is
37% higher than the optimum). The “Period 2” col-
umn shows the performance after the first adaptation.
We can see that the delay and traffic obtained by the
adaptive documents are much closer to the optimum
(the delay is only 13% higher than the optimum).
During period 3, the distance from the optimum is
only 11% from the optimum. Traffic figures have a
similar behavior. We can conclude that adaptive doc-
uments are actually able to predict which policy will
achieve the best delay/traffic tradeoff in the near fu-
ture.

The inconsistency figures, unfortunately, do not
converge to the optimal values. This is due to the low
update rate in our traces. Being infrequent, updates
are very hard for the adaptive objects to predict.
In fact, most inconsistencies are due to documents
that are updated only once in the entire trace. Such
isolated updates are obviously impossible to predict
from the past traces, leading to suboptimal policy
choices.

One can argue that a few hundred inconsistencies
are acceptable, if compared to the total number of
requests (more than two million). In most cases, this
should not be much of an issue. However, even in
the case where consistency is considered very impor-
tant, our research remains valid: it suffices to remove
the weak consistency policies from the set of avail-
able policies. Adaptive objects would then be able to
select the most suited policy among a set of strong
consistency policies.

Another important remark is that our trace does
not contain high load peaks commonly known as
“flash crowds.” The problem for handling flash
crowds is to react as quickly as possible to a sudden
traffic increase. The adaptive documents presented
here would react only at the end of the period when
the flash crowd happened; in most cases, it would
be too late to take any measures. However, simple
changes may be enough to solve the problem: for
example, instead of adapting the documents at reg-
ular intervals, we can decide to adapt every time a
document receives a given number of requests or if
the request rate changes dramatically. This way, an
adaptation would be started soon after the beginning
of the flash crowd.



5 Related Work

A number of proposals have been made in the past
to help improve the quality of service of the Web by
means of better caching policies. Particularly rele-
vant is the design of scalable cache consistency poli-
cies. As an alternative to the traditional Alex [7]
and TTL policies, it has been shown that invalidation
policies can lead to significant improvement of main-
taining consistency at relatively low cost in terms of
delays and traffic [14]. Several variants have been
proposed. It is possible to propagate invalidations
via a hierarchy of Web caches [25] or by using multi-
cast [26]. Another possibility is for the server to pig-
gyback information about recent document updates
when caches contact it for a request [13] or to combine
invalidation with leases [10].

Caches are an essential part of the Web infrastruc-
ture, but their efficiency has limits. Moreover, it
seems that this efficiency decreases due to the long-
term evolution of access patterns [3]. One solution
to this problem is to systematically create document
replicas. Based on a good knowledge of the access
patterns, it is possible to place replicas close to the
clients, thereby reducing delays [2, 5]. Such docu-
ment distribution can be done by the server itself, as
in push caches [11] and RaDaR [20], or by external
services such as Akamai [1] and Sandpiper [21]. All
these proposals tend to design a single policy which
works well in all cases. In contrast, we prefer choos-
ing one policy per document, depending on that doc-
ument’s access patterns.

All the policies cited here are good candidates for
being incorporated in the set of differentiated strate-
gies this paper advocates. However, most of them
require implementing specific mechanisms. Invalida-
tion protocols need various types of callback inter-
faces, replica distribution systems need to push doc-
ument copies to the replica servers, and so on. One
could think of incorporating such mechanisms in ex-
isting protocols. For example, many primitives for
cache management were incorporated in HTTP dur-
ing the design of version 1.1 [12]. However, such pro-
tocol modifications take time to be widely used. In
addition, they often increase the protocol’s complex-
ity [15].

This paper advocates the simultaneous use of a
large number of replication policies for different doc-
uments. In some cases, an author should even be
allowed to develop a policy specially designed for a
specific document. Therefore, we need a way to im-
plement policies without having to modify HTTP or
to build a specific infrastructure each time. The solu-
tion consists of separating transport and replication

issues, by associating code with a document that can
manage its replication. Such an approach has been
taken in a number of projects. The active caches as-
sociate code with a document to enable caching of
dynamic documents [6]. This proposal can be used
to allow cached documents (dynamic or not) to man-
age their own consistency. In the W3Object system,
highly visible caching mechanisms are proposed that
can be modified by end users [8].

6 Conclusion

Our experiment demonstrates that no single replica-
tion policy is optimal for all Web documents. Instead,
associating the most suited replication policy on a
per-document basis leads to significant performance
improvement. In addition to this, we showed that it
makes sense to build replicated Web documents capa-
ble of individually adapting their replication policy,
based on past-trace analysis.

The experiment presented was conducted over a
large set of caching, replica and hybrid configura-
tions. However, this set must be viewed only as a first
example: a lot of other caching or replication policies
could be added as well. We expect that increasing
the number and diversity of policies will improve the
resulting performance.

In the future, we plan to deploy a set of GlobeDoc
servers and use the method presented in this article to
decide on optimal replication policies. In particular,
we aim to conduct studies on the traffic from other
Web servers to see how the specifics of each server in-
fluence the optimal arrangements. A university Web
server such as ours will likely not require the same
strategies as a commercial server, for example.

Finally, this work is to be extended to the replica-
tion of other types of objects. We plan to investigate
how the methods presented in this article can be ap-
plied to the replication of dynamic Web documents.
Such results would lead us to a more general solution
for choosing the replication policies of distributed ob-
jects.
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