
ARC: A SELF-TUNING, LOW OVERHEAD REPLACEMENT CACHE

USENIX File & Storage Technologies Conference (FAST), March 31, 2003, San Francisco, CA

Nimrod Megiddo and Dharmendra S. Modha
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

Abstract— We consider the problem of cache management
in a demand paging scenario with uniform page sizes. We
propose a new cache management policy, namely, Adaptive
Replacement Cache (ARC), that has several advantages.

In response to evolving and changing access patterns, ARC
dynamically, adaptively, and continually balances between the
recency and frequency components in an online and self-
tuning fashion. The policy ARC uses a learning rule to
adaptively and continually revise its assumptions about the
workload.

The policy ARC is empirically universal, that is, it empir-
ically performs as well as a certain fixed replacement policy–
even when the latter uses the best workload-specific tuning
parameter that was selected in an offline fashion. Conse-
quently, ARC works uniformly well across varied workloads
and cache sizes without any need for workload specific a
priori knowledge or tuning. Various policies such as LRU-2,
2Q, LRFU, and LIRS require user-defined parameters, and,
unfortunately, no single choice works uniformly well across
different workloads and cache sizes.

The policy ARC is simple-to-implement and, like LRU,
has constant complexity per request. In comparison, policies
LRU-2 and LRFU both require logarithmic time complexity
in the cache size.

The policy ARC is scan-resistant: it allows one-time se-
quential requests to pass through without polluting the cache.

On
���

real-life traces drawn from numerous domains, ARC
leads to substantial performance gains over LRU for a wide
range of cache sizes. For example, for a SPC1 like synthetic
benchmark, at 4GB cache, LRU delivers a hit ratio of �������
	
while ARC achieves a hit ratio of

��� 	 .

I. INTRODUCTION

“We are therefore forced to recognize the pos-
sibility of constructing a hierarchy of mem-
ories, each of which has greater capacity
than the preceding but which is less quickly
accessible.”

A. W. Burks, H. H. Goldstine, J. von Neumann,
in Preliminary Discussion of the Logical Design of
Electronic Computing Instrument, Part I, Vol. I, Report
prepared for U.S. Army Ord. Dept., 28 June 1946.

A. The Problem

Caching is one of the oldest and most fundamen-
tal metaphor in modern computing. It is widely used
in storage systems (for example, IBM ESS or EMC
Symmetrix), databases [1], web servers [2], middleware
[3], processors [4], file systems [5], disk drives [6],
RAID controllers [7], operating systems [8], and in
varied and numerous other applications such as data

compression [9] and list updating [10]. Any substantial
progress in caching algorithms will affect the entire
modern computational stack.

Consider a system consisting of two memory levels:
main (or cache) and auxiliary. The cache is assumed
to be significantly faster than the auxiliary memory,
but is also significantly more expensive. Hence, the
size of the cache memory is usually only a fraction
of the size of the auxiliary memory. Both memories are
managed in units of uniformly sized items known as
pages. We assume that the cache receives a continuous
stream of requests for pages. We assume a demand
paging scenario where a page of memory is paged
in the cache from the auxiliary memory only when a
request is made for the page and the page is not already
present in the cache. In particular, demand paging rules
out pre-fetching. For a full cache, before a new page
can be brought in one of the existing pages must be
paged out. The victim page is selected using a cache
replacement policy. Under demand paging model, the
replacement policy is the only algorithm of interest. The
most important metric for a cache replacement policy
is its hit rate–the fraction of pages that can be served
from the main memory. The miss rate is the fraction
of pages that must be paged into the cache from the
auxiliary memory. Another important metric for a cache
replacement policy is its overhead which should be low.

The problem of cache management is to design a
replacement policy that maximizes the hit rate measured
over a very long trace subject to the important practical
constraints of minimizing the computational and space
overhead involved in implementing the policy.

B. Our Contributions

One of the main themes of this paper is to de-
sign a replacement policy with a high hit ratio while
paying conscientious attention to its implementation
complexity. Another equally important theme of this
paper is that real-life workloads possess a great deal of
richness and variation, and do not admit a one-size-fits-
all characterization. They may contain long sequential
I/Os or moving hot spots. The frequency and scale of
temporal locality may also change with time. They may
fluctuate between stable, repeating access patterns and
access patterns with transient clustered references. No
static, a priori fixed replacement policy will work well

over such access patterns. We seek a cache replacement
policy that will adapt in an on-line, on-the-fly fashion
to such dynamically evolving workloads.

We propose a new cache replacement policy, namely,
Adaptive Replacement Cache (ARC). The basic idea
behind ARC is to maintain two LRU lists of pages. One
list, say ��
 , contains pages that have been seen only
once “recently”, while the other list, say ��� , contains
pages that have been seen at least twice “recently”. The
items that have been seen twice within a short time
have a low inter-arrival rate, and, hence, are thought
of as “high-frequency”. Hence, we think of �
 as
capturing “recency” while ��� as capturing “frequency”.
We endeavor to keep these two lists to roughly the same
size, namely, the cache size � . Together the two lists
remember exactly twice the number of pages that would
fit in the cache. In other words, ARC maintains a cache
directory that remembers twice as many pages as in the
cache memory. At any time, ARC chooses a variable
number of most recent pages to keep from �
 and from��� . The precise number of pages drawn from the list �

is a tunable parameter that is adaptively and continually
tuned. Let FRC � denote a fixed replacement policy that
attempts to keep the � most recent pages in �
 and����� most recent pages in ��� in cache at all times. At
any given time, the policy ARC behaves like FRC � for
some fixed � . However, ARC may behave like FRC � at
one time and like FRC � , ������ , at some other time. The
key new idea is to adaptively–in response to an evolving
workload–decide how many top pages from each list to
maintain in the cache at any given time. We achieve
such on-line, on-the-fly adaptation by using a learning
rule that allows ARC to track a workload quickly
and effectively. The effect of the learning rule is to
induce a “random walk” on the parameter � . Intuitively,
by learning from the recent past, ARC attempts to
keep those pages in the cache that have the greatest
likelihood of being used in the near future. It acts as
a filter to detect and track temporal locality. If during
some part of the workload, recency (resp. frequency)
becomes important, then ARC will detect the change,
and configure itself to exploit the opportunity. We think
of ARC as dynamically, adaptively, and continually
balancing between recency and frequency–in an online
and self-tuning fashion–in response to evolving and
possibly changing access patterns.

We empirically demonstrate that ARC works as well
as the policy FRC � that assigns a fixed portion of the
cache to recent pages and the remaining fixed portion
to frequent pages–even when the latter uses the best
fixed, offline workload and cache size dependent choice
for the parameter � . In this sense, ARC is empirically
universal
 . Surprisingly, ARC–which is completely
online–delivers performance comparable to LRU-2, 2Q,

LRFU, and LIRS–even when these policies use the
best tuning parameters that were selected in an offline
fashion. The policy ARC also compares favorably to an
online adaptive policy MQ.

To implement ARC, we need two LRU lists. Hence,
ARC is no more difficult to implement than LRU, has
constant-time complexity per request, and requires only
marginally higher space overhead over LRU. In a real-
life implementation, we found that the space overhead
of ARC was ���� "!$# of the cache size. We say that ARC
is low overhead. In contrast, LRU-2 and LRFU require
logarithmic time complexity per request. As a result,
in all our simulations, LRU-2 was a factor of % slower
than ARC and LRU, while LRFU can be as much as a
factor of !"� slower than ARC and LRU.

The policy ARC is scan-resistant, that is, it allows
one-time-only sequential read requests to pass through
the cache without flushing pages that have temporal
locality. By the same argument, it effectively handles
long periods of low temporal locality.

Finally, on a large number of real life workloads
drawn from CODASYL, 14 workstation disk drives, a
commercial ERP system, a SPC1 like � synthetic bench-
mark, as well as web search requests, we demonstrate
that ARC substantially outperforms LRU. As anecdotal
evidence, for a workstation disk drive workload, at
16MB cache, LRU delivers a hit ratio of &'� %"&(# while
ARC achieves a hit ratio of %")*� +,%,# , and, for a SPC1
like benchmark, at 4GB cache, LRU delivers a hit ratio
of -��/.0-(# while ARC achieves a hit ratio of %��$# .

C. A Brief Outline of the Paper

In Section II, we briefly review relevant work and
provide a context for ARC. In Section III, we introduce
a class of replacement policies and show that this class
contains LRU as a special case. In Section IV, we
introduce the policy ARC. In Section V, we present
experimental results on several workloads. Finally, in
Section VI, we present conclusions.

II. PRIOR WORK: A BRIEF REVIEW

A. Offline Optimal

For an a priori known page reference stream, Be-
lady’s MIN that replaces the page that has the greatest
forward distance is known to be optimal in terms of the
hit ratio [12], [13]. The policy MIN provides an upper
bound on the achievable hit ratio by any on-line policy.

B. Recency

The policy LRU always replaces the least recently
used page [13]. It dates back at least to 1965 [14],
and may in fact be older. Various approximations
and improvements to LRU abound, see, for example,
enhanced clock algorithm [15]. It is known that if

the workload or the request stream is drawn from a
LRU Stack Depth Distribution (SDD), then LRU is the
optimal policy [16]. LRU has several advantages, for
example, it is simple to implement and responds well
to changes in the underlying SDD model. However,
while the SDD model captures “recency”, it does not
capture “frequency”. To quote from [16, p. 282]: “The
significance of this is, in the long run, that each page
is equally likely to be referenced and that therefore
the model is useful for treating the clustering effect of
locality but not the nonuniform page referencing.”

C. Frequency

The Independent Reference Model (IRM) provides a
workload characterization that captures the notion of
frequency. Specifically, IRM assumes that each page
reference is drawn in an independent fashion from
a fixed distribution over the set of all pages in the
auxiliary memory. Under the IRM model, policy LFU
that replaces the least frequently used page is known
to be optimal [16], [17]. The LFU policy has sev-
eral drawbacks: it requires logarithmic implementation
complexity in cache size, pays almost no attention to
recent history, and does not adapt well to changing
access patterns since it accumulates stale pages with
high frequency counts that may no longer be useful.

A relatively recent algorithm LRU-2 [18], [19] ap-
proximates LFU while eliminating its lack of adaptivity
to the evolving distribution of page reference frequen-
cies. This was a significant practical step forward. The
basic idea is to remember, for each page, the last
two times when it was requested, and to replace the
page with the least recent penultimate reference. Under
the IRM assumption, it is known that LRU-2 has the
largest expected hit ratio of any on-line algorithm that
knows at most two most recent references to each page
[19]. The algorithm has been shown to work well on
several traces [18], [20]. Nonetheless, LRU-2 still has
two practical limitations [20]: (i) it needs to maintain
a priority queue, and, hence, it requires logarithmic
implementation complexity and (ii) it contains at one
crucial tunable parameter, namely, Correlated Informa-
tion Period (CIP), that roughly captures the amount of
time a page that has only been seen once recently should
be kept in the cache.

In practice, logarithmic implementation complexity
is a severe overhead, see, Table I. This limitation was
mitigated in 2Q [20] which reduces the implementation
complexity to constant per request. The algorithm 2Q
uses a simple LRU list instead of the priority queue
used in LRU-2; otherwise, it is similar to LRU-2. Policy
ARC has a computational overhead similar to 2Q and
both are better than LRU-2, see, Table I.

Table II shows that the choice of the parameter CIP

c LRU ARC 2Q LRU-2 LRFU1243
5�6 243
5(7 8 9�9
1024 17 14 17 33 554 408 28
2048 12 14 17 27 599 451 28
4096 12 15 17 27 649 494 29
8192 12 16 18 28 694 537 29

16384 13 16 19 30 734 418 30
32768 14 17 18 31 716 420 31
65536 14 16 18 32 648 424 34

131072 14 15 16 32 533 432 39
262144 13 13 14 30 427 435 42
524288 12 13 13 27 263 443 45

TABLE I. A comparison of computational overhead of various
cache algorithms on a trace P9 that was collected from a
workstation running Windows NT by using Vtrace which
captures disk requests. For more details of the trace, see
Section V-A. The cache size : represents number of ;"� � byte
pages. To obtain the numbers reported above, we assumed
that a miss costs nothing more than a hit. This focuses the
attention entirely on the “book-keeping” overhead of the cache
algorithms. All timing numbers are in seconds, and were
obtained by using the “clock()” subroutine in “time.h” of
the GNU C compiler. It can be seen that the computational
overhead of ARC and 2Q is essentially the same as that of
LRU. It can also be seen that LRU-2 has roughly double
the overhead of LRU, and that LRFU can have very large
overhead when compared to LRU. The same general results
hold for all the traces that we examined.

crucially affects performance of LRU-2. It can be seen
that no single fixed a priori choice works uniformly well
across across various cache sizes, and, hence, judicious
selection of this parameter is crucial to achieving good
performance. Furthermore, we have found that no single
a priori choice works uniformly well across across
various workloads and cache sizes that we examined.
For example, a very small value for the CIP parameters
work well for stable workloads drawn according to the
IRM, while a larger value works well for workloads
drawn according to the SDD. Indeed, it has been
previously noted [20] that “it was difficult to model the
tunables of the algorithm exactly.” This underscores the
need for on-line, on-the-fly adaptation.

Unfortunately, the second limitation of LRU-2 per-
sists even in 2Q. The authors introduce two parameters
(<>=@? and <>ACBED) and note that “Fixing these parameters
is potentially a tuning question ����� ” [20]. The parameter<F=G? is essentially the same as the parameter CIP
in LRU-2. Once again, it has been noted [21] that
“ <F=G? and <>ACBED are predetermined parameters in 2Q,
which need to be carefully tuned, and are sensitive to
types of workloads.” Due to space limitation, we have
shown Table II only for LRU-2, however, we have
observed similar dependence of 2Q on the workload

CIP HJI
c 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

1024 0.87 1.01 1.41 3.03 3.77 4.00 4.07 4.07 4.07

2048 1.56 2.08 3.33 4.32 4.62 4.77 4.80 4.83 4.83

4096 2.94 4.45 5.16 5.64 5.81 5.79 5.70 5.65 5.61

8192 5.36 7.02 7.39 7.54 7.36 6.88 6.47 6.36 6.23

16384 9.53 10.55 10.67 10.47 9.47 8.38 7.60 7.28 7.15

32768 15.95 16.36 16.23 15.32 13.46 11.45 9.92 9.50 9.03

65536 25.79 25.66 25.12 23.64 21.33 18.26 15.82 14.99 14.58

131072 39.58 38.88 38.31 37.46 35.15 32.21 30.39 29.79 29.36

262144 53.43 53.04 52.99 52.09 51.73 49.42 48.73 49.20 49.11

524288 63.15 63.14 62.94 62.98 62.00 60.75 60.40 60.57 60.82

TABLE II. Hit ratios (in percentages) achieved by the algorithm LRU-2 on a trace P12 for various values of the tunable parameter
CIP and various cache sizes. The trace P12 was collected from a workstation running Windows NT by using Vtrace which
captures disk requests, for details of the trace, see Section V-A. The cache size : represents number of ;"� � byte pages.

and the cache size. After theoretically analyzing how
to set parameter <KACB'D , [20] concluded that “Since this
formula requires an a priori estimate of the miss rate,
it is of little use in practical tuning.” They suggested<>ACBED � ���L!"� “is almost always a good choice”.

Another recent algorithm is Low Inter-reference Re-
cency Set (LIRS) [21]. The algorithm maintains a
variable size LRU stack whose LRU page is the ��MON/PRQ -th
page that has been seen at least twice recently, where�SMON/PRQ is a parameter. From all the pages in the stack,
the algorithm keeps all the ��MON/PRQ pages that have been
seen at least twice recently in the cache as well as��T
N/PRQ pages that have been seen only once recently.
The parameter ��T
NOPJQ is similar to CIP of LRU-2 or<F=G? of 2Q. The authors suggest setting �UT
N/PRQ to .C#
of the cache size. This choice will work well for stable
workloads drawn according to the IRM, but not for those
LRU-friendly workloads drawn according to the SDD.
Just as CIP affects LRU-2 and <>=@? affects 2Q, we
have found that the parameter �UT
NOPJQ crucially affects
LIRS. A further limitation of LIRS is that it requires a
certain “stack pruning” operation that in the worst case
may have to touch a very large number of pages in the
cache. This implies that overhead of LIRS is constant-
time in the expected sense, and not in the worst case as
for LRU. Finally, the LIRS stack may grow arbitrarily
large, and, hence, it needs to be a priori limited.

Our idea of separating items that have been only seen
once recently from those that have been seen at least
twice recently is related to similar ideas in LRU-2, 2Q,
and LIRS. However, the precise structure of our lists�
 and ��� and the self-tuning, adaptive nature of our
algorithm have no analogue in these papers.

D. Recency and Frequency

Over last few years, interest has focussed on com-
bining recency and frequency. Several papers have at-

tempted to bridge the gap between LRU and LFU by
combining recency and frequency in various ways. We
shall mention two heuristic algorithms in this direction.

Frequency-based replacement (FBR) policy [22]
maintains a LRU list, but divides it into three sections:
new, middle, and old. For every page in cache, a counter
is also maintained. On a cache hit, the hit page is moved
to the MRU position in the new section; moreover, if the
hit page was in the middle or the old section, then its
reference count is incremented. The key idea known as
factoring out locality was that if the hit page was in the
new section then the reference count is not incremented.
On a cache miss, the page in the old section with the
smallest reference count is replaced. A limitation of the
algorithm is that to prevent cache pollution due to stale
pages with high reference count but no recent usage
the algorithm must periodically resize (rescale) all the
reference counts. The algorithm also has several tunable
parameters, namely, the sizes of all three sections, and
some other parameters VUWYX�Z and [\WYX]Z that control
periodic resizing. Once again, much like in LRU-2 and
2Q, different values of the tunable parameters may be
suitable for different workloads or for different cache
sizes. The historical importance of FBR stems from the
fact it was one of the earliest papers to combine recency
and frequency. It has been shown that performance of
FBR is similar to that of LRU-2, 2Q, and LRFU [23].

Recently, a class of policies, namely, Least Re-
cently/Frequently Used (LRFU), that subsume LRU and
LFU was studied [23]. Initially, assign a value V_^a`cb � �
to every page ` , and, at every time D , update as:

V_^a`cb � d .�ef%hgci,V_^j`Eb if ` is referenced at time D ;%(gci$V_^a`cb otherwise,

where k is a tunable parameter. With hindsight, we can
easily recognize the update rule as a form of exponential

smoothing that is widely used in statistics. The LRFU
policy is to replace the page with the smallest V_^j`Eb
value. Intuitively, as k approaches � , the V value
is simply the number of occurrences of page ` and
LRFU collapses to LFU. As k approaches . , due to
the exponential decay, the V value emphasizes recency
and LRFU collapses to LRU. The performance of the
algorithm depends crucially on the choice of k , see [23,
Figure 7]. A later adaptive version, namely, Adaptive
LRFU (ALRFU) dynamically adjusts the parameter k
[24]. Still, LRFU has two fundamental limitations that
hinder its use in practice: (i) LRFU and ALRFU both
require an additional tunable parameter for controlling
correlated references. The choice of this parameter
matters, see [23, Figure 8]. (ii) The implementation
complexity of LRFU fluctuates between constant per re-
quest to logarithmic in cache size per request. However,
due to multiplications and exponentiations, its practical
complexity is significantly higher than that of even
LRU-2, see, Table I. It can be seen that, for small values
of k , LRFU can be as much as !"� times slower than
LRU and ARC. Such overhead can potentially wipe out
the entire benefit of a higher hit ratio.

E. Temporal Distance Distribution

Recently, [25] studied a multi-queue replacement
policy MQ. The idea is to use l (typically, l � +)
LRU queues: mon�p����0��pRmqW g
 , where moN contains pages
that have been seen at least % N times but no more than% N/r
 ��. times recently. The algorithm also maintains a
history buffer mts4u
v . On a page hit, the page frequency
is incremented, the page is placed at the MRU position
of the appropriate queue, and its w0`,�*=Gxyw
z{=@l|w is set
to ��BExCxyw
?}D~z{=@l|wte��a=��cw
z{=@l|w , where �a=~�cw
z{=@l|w is a
tunable parameter. On each access, w0`,�*=Gxyw
z{=Gl�w for the
LRU page in each queue is checked, and if it is less than��BExCxyw
?}D~z{=@l|w , then the page is moved to the MRU
position of the next lower queue. The optimal values
of �a=~�cw
z{=@l|w and the length of mts�u
v depend upon the
workload and the cache size.

The algorithm MQ is designed for storage controllers.
Due to up-stream caches, two consecutive accesses to a
single page have a relatively long temporal distance. The
algorithm assumes that the temporal distance possesses
a “hill” shape. In this setting, the recommended value of
the �a=��cw
zY=Gl�w parameter is the peak temporal distance,
and can be dynamically estimated for each workload.

The algorithm ARC makes no such stringent assump-
tion about the shape of the temporal distance distribu-
tion, and, hence, is likely to be robust under a wider
range of workloads. Also, MQ will adjust to workload
evolution when a measurable change in peak temporal
distance can be detected, whereas ARC will track an
evolving workload nimbly since it adapts continually.

While MQ has constant-time overhead, it still needs to
check time stamps of LRU pages for l queues on every
request, and, hence, has a higher overhead than LRU,
ARC, and 2Q. For example, in the context of Table I,
with l � + , the overhead ranged from),� to !"& seconds
for various cache sizes.

F. Caching using Multiple Experts

Recently, [26] proposed a master-policy that simu-
lates a number of caching policies (in particular, .C% poli-
cies) and, at any given time, adaptively and dynamically
chooses one of the competing policies as the “winner”
and switches to the winner. As they have noted, “rather
than develop a new caching policy”, they select the
best policy amongst various competing policies. Since,
ARC (or any of the other policies discussed above)
can be used as one of the competing policies, the
two approaches are entirely complementary. From a
practical standpoint, a limitation of the master-policy is
that it must simulate all competing policies, and, hence,
requires high space and time overhead. Recently, [27]
applied above ideas to distributed caching.

G. Ghost Caches

In this paper, we will maintain a larger cache di-
rectory than that is needed to support the underlying
cache. Such directories are known as a shadow cache
or as a ghost cache. Previously, ghost caches have been
employed in a number of cache replacement algorithms
such as 2Q, MQ, LRU-2, ALRFU, and LIRS to remem-
ber recently evicted cache pages. Most recently, while
studying how to make a storage array’s cache more
exclusive of the client caches, [28] used ghost caches to
simulate two LRU lists: one for disk-read blocks and the
other for client-demoted blocks. The hits rates on the
ghost LRU lists were then used to adaptively determine
the suitable insertion points for each type of data in a
LRU list.

H. Summary

In contrast to LRU-2, 2Q, LIRS, FBR, and LRFU
which require offline selection of tunable parameters,
our replacement policy ARC is online and is completely
self-tuning. Most importantly, ARC is empirically uni-
versal. The policy ARC maintains no frequency counts,
and, hence, unlike LFU and FBR, it does not suffer from
periodic rescaling requirements. Also, unlike LIRS, the
policy ARC does not require potentially unbounded
space overhead. In contrast to MQ, the policy ARC may
be useful for a wider range of workloads, adapts quickly
to evolving workloads, and has less computational over-
head. Finally, ARC, 2Q, LIRS, MQ, and FBR have
constant-time implementation complexity while LFU,
LRU-2, and LRFU have logarithmic implementation
complexity.

III. A CLASS OF REPLACEMENT POLICIES

Let � denote the cache size in number of pages. For a
cache replacement policy � , we will write �S^j��b when we
want to emphasize the number of pages being managed
by the policy.

We will first introduce a policy DBL ^@%"��b that will
manage and remember twice the number of pages
present in the cache. With respect to the policy DBL,
we introduce a new class of cache replacement policies� ^���b .
A. Double Cache and a Replacement Policy

Suppose we have a cache that can hold %�� pages. We
now describe a cache replacement policy �U����^�%���b to
manage such a cache. We will use this construct to mo-
tivate the development of an adaptive cache replacement
policy for a cache of size � .

The cache replacement policy �U����^�%���b maintains
two variable-sized lists �
 and ��� , the first containing
pages that have been seen only once recently and
the second containing pages that have been seen at
least twice recently. Precisely, a page is in �
 if has
been requested exactly once since the last time it was
removed from �
*� ��� , or if it was requested only once
and was never removed from �
�� ��� . Similarly, a page
is in ��� if it has been requested more than once since the
last time it was removed from �
�� ��� , or was requested
more than once and was never removed from �
�� ��� .
The replacement policy is:

Replace the LRU page in �Y
 , if ��
 contains
exactly � pages; otherwise, replace the LRU
page in ��� .

The replacement policy attempts to equalize the sizes of
two lists. We exhibit a complete algorithm that captures
DBL in Figure 1 and pictorially illustrate its structure
in Figure 2. The sizes of the two lists can fluctuate,
but the algorithm ensures that following invariants will
always hold:����� �
 �0e�� ���,�h��%"�"p������ �
 �(���yp*�_��� ���,�(��%��y�
B. A New Class of Policies

We now propose a new class of policies
� ^j��b . Intu-

itively, the proposed class will contain demand paging
policies that track all %�� items that would have been in a
cache of size %"� managed by DBL, but physically keep
only (at most) � of those in the cache at any given time.

Let �
 and ��� be the lists associated with DBL ^@%"��b .
Let

� ^j��b denote a class of demand paging cache re-
placement policies such that for every policy �S^j��b>�� ^���b there exists a dynamic partition of list �
 into a
top portion z\�
 and a bottom portion ���
 and a dynamic
partition of list ��� into a top portion z\�� and a bottom
portion ���� such that

�S����� � :��
INPUT: The request stream E¡J¢~ �£�¢J�J�J�J¢~ h¤�¢J�R�J� .
INITIALIZATION: Set ¥0¡�¦ � , ¥J£S¦ � , §S¡�¦©¨ and §�£S¦ª¨ .
For every «­¬ª� and any �¤ , one and only one of the following
two cases must occur.

Case I: h¤ is in §�¡ or §�£ .
A cache hit has occurred. Make �¤ the MRU page
in §®£ .

Case II: h¤ is neither in §S¡ nor in §®£ .
A cache miss has occurred. Now, one and only one
of the two cases must occur.

Case A: §�¡ has exactly : pages.
Delete the LRU page in §S¡ to make room
for the new page, and make �¤ the MRU
page in §S¡ .

Case B: §S¡ has less than : pages.
1) If the cache is full, that is,

��¯ §S¡ ¯(°¯ §®£ ¯ ��¦ � : , then delete the LRU page
in §®£ to make room for the new page.

2) Insert h¤ as the MRU page in §S¡ .
Fig. 1. Algorithm for the cache replacement policy DBL that
manages

� : pages in cache.

OO

±�²

��

³ ´�µ�¶
OO

·U¸ ´º¹"»

��

¼¼¼

³ ½¾µ�¶

OO

OO

±�¿
��

³ ½¾µ�¶

��

¼¼¼
³ ´�µ�¶

Fig. 2. General structure of the cache replacement policy
DBL. The cache is partitioned into two LRU lists: §�¡ and§®£ . The former contains pages that have been seen only once
“recently” while the latter contains pages that have been seen
at least twice “recently”. Visually, the list §­£ is inverted when
compared to §S¡ . This allows us to think of the more recent
items in both the lists as closer in the above diagram. The
replacement policy deletes the LRU page in §�¡ , if §�¡ contains
exactly : pages; otherwise, it replaces the LRU page in §�£ .

OO

ÀtÁÂÃ}Ä"Å~Å�Ä*ÆÇÄ�È�É Â

��

OO

É Â

��

Ê Ë�Ì®Í

ÎÎÎ
OO Ï ÁÂÐcÄ�ÑqÄ�È�É Â
��

OO

Ò Ï ÁÓ|Ô Ï ÁÂ

��

Ê Õ¾Ì�Í

OO

OO Ï ÁÓÐcÄ�ÑqÄ�È�É Ó
��

OO

É Ó
��

Ê Õ¾Ì�Í

��

ÎÎÎ
��

À ÁÓÃ}Ä"Å~Å�Ä*ÆÇÄ�È�É Ó OO

Ê Ë�Ì®Í
Fig. 3. General structure of a generic cache replacement
policy Ö � :��Ø×©Ù � :�� . The lists §S¡ and §�£ are exactly as in
Figure 2. The list §S¡ is partitioned into a top portion Ú�Û¡ and
a bottom portion ÜÝÛ¡ . Similarly, the list §�£ is partitioned into
a top portion Ú�Û£ and a bottom portion ÜÝÛ£ . The policy Ö � :��
maintains pages in Ú�Û¡tÞ Ú�Û£ in cache.

A.1 The lists z\�
 and ���
 are disjoint and, also, the
lists z\�� and ���� are disjoint, and

�
 � z �
 � � �
 and ��� � z �� � � �� �
A.2 If � �
�� ���,��ßà� , then both � �
 and � �� are

empty.
A.3 If � �
�� ���,��áº� , then, together, zÝ�
 and z\��

contain exactly � pages.
A.4 Either z\�
 (resp. z\��) or ���
 (resp. �t��) is

empty, or the LRU page in zÝ�
 (resp. z\��) is
more recent than the MRU page in ���
 (resp.� ��).

A.5 For all traces and at each time, zÝ�
 � z\��
will contain exactly those pages that would be
maintained in cache by the policy �S^j��b .

The generic structure of the policy � is depicted in
Figure 3. It follows from Conditions A.1 and A.5 that
the pages contained in a cache of size � managed by�S^j�0b will always be a subset of the pages managed by�U����^@%"��b . Since any policy in

� ^j��b must track all pages
that would have been in DBL ^@%"��b , it would require
essentially double the space overhead of LRU.

Remark III.1 Condition A.4 implies that if a page in�
 (resp. ���) is kept, then all pages in �
 (resp. ���)
that are more recent than it must all be kept in the
cache. Hence, the policy �S^���b can be thought of as
“skimming the top (or most recent) few pages” in �

and ��� . Suppose that we are managing a cache with�S^j�0b>� � ^���b , and also let us suppose that the cache
is full, that is, � zÝ�
 � z\�� � � � , then, it follows from
Condition A.4 that, from now on, for any trace, on a
cache miss, only two actions are available to the policy�S^j�0b : (i) replace the LRU page in zÝ�
 or (ii) replace the
LRU page in z\�� .

C. LRU

We now show that the policy LRU ^j��b is contained
in the class

� ^j��b . In particular, we show that the most
recent � pages will always be contained in DBL ^�%���b .
To see this fact observe that DBL ^@%"��b deletes either the
LRU item in �
 or the LRU item in ��� . In the first
case, �
 must contain exactly � items (see case II(A) in
Figure 1). In the second case, ��� must contain at least� items (see case II(B)(1) in Figure 1). Hence, DBL
never deletes any of the most recently seen � pages and
always contains all pages contained in a LRU cache
with � items. It now follows that there must exist a
dynamic partition of lists �
 and ��� into lists zØâ�ã"ä
 ,�åâRãyä
 , zØâRãyä� , and �åâRãyä� , such that the conditions A.1–
A.5 hold. Hence, the policy LRU ^j��b is contained in the
class

� ^j��b as claimed.
Conversely, if we consider DBL ^�%���æçb for some posi-

tive integer �]æ�ß�� , then the most recent � pages need
not always be in DBL ^�%"��æçb . For example, consider the
trace .,pR%hp0�����]pR�yp�.�pJ%hp����0�]p��"p������0p�.�pR%�p�������p��yp0����� . For this
trace, hit ratio of LRU ^���b approaches . as size of the
trace increases, but hit ratio of DBL ^�%"�0æçb , for any �]æ�ß�� ,
is zero. The above remarks shed light on choice of %"�
as the size of the cache directory DBL.

IV. ADAPTIVE REPLACEMENT CACHE

A. Fixed Replacement Cache

We now describe a fixed replacement cache,
FRC � ^j��b , in the class

� ^j��b , where � is a tunable
parameter � , �è�é�ê�ë� . The policy FRC ��^���b will
satisfy conditions A.1–A.5. For brevity, let us writez
Jì �îíïzØð ã
ñ�òyó/ôGõ
 , z}� ì ��íêzØð ã
ñ�òCóçôGõ� , �
�ì �îíê�åð ã
ñ�òyó/ôGõ
 ,
and �Ý� ì �oí�� ð ãCñ�òyó/ôGõ� .

The crucial additional condition that FRC ��^j��b satis-
fies is that it will attempt to keep exactly � pages in
the list z
�ì � and exactly �Ø��� pages in the list z�� ì � .
In other words, the policy FRC ��^���b attempts to keep
exactly � top (most recent) pages from the list �
 and�Ý�K� top (most recent) pages from the list ��� in the
cache. Intuitively, the parameter � is the target size for

the list z
�ì � . In light of Remark III.1, the replacement
policy is:

B.1 If � z
�ì ���höK� , replace the LRU page in z
�ì � .
B.2 If � z
�ì ���hßK� , replace the LRU page in z�� ì � .
B.3 If � z
�ì ��� � � and the missed page is in �
Jì �

(resp. �Ý� ì �), replace the LRU page in z�� ì �
(resp. z
�ì �).

The last replacement decision is somewhat arbitrary,
and can be made differently if desired. The subroutine
REPLACE in Figure 4 is consistent with B.1–B.3.

B. The Policy

We now introduce an adaptive replacement policy
ARC ^j�0b in the class

� ^j��b . At any time, the behavior of
the policy ARC is completely described once a certain
adaptation parameter �©�ø÷ ��p��Jù is known. For a given
value of � , ARC will behave exactly like FRC � . But,
ARC differs from FRC in that it does not use a single
fixed value for the parameter � over the entire workload.
The policy ARC continuously adapts and tunes � in
response to an observed workload.

Let zYú ã
ñ
 , �qú ã
ñ
 , z{ú ã
ñ� , and �tú ã
ñ� denote a dynamic
partition of �
 and ��� corresponding to ARC. For
brevity, we will write z
 íèz{ú ã
ñ
 , z}�_íûzYú ã
ñ� , �
 í� ú ã
ñ
 , and �Ý�Ýí�� ú ã
ñ� .

The policy ARC dynamically decides, in response
to an observed workload, which item to replace at any
given time. Specifically, in light of Remark III.1, on a
cache miss, ARC adaptively decides whether to replace
the LRU page in z
 or to replace the LRU page in z��
depending upon the value of the adaptation parameter �
at that time. The intuition behind the parameter � is that
it is the target size for the list z
 . When � is close to� (resp. �), the algorithm can be thought of as favoring��� (resp. �
).

We now exhibit the complete policy ARC in Figure 4.
If the two “ADAPTATION” steps are removed, and the
parameter � is a priori fixed to a given value, then the
resulting algorithm is exactly FRC � .

The algorithm in Figure 4 also implicitly simulates
the lists �
 � z
�� �
 and ��� � z}� � �Ý� . The lists �

and ��� obtained in these fashion are identical to the lists
in Figure 1. Specifically, Cases I, II, and III in Figure 4
correspond to Case I in Figure 1. Similarly, Case IV in
Figure 4 corresponds to Case II in Figure 1.

C. Learning

The policy continually revises the parameter � . The
fundamental intuition behind learning is the following:
if there is a hit in �
 then we should increase the size ofz
 , and if there is a hit in �ü� then we should increase
the size of z}� . Hence, on a hit in �
 , we increase �
which is the target size of z
 , and on a hit in �ü� , we
decrease � . When we increase (resp. decrease) � , we

implicitly decrease (resp. increase) �Ý�F� which is the
target size of z�� . The precise magnitude of the revision
in � is also very important. The quantities ý
 and ý��
control the magnitude of revision. These quantities are
termed as the learning rates. The learning rates depend
upon the sizes of the lists �
 and �ü� . On a hit in �
 ,
we increment � by . , if the size of �o
 is at least the
size of �ü� ; otherwise, we increment � by � �Ø�$� þ*� �
 � . All
increments to � are subject to a cap of � . Thus, smaller
the size of �
 , the larger the increment. Similarly, On
a hit in �ü� , we decrement � by . , if the size of �ü�
is at least the size of �
 ; otherwise, we decrement� by � �
 � þ*� �ü�,� . All decrements to � are subject to a
minimum of � . Thus, smaller the size of �Ø� , the larger
the decrement. The idea is to “invest” in the list that is
performing the best. The compound effect of a number
of such small increments and decrements to � is quite
profound as we will demonstrate in the next section.
We can roughly think of the learning rule as inducing
a “random walk” on the parameter � .

Observe that ARC never becomes complacent and
never stops adapting. Thus, if the workload were to
suddenly change from a very stable IRM generated to a
transient SDD generated one or vice versa, then ARC
will track this change and adapt itself accordingly to
exploit the new opportunity. The algorithm continuously
revises how to invest in �
 and ��� according to the
recent past.

D. Scan-Resistant

Observe that a totally new page, that is, a page that
is not in �
�� ��� , is always put at the MRU position
in �
 . From there it gradually makes it way to the
LRU position in �
 . It never affects ��� unless it is
used once again before it is evicted from �
 . Hence, a
long sequence of one-time-only reads will pass through�
 without flushing out possibly important pages in��� . In this sense, ARC is scan-resistant; it will only
flush out pages in z
 and never flush out pages in z�� .
Furthermore, when a scan begins, arguably, less hits will
be encountered in �o
 compared to � � , and, hence, by
the effect of the learning law, the list z�� will grow at
the expense of the list z
 . This further accentuates the
resistance of ARC to scans.

E. Extra History

In addition to the � pages in the cache, the algo-
rithm ARC remembers � recently evicted pages. An
interesting question is whether we can incorporate more
history information in ARC to further improve it. Let us
suppose that we are allowed to remember ÿ extra pages.
We now demonstrate how to carry out this step. Define
a LRU list � that contains pages that are discarded from
the list �
 in Case IV(A) of the algorithm in Figure 4.

ARC
� :��

INPUT: The request stream E¡J¢~ �£�¢J�J�J�J¢~ h¤�¢J�R�J� .
INITIALIZATION: Set �t¦ � and set the LRU lists Ú�¡ , Ü\¡ , Ú'£ , and ÜU£ to empty.

For every «­¬ª� and any h¤ , one and only one of the following four cases must occur.
Case I: h¤ is in Ú}¡ or Ú'£ . A cache hit has occurred in ARC

� :�� and DBL
� � :J� .

Move h¤ to MRU position in Ú'£ .
Case II: h¤ is in Ü{¡ . A cache miss (resp. hit) has occurred in ARC

� :J� (resp. DBL
� � :��).

ADAPTATION: Update �t¦������	�
� °�� ¡�¢~:�
 where
� ¡�¦ � � if

¯ Ü\¡ ¯ ¬ ¯ Ü�£ ¯¯ Ü�£ ¯ �,¯ Ü\¡ ¯ otherwise �
REPLACE

� h¤�¢���� . Move �¤ from Ü\¡ to the MRU position in ÚE£ (also fetch �¤ to the cache).

Case III: h¤ is in ÜU£ . A cache miss (resp. hit) has occurred in ARC
� :�� (resp. DBL

� � :��).
ADAPTATION: Update �q¦��������
��� � £0¢ �
 where

� £S¦ � � if
¯ ÜU£ ¯ ¬ ¯ Ü{¡ ¯¯ Ü{¡ ¯ �,¯ ÜU£ ¯ otherwise �

REPLACE
� h¤�¢���� . Move �¤ from ÜU£ to the MRU position in ÚE£ (also fetch �¤ to the cache).

Case IV: h¤ is not in Ú}¡ Þ Ü{¡ Þ Ú'£ Þ ÜU£ . A cache miss has occurred in ARC
� :�� and DBL

� � :J� .
Case A: §�¡­¦�Ú}¡ Þ Ü{¡ has exactly : pages.

If
��¯ Ú}¡ ¯�� :)

Delete LRU page in Ü\¡ . REPLACE
� �¤~¢���� .

else
Here Ü\¡ is empty. Delete LRU page in Ú�¡ (also remove it from the cache).

endif
Case B: §S¡�¦�Ú}¡ Þ Ü{¡ has less than : pages.

If
��¯ Ú}¡ ¯J°ª¯ Ú'£ ¯J°ª¯ Ü{¡ ¯J°f¯ Ü�£ ¯ ¬>:)

Delete LRU page in ÜU£ , if
��¯ Ú}¡ ¯J°ª¯ Ú'£ ¯J°ª¯ Ü\¡ ¯J°ª¯ ÜU£ ¯ ¦ � :�� .

REPLACE
� h¤�¢���� .

endif
Finally, fetch h¤ to the cache and move it to MRU position in Ú ¡ .

Subroutine REPLACE
� ¤ ¢����

If ((
¯ Ú}¡ ¯ is not empty) and ((

¯ Ú}¡ ¯ exceeds the target �) or (�¤ is in ÜU£ and
¯ Ú}¡ ¯ ¦��)))

Delete the LRU page in Ú�¡ (also remove it from the cache), and move it to MRU position in Üü¡ .
else

Delete the LRU page in ÚE£ (also remove it from the cache), and move it to MRU position in Ü{£ .
endif

Fig. 4. Algorithm for Adaptive Replacement Cache. This algorithm is completely self-contained, and can directly be used as a
basis for an implementation. No tunable parameters are needed as input to the algorithm. We start from an empty cache and an
empty cache directory. ARC corresponds to Ú ¡ Þ Ú'£ and DBL corresponds to Ú�¡ Þ Ú'£ Þ Ü\¡ Þ Ü�£ .
Pages that are discarded from the list ��� are not put
on the � list. The list � will have a variable time-
dependent size. At any time, � is the longest list such
that (a) � ��� �ºÿ and (b) the least recent page in � is
more recent than the least recent page in the list ��� .
The � list is related to the LIRS stack in [21].

The � list can be constructed and used as follows.
Whenever the LRU page of �
 is discarded in Case
IV(A) of the Figure 4, make the discarded page the
MRU page in the list � . Discard the LRU page in � ,
if � �t�qö ÿ . Now, whenever the LRU page of ��� is

discarded in Case IV(B) of the Figure 4, ensure that the
least recent page in � is more recent than the new least
recent page in the list ��� ; otherwise, discard pages in
the � list until this condition is satisfied. This latter step
may have to discard arbitrarily large number of pages
from � , and, hence the resulting algorithm is constant-
time in an expected sense only. Finally, on a hit in the
list � , move the hit page to the top of the list ��� . No
adaptation takes place on a hit in � . We refer to the
resulting algorithm as ARC ^j�"pRÿ�b . In our experiments,
we will focus on ARC ^���b = ARC ^��yp��,b .

V. EXPERIMENTAL RESULTS

A. Traces

Table III summarizes various traces that we used
in this paper. These traces capture disk accesses by
databases, web servers, NT workstations, and a syn-
thetic benchmark for storage controllers. All traces
have been filtered by up-stream caches, and, hence, are
representative of workloads seen by storage controllers,
disks, or RAID controllers.

Trace Name Number of Requests Unique Pages
OLTP 914145 186880

P1 32055473 2311485
P2 12729495 913347
P3 3912296 762543
P4 19776090 5146832
P5 22937097 3403835
P6 12672123 773770
P7 14521148 1619941
P8 42243785 977545
P9 10533489 1369543

P10 33400528 5679543
P11 141528425 4579339
P12 13208930 3153310
P13 15629738 2497353
P14 114990968 13814927

ConCat 490139585 47003313
Merge(P) 490139585 47003313

DS1 43704979 10516352
SPC1 like 41351279 6050363

S1 3995316 1309698
S2 17253074 1693344
S3 16407702 1689882

Merge (S) 37656092 4692924

TABLE III. A summary of various traces used in this paper.
Number of unique pages in a trace is termed its “footprint”.

The trace OLTP has been used in [18], [20], [23]. It
contains references to a CODASYL database for a one-
hour period. The traces P1–P14 were collected from
workstations running Windows NT by using Vtrace
which captures disk operations through the use of device
filters. The traces were gathered over several months,
see [29]. The page size for these traces was !�.
% bytes.
The trace ConCat was obtained by concatenating the
traces P1–P14. Similarly, the trace Merge(P) was ob-
tained by merging the traces P1–P14 using time stamps
on each of the requests. The idea was to synthesize a
trace that may resemble a workload seen by a small
storage controller. The trace DS1 was taken off a
database server running at a commercial site running
an ERP application on top of a commercial database.
The trace is seven days long, see [30]. We captured a
trace of the SPC1 like synthetic benchmark that contains
long sequential scans in addition to random accesses.
For precise description of the mathematical algorithms
used to generate the benchmark, see [31], [32], [33].
The page size for this trace was & KBytes. Finally, we

consider three traces S1, S2, and S3 that were disk
read accesses initiated by a large commercial search
engine in response to various web search requests. The
trace S1 was captured over a period of an hour, S2 was
captured over roughly four hours, and S3 was captured
over roughly six hours. The page size for these traces
was & KBytes. The trace Merge(S) was obtained by
merging the traces S1–S3 using time stamps on each of
the requests.

For all traces, we only considered the read requests.
All hit ratios reported in this paper are cold start. We
will report hit ratios in percentages (#).

B. OLTP

For this well-studied trace, in Table IV, we compare
ARC to a number of algorithms. The tunable parameters
for FBR and LIRS were set as in their original papers.
The tunable parameters for LRU-2, 2Q, and LRFU
were selected in an offline fashion by trying different
parameters and selecting the best result for each cache
size. The parameter �a=��cw
zY=Gl�w of MQ was dynamically
estimated, and the history size was set to the cache
size resulting in a space overhead comparable to ARC.
The algorithm ARC is self-tuning, and requires no
user-specified parameters. It can be seen that ARC
outperforms all online algorithms, and is comparable
to offline algorithms LRU-2, 2Q, and LRFU. The LFU,
FBR, LRU-2, 2Q, LRFU, and MIN numbers are exactly
the same as those reported in [23].

C. Two Traces: P8 and P12

For two traces P8 and P12, in Table V, we display a
comparison of hit ratios achieved by ARC with those
of LRU, 2Q, LRU-2, LRFU, and LIRS. The tunable
parameters for 2Q, LRU-2, LRFU, and LIRS were
selected in an offline fashion by trying different param-
eters and selecting the best result for each trace and
each cache size. It can be seen that ARC outperforms
LRU and performs close to 2Q, LRU-2, LRFU, and
LIRS even when these algorithms use the best offline
parameters. While, for brevity, we have exhibited results
on only two traces, the same general results continue to
hold for all the traces that we examined � .
D. ARC and 2Q

In Table V, we compared ARC with 2Q where
the latter used the best fixed, offline choice of its
tunable parameter <>=G? . In Table VI, we compare ARC
to 2Q where the latter is also online and is forced
to use “reasonable” values of its tunable parameters,
specifically, <>=@? � ���)�� and <>ACBED � �*� !�� [20]. It can
be seen that ARC outperforms 2Q.

OLTP
c LRU ARC FBR LFU LIRS MQ LRU-2 2Q LRFU MIN

ONLINE OFFLINE
1000 32.83 38.93 36.96 27.98 34.80 37.86 39.30 40.48 40.52 53.61
2000 42.47 46.08 43.98 35.21 42.51 44.10 45.82 46.53 46.11 60.40
5000 53.65 55.25 53.53 44.76 47.14 54.39 54.78 55.70 56.73 68.27

10000 60.70 61.87 62.32 52.15 60.35 61.08 62.42 62.58 63.54 73.02
15000 64.63 65.40 65.66 56.22 63.99 64.81 65.22 65.82 67.06 75.13

TABLE IV. A comparison of ARC hit ratios with those of various cache algorithms on the OLTP trace. All hit ratios are reported
as percentages. It can be seen that ARC outperforms LRU, LFU, FBR, LIRS, and MQ and performs as well as LRU-2, 2Q,
and LRFU even when these algorithms use the best offline parameters.

P8
c LRU MQ ARC 2Q LRU-2 LRFU LIRS

ONLINE OFFLINE
1024 0.35 0.35 1.22 0.94 1.63 0.69 0.79
2048 0.45 0.45 2.43 2.27 3.01 2.18 1.71
4096 0.73 0.81 5.28 5.13 5.50 3.53 3.60
8192 2.30 2.82 9.19 10.27 9.87 7.58 7.67

16384 7.37 9.44 16.48 18.78 17.18 14.83 15.26
32768 17.18 25.75 27.51 31.33 28.86 28.37 27.29
65536 36.10 48.26 43.42 47.61 45.77 46.72 45.36

131072 62.10 69.70 66.35 69.45 67.56 66.60 69.65
262144 89.26 89.67 89.28 88.92 89.59 90.32 89.78
524288 96.77 96.83 97.30 96.16 97.22 97.38 97.21

P12
c LRU MQ ARC 2Q LRU-2 LRFU LIRS

ONLINE OFFLINE
1024 4.09 4.08 4.16 4.13 4.07 4.09 4.08
2048 4.84 4.83 4.89 4.89 4.83 4.84 4.83
4096 5.61 5.61 5.76 5.76 5.81 5.61 5.61
8192 6.22 6.23 7.14 7.52 7.54 7.29 6.61

16384 7.09 7.11 10.12 11.05 10.67 11.01 9.29
32768 8.93 9.56 15.94 16.89 16.36 16.35 15.15
65536 14.43 20.82 26.09 27.46 25.79 25.35 25.65

131072 29.21 35.76 38.68 41.09 39.58 39.78 40.37
262144 49.11 51.56 53.47 53.31 53.43 54.56 53.65
524288 60.91 61.35 63.56 61.64 63.15 63.13 63.89

TABLE V. A comparison of ARC hit ratios with those of various cache algorithms on the traces P8 and P12. All hit ratios are
reported in percentages. It can be seen that ARC outperforms LRU and performs close to 2Q, LRU-2, LRFU, and LIRS even
when these algorithms use the best offline parameters. On the trace P8, ARC outperforms MQ for some cache sizes, while MQ
outperforms ARC for some cache sizes. On the trace P12, ARC uniformly outperforms MQ.

E. ARC and MQ

It can be seen from Table V that, for the trace P8,
ARC outperforms MQ for some cache sizes, while MQ
outperforms ARC for some cache sizes. Furthermore, it
can be seen that ARC uniformly outperforms MQ, for
the trace P12.

The workloads SPC1 and Merge(S) both represent
requests to a storage controller. In Table VI, we compare
hit ratios of LRU, MQ, and ARC for these workloads.
It can be seen that MQ outperforms LRU, while ARC
outperforms both MQ and LRU. These results are
quite surprising since the algorithm MQ is designed
especially for storage servers.

We will show in Figure 7 that ARC can quickly track
an evolving workload, namely, P4, that fluctuates from

one extreme of recency to the other of frequency. For
the trace P4, in Table VII, we compare hit ratios of
LRU, MQ, and ARC. It can be clearly seen that ARC
outperforms the other two algorithms. LRU is designed
for recency while MQ is designed for workloads with
stable temporal distance distributions, and, hence, by
design, neither can meaningfully track this workload.

Taken together, Tables V, VI and VII imply that
ARC is likely to be effective under a wider range of
workloads than MQ. Also, while both have constant-
time complexity, ARC has a smaller constant, and,
hence, less overhead. Finally, adaptation in ARC re-
quires tuning a single scalar, while adaptation in MQ
requires maintaining a histogram of observed temporal
distances.

1024 4096 16384 65536 262144

0.5

1

2

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P1

ARC

LRU

1024 4096 16384 65536 262144

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P2

ARC

LRU

1024 4096 16384 65536 262144

2

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P3

ARC

LRU

1024 4096 16384 65536 262144

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P5

ARC

LRU

1024 4096 16384 65536 262144

1

2

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P6

ARC

LRU

1024 4096 16384 65536 262144

2

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P7

ARC

LRU

Fig. 5. A plot of hit ratios (in percentages) achieved by ARC and LRU. Both the - and � -axes use logarithmic scale.

1024 4096 16384 65536 262144

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P9

ARC

LRU

1024 4096 16384 65536 262144

1

2

4

8

16

32

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

P10

ARC

LRU

1024 4096 16384 65536 262144 1048576 4194304

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

ConCat

ARC

LRU

8192 32768 131072 524288 2097152

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

Merge(P)

ARC

LRU

65536 262144 1048576 4194304

2

4

8

16

32

64

Cache Size (Number of 512 byte Pages)

H
it
 R

a
ti
o

 (
%

)

DS1

ARC

LRU

10
5

10
6

10
0

10
1

Cache Size (Number of 4096 byte Pages)

H
it
 R

a
ti
o
 (

%
)

S3

89

ARC

LRU

Fig. 6. A plot of hit ratios (in percentages) achieved by ARC and LRU. Both the - and � -axes use logarithmic scale.

SPC1 like
c LRU MQ 2Q ARC

ONLINE
65536 0.37 0.37 0.66 0.82

131072 0.78 0.77 1.31 1.62
262144 1.63 1.65 2.59 3.23
524288 3.66 3.72 6.34 7.56

1048576 9.19 14.96 17.88 20.00

Merge(S)
c LRU MQ 2Q ARC

ONLINE
16384 0.20 0.20 0.73 1.04
32768 0.40 0.40 1.47 2.08
65536 0.79 0.79 2.85 4.07

131072 1.59 1.59 5.52 7.78
262144 3.23 4.04 10.36 14.30
524288 8.06 14.89 18.89 24.34

1048576 27.62 40.13 35.39 40.44
1572864 50.86 56.49 53.19 57.19
2097152 68.68 70.45 67.36 71.41
4194304 87.30 87.29 86.22 87.26

TABLE VI. A comparison of hit ratios of LRU, MQ, 2Q, and
ARC on the traces SPC1 like and Merge(S). All hit ratios
are reported in percentages. The algorithm 2Q is forced to
use “reasonable” values of its tunable parameters, specifically,�! #" ¦ � � � : and

�!$&% «®¦ � � ;]: . The page size is ' KBytes for
both traces. The largest cache simulated for SPC1 like was '
GBytes and that for Merge(S) was ��(GBytes.

P4
c LRU MQ ARC

ONLINE
1024 2.68 2.67 2.69
2048 2.97 2.96 2.98
4096 3.32 3.31 3.50
8192 3.65 3.65 4.17

16384 4.07 4.08 5.77
32768 5.24 5.21 11.24
65536 10.76 12.24 18.53

131072 21.43 24.54 27.42
262144 37.28 38.97 40.18
524288 48.19 49.65 53.37

TABLE VII. A comparison of hit ratios of LRU, MQ, and ARC
on the trace P4. All hit ratios are reported as percentages. It
can be seen that ARC outperforms the other two algorithms.

F. ARC and LRU

We now focus on LRU which is the single most
widely used cache replacement policy. For all the traces
listed in Section V-A, we now plot the hit ratio of
ARC versus LRU in Figures 5 and 6. The traces P4,
P8, P12, SPC1 like, and Merge(S) are not plotted since
they have been discussed in various tables. The traces
S1 and S2 are not plotted since their results are virtually
identical to S3 and Merge(S). The traces P11, P13, and
P14 are not plotted for space consideration; for these
traces, ARC was uniformly better than LRU. It can be
clearly seen that ARC substantially outperforms LRU
on virtually all the traces and for all cache sizes. In

Workload c space LRU ARC FRC
MB OFFLINE

P1 32768 16 16.55 28.26 29.39
P2 32768 16 18.47 27.38 27.61
P3 32768 16 3.57 17.12 17.60
P4 32768 16 5.24 11.24 9.11
P5 32768 16 6.73 14.27 14.29
P6 32768 16 4.24 23.84 22.62
P7 32768 16 3.45 13.77 14.01
P8 32768 16 17.18 27.51 28.92
P9 32768 16 8.28 19.73 20.28

P10 32768 16 2.48 9.46 9.63
P11 32768 16 20.92 26.48 26.57
P12 32768 16 8.93 15.94 15.97
P13 32768 16 7.83 16.60 16.81
P14 32768 16 15.73 20.52 20.55

ConCat 32768 16 14.38 21.67 21.63
Merge(P) 262144 128 38.05 39.91 39.40

DS1 2097152 1024 11.65 22.52 18.72
SPC1 1048576 4096 9.19 20.00 20.11

S1 524288 2048 23.71 33.43 34.00
S2 524288 2048 25.91 40.68 40.57
S3 524288 2048 25.26 40.44 40.29

Merge(S) 1048576 4096 27.62 40.44 40.18

TABLE VIII. At-a-glance comparison of hit ratios of LRU
and ARC for various workloads. All hit ratios are reported
in percentages. It can be seen that ARC outperforms LRU–
sometimes quite dramatically. Also, ARC which is online
performs very close to FRC with the best fixed, offline choice
of the parameter � .

Table VIII, we present an at-a-glance comparison of
ARC with LRU for all the traces–where for each trace
we selected a practically relevant cache size. The trace
SPC1 contains long sequential scans interspersed with
random requests. It can be seen that even for this trace
ARC, due to its scan-resistance, continues to outperform
LRU.

G. ARC is Self-Tuning and Empirically Universal

We now present the most surprising and intriguing
of our results. In Table VIII, it can be seen that ARC,
which tunes itself, performs as well as (and sometimes
even better than) the policy FRC � with the best fixed,
offline selection of the parameter � . This result holds
for all the traces. In this sense, ARC is empirically
universal.

It can be seen in Table VIII that ARC can sometimes
outperform offline optimal FRC � . This happens, for
example, for the trace P4. For this trace, Figure 7 shows
that the parameter � fluctuates over its entire range.
Since ARC is adaptive, it tracks the variation in the
workload by dynamically tuning � . In contrast, FRC �
must use a single, fixed choice of � throughout the
entire workload; the offline optimal value was � � ���/.0� .
Hence, the performance benefit of ARC.

On the other hand, ARC can also be slightly worse
than offline optimal FRC � . This happens, for example,
for the trace P8. Throughout this trace, ARC maintains a

very small value of the parameter � , that is, it favors fre-
quency over the entire workload. In this case, arguably,
there exists a small range of optimal parameters. Now,
due to its constant adaptation, ARC will never lock into
a single, fixed parameter, but rather keeps fluctuating
around the optimal choice. This fluctuations cost ARC
slightly over offline optimal FRC � –in terms of the hit
ratio. Hence, for stable workloads, we expect ARC to be
slightly worse than offline optimal FRC � . Nonetheless,
the latter is a theoretical construct that is not available
in practice. Moreover, even for stable workloads, the
value of best fixed, offline parameter � depends on the
workload and the cache size. The policy ARC provides
a reasonable, online approximation to offline optimal
FRC � without requiring any a priori workload-specific
or cache size-specific tuning.

H. A Closer Examination of Adaptation in ARC

We now study the adaptation parameter � more
closely. For the trace P4 and for cache size � �)$%, y�,+
pages, in Figure 7, we plot the parameter � versus the
virtual time (or the number of requests). When � is close
to zero, ARC can be thought of as emphasizing the
contents of the list ��� , and, when � is close to the cache
size,)$%, y�,+ , ARC can be thought of as emphasizing the
contents of the list �
 . It can be seen that the param-
eter � keeps fluctuating between these two extremes.
Also, it can be seen that it touches both the extremes.
As a result, ARC continually adapts and reconfigures
itself. Quite dramatically, the policy ARC can fluctuate
from frequency to recency and then back all within
a single workload. Moreover, such fluctuations may
occur as many times as dictated by the nature of the
workload without any a priori knowledge or offline
tuning. Poetically, at any time, � dances to the tune
being played by the workload. It is this continuous,
unrelenting adaptation in response to the changing and
evolving workload that allows ARC to outperform LRU.

VI. CONCLUSIONS

We have reviewed various recent cache replacement
algorithms, namely, LRU-2, 2Q, LRFU, LIRS. Perfor-
mance of these algorithms depends crucially on their re-
spective tunable parameters. Hence, no single universal
rule of thumb can be used to a priori select the tunables
of these algorithms. In addition, we have demonstrated
that the computational overhead of LRU-2 and LRFU
makes them practically less attractive.

We have presented a new cache replacement policy
ARC that is online and self-tuning. We have empirically
demonstrated that ARC adapts to a given workload
dynamically. We have empirically demonstrated that
ARC performs as well as (and sometimes even better
than) FRC � with the best offline choice of the parameter

2000000 6000000 10000000 14000000 19776090
0

8192

16384

24578

32768
P4

Virtual Time (Request Number)

T
a
rg

e
t
S

iz
e
 f
o
r

L
is

t
T 1

Fig. 7. A plot of the adaptation parameter � (the target size
for list Ú}¡) versus the virtual time for the trace P4. The cache
size was

�C�*) (*+ pages. The page size was ;"� � bytes.

� for each workload and cache size. Similarly, we
have also shown that ARC which is online performs
as well as LRU-2, 2Q, LRFU, and LIRS–even when
these algorithms use the best offline values for their
respective tuning parameters. We have demonstrated
that ARC outperforms 2Q when the latter is forced to
be online and use “reasonable” values of its tunable
parameters. We have demonstrated that performance
of ARC is comparable to and often better than MQ
even in the specific domain for which the latter was
designed. Moreover, in contrast to MQ, we have shown
that ARC is robust for a wider range of workloads
and has less overhead. We have demonstrated that
ARC has overhead comparable to that of LRU, and,
hence, is a low overhead policy. We have argued that
ARC is scan-resistant. Finally, and most importantly, we
have shown that ARC substantially outperforms LRU
virtually uniformly across numerous different workloads
and at various different cache sizes.

Our results show that there is considerable room for
performance improvement in modern caches by using
adaptation in cache replacement policy. We hope that
ARC will be seriously considered by cache designers
as a suitable alternative to LRU.

ENDNOTES

1. Our use of universal is motivated by a similar use
in data compression [11] where a coding scheme is
termed universal if–even without any knowledge of
the source that generated the string–it asymptotically
compresses a given string as well as a coding scheme
that knows the statistics of the generating source.

2. We use the legally correct term “SPC1 like”, since,
as per the benchmark specification, to use the term
“SPC1” we must also quote other performance numbers
that are not of interest here.

3. Due to extremely large overhead and numerical
instabilities, we were not able to simulate LRFU and
LRU-2 for larger traces such as ConCat and Merge(P)
and for larger cache sizes beyond !h.
% MBytes.

ACKNOWLEDGMENT

We are grateful to Jai Menon for holding out the
contrarian belief that cache replacement policies can be
improved. The second author is grateful to his managers,
Moidin Mohiuddin and Bill Tetzlaff, for their con-
stant support and encouragement during this work. We
are grateful to Brent Beardsley, Pawan Goyal, Robert
Morris, William Tetzlaff, Renu Tewari, and Honesty
Young for valuable discussions and suggestions. We are
grateful to Bruce McNutt and Renu Tewari for the SPC1
trace, to Windsor Hsu for traces P1 through P14, to
Ruth Azevedo for the trace DS1, to Gerhard Weikum for
the CODASYL trace, to Ken Bates and Bruce McNutt
for traces S1-S3, to Song Jiang for sharing his LIRS
simulator, and to Sang Lyul Min and Donghee Lee for
sharing their LRFU simulator and for various numbers
reported in Table IV. We would like to thank Peter
Chen, our FAST shepherd, and anonymous referees for
valuable suggestions that greatly improved this paper.

REFERENCES

[1] J. Z. Teng and R. A. Gumaer, “Managing IBM database 2 buffers
to maximize performance,” IBM Sys. J., vol. 23, no. 2, pp. 211–
218, 1984.

[2] P. Cao and S. Irani, “Cost-aware WWW proxy caching al-
gorithms,” in Proc. USENIX Symp. Internet Technologies and
Systems, Monterey, CA, 1997.

[3] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou, “A
middleware system which intelligently caches query results,” in
Middleware 2000, vol. LNCS 1795, pp. 24–44, 2000.

[4] J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith,
“Cache performance of the SPEC benchmark suite,” Tech. Rep.
CS-TR-1991-1049, University of California, Berkeley, 1991.

[5] M. N. Nelson, B. B. Welch, and J. K. Ousterhout, “Caching in
the Sprite network file system,” ACM Transactions on Computer
Systems, vol. 6, no. 1, pp. 134–154, 1988.

[6] A. J. Smith, “Disk cache-miss ratio analysis and design consid-
erations,” ACM Trans. Computer Systems, vol. 3, no. 3, pp. 161–
203, 1985.

[7] P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A. Pat-
terson, “RAID: High-performance, reliable secondary storage,”
ACM Computing Surveys, vol. 26, no. 2, pp. 145–185, 1994.

[8] M. J. Bach, The Design of the UNIX Operating System. Engle-
wood Cliffs, NJ: Prentice-Hall, 1986.

[9] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei,
“A locally adaptive data compression scheme,” Comm. ACM,
vol. 29, no. 4, pp. 320–330, 1986.

[10] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list
update and paging rules,” Comm. ACM, vol. 28, no. 2, pp. 202–
208, 1985.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Trans. Inform. Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[12] L. A. Belady, “A study of replacement algorithms for virtual
storage computers,” IBM Sys. J., vol. 5, no. 2, pp. 78–101, 1966.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation techniques for storage hierarchies,” IBM Sys. J.,
vol. 9, no. 2, pp. 78–117, 1970.

[14] P. J. Denning, “Working sets past and present,” IEEE Trans.
Software Engineeing, vol. SE-6, no. 1, pp. 64–84, 1980.

[15] W. R. Carr and J. L. Hennessy, “WSClock – a simple and
effective algorithm for virtual memory management,” in Proc.
Eighth Symp. Operating System Principles, pp. 87–95, 1981.

[16] J. E. G. Coffman and P. J. Denning, Operating Systems Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[17] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of
optimal page replacement,” J. ACM, vol. 18, no. 1, pp. 80–93,
1971.

[18] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page
replacement algorithm for database disk buffering,” in Proc.
ACM SIGMOD Conf., pp. 297–306, 1993.

[19] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “An optimality proof
of the LRU-K page replacement algorithm,” J. ACM, vol. 46,
no. 1, pp. 92–112, 1999.

[20] T. Johnson and D. Shasha, “2Q: A low overhead high per-
formance buffer management replacement algorithm,” in Proc.
VLDB Conf., pp. 297–306, 1994.

[21] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance,” in Proc. ACM SIGMETRICS Conf., 2002.

[22] J. T. Robinson and M. V. Devarakonda, “Data cache man-
agement using frequency-based replacement,” in Proc. ACM
SIGMETRICS Conf., pp. 134–142, 1990.

[23] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim, “LRFU: A spectrum of policies that subsumes
the least recently used and least frequently used policies,” IEEE
Trans. Computers, vol. 50, no. 12, pp. 1352–1360, 2001.

[24] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim, “On the existence of a spectrum of policies that
subsumes the least recently used (LRU) and least frequently used
(LFU) policies,” in Proc. ACM SIGMETRICS Conf., pp. 134–
143, 1999.

[25] Y. Zhou and J. F. Philbin, “The multi-queue replacement algo-
rithm for second level buffer caches,” in Proc. USENIX Annual
Tech. Conf. (USENIX 2001), Boston, MA, pp. 91–104, June
2001.

[26] R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and I. Ari,
“Adaptive caching by refetching,” in NIPS, 2002.

[27] I. Ari, A. Amer, R. Gramarcy, E. Miller, S. Brandt, and
D. Long, “ACME: Adaptive caching using multiple experts,” in
Proceedings of the Workshop on Distributed Data and Structures
(WDAS), Carleton Scientific, 2002.

[28] T. M. Wong and J. Wilkes, “My cache or yours? making storage
more exclusive,” in Proc. USENIX Annual Tech. Conf. (USENIX
2002), Monterey, CA, pp. 161–175, June 2002.

[29] W. W. Hsu, A. J. Smith, and H. C. Young, “The automatic im-
provement of locality in storage systems.” Tech. Rep., Computer
Science Division, Univ. California, Berkeley, Nov. 2001.

[30] W. W. Hsu, A. J. Smith, and H. C. Young, “Characteristics of
I/O traffic in personal computer and server workloads.” Tech.
Rep., Computer Science Division, Univ. California, Berkeley,
July 2001.

[31] B. McNutt and S. A. Johnson, “A standard test of I/O cache,” in
Proc. the Computer Measurements Group’s 2001 International
Conference, 2001.

[32] S. A. Johnson, B. McNutt, and R. Reich, “The making of
a standard benchmark for open system storage,” J. Comput.
Resource Management, no. 101, pp. 26–32, Winter 2001.

[33] B. McNutt, The Fractal Structure of Data Reference: Applica-
tions to the Memory Hierarchy. Boston, MA: Kluwer Academic
Publishers, 2000.

