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Abstract—We describe a system-level simulation model and show that it enables accurate predictions of both I/O subsystem and
overall system performance. In contrast, the conventional approach for evaluating the performance of an I/O subsystem design,
which is based on standalone subsystem models, is often unable to accurately predict performance changes because it is too
narrow in scope. In particular, conventional methodology treats all I/O requests equally, ignoring differences in how individual
requests’ response times affect system behavior (including both system performance and the subsequent I/O workload). We
introduce the concept of request criticality to describe these feedback effects and show that real I/O workloads are not
approximated well by either open or closed input models. Because conventional methodology ignores this fact, it often leads to
inaccurate performance predictions and can thereby lead to incorrect conclusions and poor design choices. We illustrate these
problems with real examples and show that a system-level model, which includes both the I/O subsystem and other important
system components (e.g., CPUs and system software), properly captures the feedback and subsequent performance effects.

Index Terms—I/O subsystems, storage subsystem, system-level model, system simulation, disk system, disk scheduling,
simulation, performance model, disk modeling.
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1 INTRODUCTION

N response to the growing importance of I/O subsystem
performance, researchers and developers are focusing

more attention on the identification of high-performance
I/O subsystem architectures and implementations. The
conventional approach to evaluating the performance of a
subsystem design is based on standalone subsystem models
(simulation or analytic). With this approach, a model of the
proposed design is exercised with a series of I/O requests.
The model predicts how well the given design will handle
the given series of requests using subsystem performance
metrics.

The ability of any performance evaluation methodology
to identify good design points depends upon at least three
factors:

1)� the accuracy of the model,
2)� the representativeness of the workload, and
3)�how well the performance metrics translate into over-

all system performance.

The first two factors relate to the accuracy of the perform-
ance predictions and the third relates to their usefulness.
I/O subsystem model accuracy can be achieved by careful
calibration against one or more real subsystems. The latter
two factors, however, represent important flaws in conven-
tional methodology:

1)�The workloads used are often not representative of re-
ality in that they do not accurately reflect feedback ef-
fects between I/O subsystem performance (in par-
ticular, individual request completion times) and the
workload (in particular, subsequent request arrivals).

2)�Changes in I/O subsystem performance (as measured
by response times and throughput of I/O requests) do
not always translate into similar changes in overall
system performance (as measured by elapsed times or
throughput of user tasks).

These problems are fundamental to a subsystem-oriented
approach and are independent of the model’s accuracy.

Both problems arise because conventional methodology
tends to treat all I/O requests as equally important. In real-
ity, however, different requests affect overall system per-
formance in different ways and to different degrees. Some
performance effects, such as increased system bus and
memory bank contention, depend mainly on the quantity
and timing of accesses. Others, such as false idle time, are
highly dependent on whether and when processes wait for
I/O requests. False idle time is that time during which a
processor executes the idle loop because all active processes
are blocked waiting for I/O requests to complete. This is
different from regular idle time, which is due to a lack of
available work in the system. False idle time is a significant
concern, as it completely wastes the CPU for some period
of time (independent of processor speed) rather than some
number of cycles.

We describe three distinct classes of request criticality
based on how individual requests’ response times (i.e., the
times from issue to completion) affect I/O wait times [1].
Generally speaking, one request is more critical than an-
other if it is more likely to block application processes and
thereby waste CPU cycles. Most real workloads consist of a
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mixture of requests from the three classes. The common
approaches to I/O workload generation fail to accurately
recreate the effects of request criticality mixtures. Also,
most I/O performance metrics do not reflect variations in
request criticality.

To directly address these problems, we propose a new
methodology based on system-level models [1]. A system-
level model includes I/O subsystem components as well as
enough other system components to

1)�accurately incorporate feedback effects between I/O
performance and system behavior and

2)�directly provide overall system performance metrics.

Simulation times can remain reasonable because the
granularity of system component events can correspond to
that of I/O subsystem events (i.e., hundreds of ms to tens of
ms). A well-designed system-level model will eliminate the
two problems outlined above.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the concept of request criticality. Section 3
describes system-level modeling. Section 4 describes previ-
ous work related to request criticality and system-level
models. Section 5 describes and validates our simulation
infrastructure. While many of the concepts in this paper
apply to other forms of I/O, such as networks and user
interfaces, and other levels of the memory hierarchy, such
as processor caches and tertiary storage, our simulator and
experiments focus on the secondary storage subsystem.
Section 6 illustrates the first problem outlined above with
concrete examples where conventional methodology leads to
incorrect conclusions (quantitative and qualitative) regarding
storage subsystem performance by failing to properly incor-
porate feedback between request completions and subse-
quent arrivals. Section 7 briefly investigates criticality-based
disk scheduling. The results illustrate the second problem
outlined above; system performance increases while storage
subsystem performance decreases. Section 8 draws conclu-
sions and suggests avenues for future research.

2 REQUEST CRITICALITY

I/O requests separate into three classes: time-critical, time-
limited, and time-noncritical. A request is time-critical if the
process that generates it must stop executing until it com-
pletes. False idle time accumulates if there are no other proc-
esses that can be executed when the current process blocks.
Examples of time-critical requests include demand page faults,
synchronous file system writes, and database block reads.

Time-limited requests are those that become time-
critical if not completed within some amount of time (the
time limit). File system prefetches are examples of this.
Time-limited requests are similar to time-critical requests in
their effect on performance. The major difference is that
they are characterized by a time window in which they
must complete in order to avoid I/O wait times. If com-
pleted within this window, they cause no process to block.
Time-limited requests are often speculative in nature (e.g.,
prefetches). When prefetched blocks are unnecessary, per-
formance degradation (e.g., resource contention and cache
pollution) can result.

No process waits for time-noncritical requests. They
must be completed to maintain the accuracy of nonvolatile
storage, to free resources (e.g., memory), and/or to allow
background activity to progress. Examples of time-
noncritical requests are background flushes and requests
issued for background data reorganization. Except when
main memory saturates, time-noncritical requests impact
performance indirectly. For example, they can interfere with
the completion of more critical requests, causing additional
false idle time. Also, delays in completing time-noncritical
requests can reduce the effectiveness of the in-memory disk
cache.

In practice, there are no truly time-noncritical requests. If
background activity is never completed, some application
process will eventually block and wait. For example, if
background disk writes are not handled, main memory will
eventually consist entirely of dirty pages and processes will
have to wait for some writes to complete. However, the
time limits are effectively infinite in most real environments
because of their orders of magnitude (e.g., many seconds in
a system where a request can be serviced in tens of milli-
seconds). Given this, it is useful to make a distinction be-
tween time-limited requests (characterized by relatively
small time limits) and time-noncritical requests (character-
ized by relatively long time limits).

Time-noncritical requests can have completion time re-
quirements—for example, if the guarantees offered by the
system require that new data reach stable storage within a
specified amount of time. Such requests are not time-
limited according to our definition,1 but the I/O subsystem
must be designed to uphold such guarantees. Fortunately,
these time constraints are usually sufficiently large to pres-
ent no problem.

Most real workloads consist of a mixture of time-critical,
time-limited, and time-noncritical requests. For example,
extensive measurements of three different UNIX systems
([2]) showed that time-critical requests range from 51-74
percent of the total workload, time-limited requests range
from 4-8 percent, and time-noncritical requests range from
19-43 percent. For the workloads used in this paper, time-
critical requests comprise 1-95 percent of the total work-
load, time-limited requests comprise 0-70 percent, and time-
noncritical requests comprise 5-74 percent.

3 SYSTEM-LEVEL MODELS

Rather than focusing on the storage subsystem in a vac-
uum, a system-level model focuses on the system as a
whole and the interactions between components, so as to
incorporate the effects of request criticality mixtures. Very
simply, a system-level model consists of modules for each
major system component and its interfaces to the outside
world (e.g., users and other systems).2 Processes execute
within a system-level model in a manner that imitates
the behavior of the corresponding system. Also, external

1. This is one of several system-behavior-related I/O workload charac-
teristics that are orthogonal to request criticality. Each such characteristic
represents another dimension in a full I/O request taxonomy.

2. Users and other systems could both be viewed as components of a
system-level model, depending upon how comprehensive the model is
intended to be.



GANGER AND PATT:  USING SYSTEM-LEVEL MODELS TO EVALUATE I/O SUBSYSTEM DESIGNS 669

interrupts may arrive at the interfaces, triggering additional
work for the system.

For the host system part of a system-level model, we
have found that high-level system software events are suffi-
cient to capture the first and second order performance ef-
fects of storage subsystem designs because of the large
granularity of storage subsystem events (e.g., 100s of ms to
10s of ms). Each event represents an important system
software state change, possibly affecting the flow of work in
the system. Processes and interrupt service routines can be
modeled as sequences of events separated by computation
times. The CPUs “execute” this software by decrementing
each computation time (as simulated time progresses) until
it reaches zero, at which time the next event “occurs” (i.e.,
the system state is changed). If an interrupt arrives before
the computation time reaches zero, then the computation
time is updated, the new interrupt is added to the (possibly
empty) stack, and the first event of the service routine be-
comes the CPU’s current event. Interrupt completion events
remove interrupts from the stack and context switch events
replace the current process. I/O request events initiate activ-
ity in the storage subsystem components of the simulator.

The key aspect of a successful system-level model is the
distinction between causes of system activity and effects
(i.e., the resulting system activity). For example, a system
call to read file data is a cause. Corresponding storage ac-
tivity, context switches, and completion interrupts are all
effects. To correctly incorporate feedback effects (e.g., re-
quest criticality), causes must be part of the input workload
and effects must not. Also, interactions between processes
(e.g., CPU contention) must be part of the model to obtain
accurate system performance predictions. Table 1 lists some
example events in our simulator. ([3] gives the full list.)

4 PREVIOUS WORK

4.1 Request Criticality
Although we have found no previous work that specifically
attempts to classify I/O requests based on how they affect
system performance, previous researchers have noted differ-
ences between various I/O requests. Many have recognized
that synchronous (i.e., time-critical) file system writes gener-
ally cause more performance problems than nonsynchronous
(i.e., time-limited and time-noncritical) writes [4], [2].

Researchers have noted that bursts of delayed (i.e., time-
noncritical) writes caused by periodic update policies can
seriously degrade performance by interfering with read
requests (which tend to be more critical) [5]. Carson and
Setia argued that disk cache performance should be meas-
ured in terms of its effect on read requests. While not de-
scribing or distinguishing between classes of I/O requests,
they did make a solid distinction between read and write
requests based on process interaction. This distinction is not
new. The original UNIX system (System 7) used a disk re-
quest scheduler that gives non-preemptive priority to read
requests for exactly this reason. The problem with this ap-
proach (and this distinction) is that many write requests are
time-limited or time-critical. Such requests are improperly
penalized by this approach.

With nonvolatile cache memory, it is easy for storage
subsystem designers to translate write latency problems
into write throughput problems, which are much easier to
handle. This leads directly to the conclusion that read laten-
cies are the most significant performance problem. Re-
searchers are currently exploring approaches to predicting
and using information about future access patterns to guide
aggressive prefetch activity [6], [7], [8], hoping to utilize
high-throughput storage systems to reduce application-
observed read latencies. Another way to view these efforts
is that they are attempting to increase the time limits asso-
ciated with prefetches.

TABLE 1
EXAMPLE EVENTS IN A SYSTEM-LEVEL MODEL

Scope Type Description
System Call call to OS for service

External System Return return from System Call
Only Fork construct/initiate a new process

Exit last event of a process sequence
Read Block access the contents of a specific block

External Write Block modify the contents of a specific block
or Trap an exception occurring during execution

Internal Trap Complete last event in exception service routine
Interrupt an interrupt arrival
Intr Complete last event in interrupt service routine
Disk Request generate a request for disk I/O

Internal Disk Access initiate disk I/O
Only Context Switch change the process executed by a CPU

Wait for Event temporarily block process execution
Wake Up reenable process(es) waiting for event

This table lists a set of representative events for a high-level system-level model, partitioned into three groups based on whether they are externally or internally
generated. External events, the causes of system activity, are part of the input workload (entries in process event sequences, except for interrupt arrivals). Inter-
nal events are generated by the model in response to particular circumstances and system states. Some events can be either, meaning that they are sometimes
explicit in the input workload and sometimes implicitly generated by the model.
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Priority-based disk scheduling has been examined and
shown to improve overall performance in real-time systems
[9], [10] and environments where some tasks are more im-
portant than others [11]. In these cases, each request’s pri-
ority reflects the priority or deadline of the associated proc-
ess. Criticality-based disk scheduling (see Section 7) should
complement priority-based scheduling.

Finally, the Head-Of-Queue [12] or express [13] request
types present in many I/O architectures show recognition
of the possible value of giving priority to certain requests.
While present in many systems, such support is generally
not exploited by system software. Currently, researchers are
exploring how such support can be utilized by a distributed
disk request scheduler that concerns itself with both me-
chanical latencies and system priorities [14].

4.2 System-Level Modeling
References [15] and [16] describe system-level modeling
efforts used mainly for examining alternative system con-
figurations (as opposed to I/O subsystem designs). Refer-
ence [17] describes a system performance measurement
technique that consists of tracing major system events. The
end purpose for this technique is to measure system per-
formance under various workloads, rather than as input to
a simulator to study I/O subsystem design options. How-
ever, Haigh’s tracing mechanism is very similar to our trace
acquisition tool. Reference [18] describes a set of tools for
studying I/O performance as part of the entire system.
These tools are based on instruction-level traces. While
simulating every detail of systems’ activity is certainly
more accurate than abstracting part of it away, it is not
practical given the timing granularity of I/O events. The
enormous simulation times and instruction trace storage
requirements make this approach both time-prohibitive and
cost-prohibitive.

A more recent alternative is full machine simulation, as
provided by the SimOS environment [19]. Although this
approach does allow the actual operating system and full
applications to be run within the simulation environment, it
also runs an order of magnitude slower than the raw hard-
ware. More abstract simulators (which are sufficient for
storage subsystem evaluations) generally run much faster
than the real hardware and can, therefore, produce results
more than two orders of magnitude more efficiently than
full machine simulation.

There have been a few instances of very simple system-
level models being used to examine the value of caching
disk blocks in main memory [20], [21], [22]. We expand on
these efforts in two ways:

1)�by using detailed, validated system-level models, and
2)�by using system-level models to evaluate storage sub-

system designs as well as host system cache designs.

Recently proposed techniques for replaying traces of file
system requests attempt to realistically recreate perform-
ance-workload feedback effects by incorporating the ob-
served inter-request user/process think times [23], [24].
Unfortunately, this approach to trace replay is unlikely to
be successful with storage I/O request traces, because the
host-level cache and background system daemons make it
extremely difficult to identify who is responsible for what

by simply observing the I/O requests. However, these
techniques do offer a healthy supply of input workloads for
system-level models, which would, of course, need a mod-
ule that simulates file system functionality [23]. Thekkath et
al. propose such an approach for using simulation to evalu-
ate file system designs.

5 THE SIMULATION INFRASTRUCTURE

To validate our claims (as well as enable a variety of storage
subsystem architecture studies), we constructed a system-
level simulator. This section briefly describes the simulator,
the system that it is usually configured to emulate, the
traces used in the experiments, and results from comparing
the simulator’s predictions to the corresponding real sys-
tem. Reference [3] describes all of these in greater detail.

5.1 The Simulator
The simulator can be used as either a standalone storage
subsystem model (driven by I/O request traces) or a sys-
tem-level model (driven by the system-level traces de-
scribed below). It contains modules for most secondary
storage components of interest, including device drivers,
buses, controllers, adapters, and disk drives. The storage
components are very detailed and can be configured in a
wide variety of ways. It also contains the host system com-
ponent modules necessary to function as a system-level
model at a level of detail appropriate for evaluating storage
subsystem designs. For system-level model experiments,
the storage components are driven by I/O requests gener-
ated by the host system components. The key point, with
respect to this work, is that the same storage subsystem
model can be driven by either simple I/O request traces or
activity generated by the system-level components, allow-
ing direct comparisons between the two.

5.2 The Experimental System
The base system for our experiments (both simulation and
implementation) is an NCR 3433, a 33 MHz Intel 80486 ma-
chine equipped with 48 MB of main memory. For all of the
experiments, including trace collection, the available physi-
cal memory is partitioned into 40 MB for normal system use
and 8 MB for a trace buffer (see below). The disk, an HP
C2247, is a high performance, 3.5-inch, 1 GB SCSI storage
device [25]. Table 2 lists some basic characteristics of this
disk drive and [26] provides a thorough breakdown of
simulator configuration parameter values. The operating
system is UNIX SVR4 MP, NCR’s production operating
system for symmetric multiprocessing. The default file
system, ufs, is based on the Berkeley fast file system [27].
File system caching is well integrated with the virtual
memory system, which is similar to that of SunOS [28], [29].
Unless otherwise noted, the scheduling algorithm used by
the device driver is LBN-based C-LOOK. All experiments
are run with the network disconnected.

One important aspect of the file system’s performance
(and reliability) is the syncer daemon. This background
process awakens periodically and writes out dirty buffer
cache blocks. The syncer daemon in UNIX SVR4 MP oper-
ates differently from the conventional “30 second sync.” It
awakens once each second and sweeps through a fraction
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of the buffer cache, initiating an asynchronous write for
each dirty block encountered. This algorithm represents a
significant reduction in the write burstiness associated with
the conventional approach (as studied in [5]) but does not
completely eliminate the phenomenon.

5.3 System-Level Traces
5.3.1 Trace Acquisition
To collect traces of system activity, we instrumented the oper-
ating system. The instrumentation collects trace data in a dedi-
cated kernel memory buffer and alters performance by less
than 0.1 percent, assuming that the trace buffer is not other-
wise available for system use. When trace collection is com-
plete, user-level tools are used to copy the buffer contents to a
file. Each trace record contains an event type, the CPU number,
a high-resolution timestamp (approximately 840 nanoseconds)
and optional event-specific information.

A postprocessing tool translates the system event traces
into system-level traces that can be used with the simulator.
To enable this, and also to obtain configuration information,
the instrumentation captures several auxiliary system
events (e.g., context switches and storage I/O interrupts).
Also, when tracing begins, the initial process control state is
copied into the trace buffer. The process or interrupt han-
dler to which each traced event belongs can be computed
from this initial state and the traced context switches, inter-
rupt arrivals/completions and CPU numbers. The post-
processing tool passes once through the trace and produces
files containing:

1)�a set of per-process sequences of event/computation
time pairs,

2)�a list of external interrupts, including arrival times
and sequences of event/computation time pairs for
the handlers,

3)� the state of the initially active processes,
4)�a list the observed disk requests (i.e., a disk request

trace),

5)�performance statistics for the traced period of activity.

5.3.2 Workloads
While our hypotheses have been tested with a number of
workloads (see [3]), we summarize the results in this paper
with four workloads that consist of individual, though sub-
stantial, user tasks. Tracing for each experiment begins a
few seconds before the task of interest is started and con-
tinues until the task completes and all I/O requests for file
cache blocks dirtied during task execution are initiated by
the syncer daemon and completed. We refer to the process
that performs the main work as the task-executing process.
Several instances of each workload have been traced, al-
lowing generation of statistically significant results.

Table 3 lists basic characteristics of the four workloads
used in this paper. compress uses the UNIX compress utility
to reduce a 31 MB file to 11 MB. uncompress uses the UNIX
uncompress utility to return an 11 MB file to its original 31
MB size. copytree uses the UNIX cp -r command to copy a
user directory tree containing 535 files totaling 14 MB of
storage. removetree uses the UNIX rm -r command to re-
move the new copy resulting from an immediately prior
copytree execution. With the exception of removetree, source
data are not present in the main memory file block cache
when a task begins.

We selected this set of four workloads for two reasons.
First, they are all real applications, removing issues related
to synthesis. Second, and more importantly, they cover a
broad range of request criticality mixes, allowing us to ex-
pose a number of problems with conventional methodol-
ogy. For the workloads in this set, time-critical requests
comprise 1-95 percent of the total workload, time-limited
requests comprise 0-70 percent, and time-noncritical re-
quests comprise 5-74 percent. Although this set of work-
loads is not generally representative of system workloads
across all characteristics, it covers request criticality mixes
well. Further, the results reported and conclusions drawn in
this paper are consistent with our experiences and experi-
ments with a number of other workloads, including video
servers, WWW servers, and time-sharing systems [3].

5.4 Validation
To verify that the simulator correctly emulates the ex-
perimental system, we collected several performance
measurements in the form of system-level traces. The
simulator was configured to match the experimental sys-
tem and driven with these traces. The simulator results
and the system measurements were then compared using
various performance metrics. Table 4 shows the results for
the compress workload. Most of the simulator values are
within 1 percent of the corresponding measured value.

TABLE 2
BASIC CHARACTERISTICS OF THE HP C2247 DISK DRIVE

HP C2247 Disk Drive
Formatted Capacity 1.05 GB

Rotation Speed 5,400 RPM
Data Surfaces 13

Cylinders 2,051
512-Byte Sectors 2,054,864

Zones 8
Sectors/Track 56-96

Interface SCSI-2
256 KB Cache, 2 Segments
Track Sparing/Reallocation

TABLE 3
BASIC CHARACTERISTICS OF THE INDEPENDENT TASK WORKLOADS

Independent Task Task I/O Wait # of I/O Avg. I/O
Task Elapsed Time CPU Time Time Requests Resp. Time

compress 198 sec. 162 sec. 25.6 sec. 10,844 53.3 ms
uncompress 144 sec. 91.0 sec. 47.1 sec. 10,983 1076 ms

copytree 89.5 sec. 17.6 sec. 69.7 sec 8,995 147 ms
removetree 18.2 sec. 3.05 sec. 14.9 sec 1,176 15.6 ms



672 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  47,  NO.  6,  JUNE  1998

The largest difference observed among all of our valida-
tion experiments was 5 percent. In addition, the validity of
our storage subsystem modules has been independently
established [26], [30].

Once a simulator’s ability to emulate a real system has
been verified, an additional level of validation can be
achieved by modifying both and comparing the resulting
changes in performance. That is, one can measure the
change in performance on the real system and compare it to
the change in performance predicted with the simulator.
Table 5 compares measured and simulated performance
improvements resulting from the use of a C-LOOK disk
scheduling algorithm, rather than a simple First-Come-
First-Served algorithm. The simulator’s predictions match
the measured values very closely.

6 PERFORMANCE/WORKLOAD FEEDBACK

Conventional methodology fails to properly model feed-
back effects between request completions and request arri-
vals. Because almost any change to the storage subsystem
or to the system itself will alter individual request response
times, the change will also alter (in a real system) the
workload observed by the storage system. Because the pur-
pose of most performance evaluation is to determine what
happens when the components of interest are changed, lack
of proper feedback can ruin the representativeness of a
workload, leading to incorrect conclusions regarding per-
formance. This section demonstrates this problem via sev-
eral examples where inaccurate feedback effects cause the
conventional methodology to produce erroneous results.

6.1 Storage Subsystem Workload Generators
Commonly used workload generators for storage subsys-
tem models fall into two groups: open and closed. An open
subsystem model assumes that there is no feedback be-
tween individual request completions and subsequent re-
quest arrivals. This assumption ignores real systems’ ten-

dency to regulate (indirectly) the storage workload based
on storage responsiveness. As a result, workload intensity
does not increase (decrease) in response to improvement
(degradation) in storage performance. This fact often leads
to overestimation of performance changes by reducing
(enlarging) queue times excessively. The lack of feedback
also allows requests to be outstanding concurrently that
would never in reality be outstanding at the same time.

A closed subsystem model assumes unqualified feed-
back between storage subsystem performance and the
workload. Request arrival times depend entirely on the
completion times of previous requests. The main problem
with closed subsystem models is their steady flow of re-
quests, which assumes away arrival stream burstiness (i.e.,
interspersed periods of intense activity and no activity). As
a result, closed subsystem models generally underestimate
performance changes, which often consist largely of queu-
ing delays. Also, the lack of both intense bursts of activity
and idle periods can prevent the identification of optimiza-
tions related to each.

To exercise standalone subsystem models, we use traces
of I/O requests extracted from system-level traces. For
open subsystem models, the traced arrival times and physi-
cal access characteristics are maintained to recreate the ob-
served storage I/O workload. If the storage subsystem
model exactly replicates the observed behavior, the result-
ing storage performance metrics will be identical, as the
feedback effects (or lack thereof) will not come into play.
Because the results match reality in at least one instance, we
have used open subsystem simulation driven by traces of
observed disk activity in our previous work. There is no
corresponding trace-based workload generator for closed
subsystem models, which never match the reality of most
workloads.

For closed subsystem models, the traced physical access
characteristics are maintained, but the arrival times are dis-
carded in favor of the closed workload model. Each simu-
lation begins by reading N requests from the trace, where N

TABLE 4
SIMULATOR VALIDATION FOR THE compress WORKLOAD

Metric Measured Simulated % Diff.
Elapsed Time 198 sec 195 sec -1.5%
CPU utilization 81.3 % 82.0 % 0.9%
Number of interrupts 61225 60092 1.9%
Number of I/O requests 10844 10844 0.0%
Number of I/O waits 370 367 -0.8%
Average I/O wait time 69.2 ms 67.7 ms -2.2%
Average I/O access time 6.43 ms 6.34 ms -1.4%
Average I/O response time 53.3 ms 54.2 ms 1.7%

TABLE 5
MEASURED AND SIMULATED PERFORMANCE IMPROVEMENT

FOR THE uncompress WORKLOAD

Metric Measured Simulated
Improvement Improvement

Elapsed Time 10.4 % 10.6 %
Average I/O response time 65.2 % 66.1 %
Average I/O access time 17.8 % 17.8 %

The improvements come from using C-LOOK disk scheduling rather than First-Come-First-Served.
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is the constant request population, and issuing them into
the storage subsystem simulator. As each request com-
pletes, a new request is read and issued. The value of N is
chosen to match (as closely as possible) the average number
of outstanding requests over the duration of the trace.
However, the minimum value for N is one because no inter-
request think times are being utilized.

6.2 Quantitative Errors
By misrepresenting performance/workload feedback ef-
fects, standalone subsystem models frequently overestimate
or underestimate performance changes. We illustrate this
behavior by comparing two disk scheduling algorithms.
The First-Come-First-Served (FCFS) algorithm services
requests in arrival order. The C-LOOK algorithm always
services the closest request that is logically forward (i.e., has
a higher starting block number) of the most recently serv-
iced request. If all pending requests are logically behind the
most recent one, then the request with the lowest starting
block number is serviced.

Fig. 1 shows the measured and predicted performance
effects of replacing one algorithm with the other for the
copytree workload. Each figure contains two graphs, repre-
senting the change from FCFS to C-LOOK and the reverse.
The distinction relates to which algorithm was used on the
real system during trace collection. Each graph displays the
performance change predicted by an open subsystem
model, a system-level model, and a closed subsystem
model. Also shown is the measured performance differ-
ence, which matches the system-level model’s predictions
closely in every case (further evidence of the system-level
model’s accuracy).

As expected, the open subsystem model overestimates
the actual performance change and the closed subsystem
model underestimates it. This behavior is consistent across
all of our modeling methodology comparisons. Note that
the quantitative error associated with open subsystem

modeling is much larger when the modeled subsystem
services requests less quickly than the traced subsystem.

In general, we have found that prediction errors are
larger when the workload is heavier and when the real
workload contains larger or smaller amounts of request
criticality relative to the workload model. The former effect
relates to the fact that queue times dominate service times
for heavy workloads, and performance/workload feedback
most directly affects queue times. The latter effect is more
straightforward. An open subsystem model, which assumes
that all requests are time-noncritical, will have difficulty
recreating a workload that consists mostly of time-critical
requests. Similarly, closed subsystem models have difficulty
with time-noncritical requests.

6.3 Qualitative Errors
While quantitative errors are discomforting, one might be
willing to accept them if the qualitative answers (e.g., de-
sign A is superior to design B) were consistently correct.
Unfortunately, this is not the case. It is quite easy to con-
struct situations where open and closed subsystem models
lead to incorrect qualitative conclusions. For example, an
open subsystem model might lead one to believe that col-
lapsing pending requests that overlap can result in large
performance increases. In reality, most systems are struc-
tured such that overlapping requests are generated one at a
time. As another example, the lack of burstiness in closed
subsystem models might erroneously lead one to believe
that exploiting idle disk time offers no benefits. While these
examples may be obvious to many designers, others are
not. Trivializing feedback effects, as I/O subsystem work-
load generators do, can result in incorrect answers because
of complex interactions and secondary performance effects.

To illustrate this problem, we evaluate the use of disk
cache awareness in aggressive disk scheduling algorithms.
The Shortest-Positioning-Time-First (SPTF) algorithm uses
full knowledge of request processing overheads, logical-to-

    

(a)          (b)

Fig. 1. Scheduling algorithm comparison for the copytree workload. The closed subsystem model maintains a request population of 9 for (a) and 5
for (b), corresponding to the average populations observed with FCFS and C-LOOK. In graph (b), the open subsystem model predicts a 955 per-
cent increase in the average response time. (a) FCFS fi C-LOOK. (b) C-LOOK fi FCFS.
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physical data block mappings, mechanical positioning de-
lays, and the current read/write head location to select for
service the pending request that will require the shortest
positioning time [31], [32]. The SPTF algorithm can be
modified to track the contents of the disk’s on-board cache
and estimate a positioning time of zero for any request that
can be serviced from the cache, resulting in the Shortest-
Positioning-(w/Cache)-Time-First (SPCTF) algorithm [26].
Because our HP C2247’s cache performs all writes synchro-
nously, the value of cache-awareness should depend upon
the frequency with which read requests that would hit in
the cache are otherwise delayed.

Giving preference to requests that hit in the on-board
disk cache should improve SPTF performance in several
ways. First, elementary queuing theory tells us that servic-
ing the quickest requests first reduces the average queue
time, and cache hits can certainly be serviced in less time
than requests that access the media. Second, SPTF will often
service a set of pending sequential read requests in nonas-
cending order. The SPTF algorithm always selects the re-
quest that will incur the smallest positioning delay, so the
first request selected from the set may not be the one with
the lowest starting address. Further, the second request
serviced is often not the next sequential request. During the
bus transfer and completion processing of the first request,
the media platter rotates past the beginning of the next se-
quential request (prefetching it, of course). The SPTF algo-
rithm, which is ignorant of the prefetching, may not select
the next sequential request. On the other hand, the SPCTF
algorithm selects the next sequential request to exploit the
prefetch behavior. Third, SPCTF can improve the hit rate
when cache segments would otherwise be reused before
overlapping requests utilize their contents.

Fig. 2 compares SPTF and SPCTF with the compress
workload. The two graphs show average response times
with scale factors of 1 and 2, respectively. The open sub-
system model scales a workload by shrinking the measured
request inter-arrival times. The system-level model scales a

workload by increasing the speed of the host system com-
ponents (e.g., increasing the rate at which a CPU decre-
ments computation times). The request arrival rates for the
two models are similar (33 and 34 requests per second with
a scaling factor of 1 and 67 and 70 requests per second with
a scaling factor of 2). Note that the quantitative error in the
open subsystem model’s predictions increases sharply with
workload scaling. Each graph shows two pairs of bars,
comparing the average response times predicted with the
open subsystem model and the system-level model.

The open subsystem model predicts that cache-
awareness increases the average response time by 17 per-
cent for a trace scaling factor of one. This unexpected result
is caused by interactions between complex perform-
ance/workload feedback effects, which remain largely in-
tact in this case, and the disk’s prefetching behavior; this is
explained further below. For a trace scaling factor of two,
the open subsystem model predicts that the average re-
sponse time decreases by 8 percent. Most of the perform-
ance improvement comes from servicing pending sequen-
tial reads in ascending order, thereby exploiting the disk’s
prefetch behavior. A storage subsystem designer might ob-
serve these results and conclude that cache-awareness im-
proves storage subsystem performance under heavy
workloads, but can hurt performance under lighter work-
loads. A hybrid algorithm that uses knowledge of cache
contents only when the workload is heavy might then be
devised.

Although not shown, the closed subsystem model also
predicts that SPCTF outperforms SPTF (by 0.6 percent for
request populations of 4, 8, 16, and 32). As with the open
subsystem model, the improvement comes mainly from
servicing pending sequential reads in ascending order.
While the response time reduction is not large, a storage
subsystem designer might be inclined to incorporate cache-
awareness if the implementation effort is not unreasonable.

On the other hand, the system-level model predicts that
cache-awareness consistently hurts storage subsystem

    

(a)       (b)

Fig. 2. Cache-Aware Disk Scheduling for the compress Workload. (a) Scale Factor = 1.0. (b) Scale Factor = 2.0.
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performance. The average response time increases by 21
percent for a scaling factor of one and by 17 percent for a
scaling factor of two. The conclusion, given these perform-
ance predictions, is that SPTF is superior to SPCTF for these
two workloads.3

The SPCTF algorithm hurts performance (for this work-
load) because of complex interactions between perform-
ance/workload feedback effects and the disk’s prefetching
behavior. Most of the read requests in compress are caused
by sequential file accesses and are, therefore, largely (but
not entirely) sequential. These requests are generated in a
fairly regular manner. The task-executing process reads a
file block, works with it, and then reads the next. The file
system prefetches file block N + 1 when the process ac-
cesses (or attempts to access) block N. So, the number of
pending read requests ranges between zero and two,
greatly diminishing the importance of SPTF’s difficulty
with sets of pending sequential reads. Write requests, ar-
riving in bursts when the syncer daemon awakens, occa-
sionally compete with these read requests. The average re-
sponse time is largely determined by how well the storage
subsystem deals with these bursts. At some point during
such a burst, there will be zero pending read requests and
the disk scheduler (either variant) will initiate one of the
write requests.

From this point, SPTF and SPCTF progress differently.
SPTF will continue to service the write requests, independ-
ent of read request arrivals. The writes (like the reads) gen-
erally exhibit spatial locality with other writes and will,
therefore, incur smaller positioning delays. So, any new read
request(s) will wait for all of the writes to complete and will
then be serviced in sequence as they arrive. On the other
hand, SPCTF will immediately service a new read request if
it hits in the on-board disk cache. At this point, the HP
C2247 disk drive will begin to reposition the read/write
head in order to prefetch additional data. After servicing
the read request, SPCTF will initiate one of the pending
writes. The disk will discontinue prefetching at this point (if
it even reached the read’s cylinder) and reposition to serv-
ice the write. Frequently, the disk will not succeed in pre-
fetching any data because repositioning the read/write
head requires more time than it takes to service a cache hit
and begin the next request. This cycle (read hit, failed pre-
fetch, write request) may repeat several times before a new
read request misses in the disk’s cache. At this point, SPCTF
behaves like SPTF, servicing the remainder of the writes
before handling any reads. The time wasted repositioning
the read/write head for aborted prefetch activity decreases
disk efficiency and increases the average response time.

Given that initiating prefetch after a cache hit causes this
performance problem, one might consider not doing so.
However, this policy does improve performance and
should remain in place. For example, for compress (un-
scaled), the system-level model predicts that SPTF perform-
ance drops by 3 percent when prefetch activity is not initi-
ated after cache hits. Without such prefetch activity, the
system-level model also predicts that SPCTF outperforms
SPTF by 1 percent, which is not enough to compensate for the

3. For the example in the next section, increased request response times do
not translate into increased elapsed times for tasks. In this example, they do.

elimination of cache hit prefetching. Among the crossproducts
of these options, the best storage subsystem performance
(for this workload) is offered by SPTF scheduling and ag-
gressive prefetching after cache hits.

The interactions that cause cache-awareness to hurt per-
formance are obscure and easy to overlook without some
indication that they represent a problem. Reference [26]
compared SPCTF and SPTF, using extensive open subsys-
tem simulations driven by disk request traces captured
from commercial computer systems, and found SPCTF to
be superior. None of the results suggested that SPCTF is
ever inferior to SPTF. While the data presented above do
not disprove the previous results (because the workloads
are different), they certainly cast doubt. This example dem-
onstrates that trivializing performance/workload feedback
effects can lead to erroneous conclusions in nonobvious
ways.

7 CRITICALITY-BASED DISK SCHEDULING

Even when storage subsystem performance is correctly
predicted, the conventional subsystem-oriented methodol-
ogy can promote suboptimal designs because commonly
used subsystem performance metrics (e.g., request response
times) do not always correlate with overall system per-
formance metrics (e.g., task elapsed times). We illustrate
this problem with a storage subsystem modification (pri-
oritizing disk requests based on request criticality) that im-
proves overall system performance while reducing per-
formance as measured by subsystem metrics.

From a short-term viewpoint, time-critical and time-
limited are clearly more important to system performance
than time-noncritical requests. So, we modify the C-LOOK
algorithm to maintain two distinct lists of pending requests
and service requests from the higher-priority list first.4

Time-critical and time-limited requests are placed in the
high-priority list, and time-noncritical requests are placed
in the low-priority list. Time-limited requests are grouped
with time-critical requests because measurements indicate
that they often have short time limits.

To implement the modified algorithm, a disk request
scheduler must have per-request criticality information.
Fortunately, request-generating system components (e.g.,
file systems and virtual memory managers) generally know
a request’s criticality class when it is generated. Requests
caused by demand fetches and synchronous writes are
time-critical. Background flushes initiated by the syncer
daemon are time-noncritical. Requests resulting from pre-
fetches and asynchronous metadata updates are usually
time-limited. (In our implementation, we assume that all
such requests are time-limited.) We modified the appropri-
ate modules to pass this information to the device driver
with each request as part of the I/O control block.

Fig. 3 evaluates criticality-based disk scheduling with
commonly utilized performance metrics for the overall

4. Many variations and more aggressive algorithms can be devised, but
our goal is not to fully explore the design space of disk scheduling algo-
rithms that use request criticality information. Rather, our intent is to illus-
trate a problem with standalone storage subsystem models and indicate the
potential of this performance enhancement.
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system and the storage subsystem. Graph (a) shows overall
system performance as measured by the time from when
the task-executing process begins to when it exits (i.e.,
completes).5 The elapsed times are broken into three re-
gions: false idle time, CPU time used by the task-executing
process, and other CPU time. The task computation time is
independent of storage subsystem performance and, there-
fore, is not affected by changes to the disk request sched-
uler. The other CPU time consists mainly of system soft-
ware execution by interrupt handlers and system daemons.
Some of this activity competes with the task-executing pro-
cess for CPU time and some of it occurs while the process is
blocked waiting for I/O, thereby reducing false idle time.
Graph (b) shows the average response time across all I/O
requests, including those initiated in the background after
the task-executing process completes. Table 6 provides ad-
ditional information to assist in understanding the data in
the figures.

For the uncompress workload, overall system performance
increases by 30 percent when the disk scheduler uses request
criticality information. At the same time, storage subsystem
performance decreases by more than an order of magnitude.
Most of the overall system performance improvement comes
from reducing false idle time (by 90 percent) by expediting
the completion of requests that cause processes to block.
The remainder comes from a 45 percent reduction in other
CPU time during the task’s lifetime. (This activity still oc-
curs after the task-executing process exits.) Storage subsys-
tem performance decreases both because the scheduler fo-
cuses its efforts on system needs, rather than mechanical
delays, and because processes progress more quickly and,

5. When the process exits, there are often dirty file cache blocks that re-
main to be flushed. While certainly important, the background write I/O
requests for these dirty blocks are not part of the task completion time ob-
served by a user. They can, however, interfere with the file and I/O activity
of subsequent tasks if there is insufficient idle time between tasks. The last
disk write completes at roughly the same time independent of the sched-
uling algorithm because of the periodic flush policy employed by the file
system’s syncer daemon.

therefore, generate I/O requests more quickly. The same
qualitative results were observed for all workloads studied
in [3].

This example demonstrates that storage subsystem per-
formance metrics do not, in general, correlate with overall
system performance metrics. Because storage subsystem
performance decreases, evaluating criticality-based sched-
uling with subsystem metrics would lead one to dismiss it
as poor. In fact, a recent publication observed reductions in
subsystem performance for a similar algorithm (giving pri-
ority to reads over writes) and concluded that it is a bad

    

(a)        (b)

Fig. 3. Criticality-based scheduling of the uncompress workload. (a) Task elapsed time. (b) I/O response time.

TABLE 6
CRITICALITY-BASED SCHEDULING
OF THE uncompress WORKLOAD

Performance Metric C-LOOK Criticality
Elapsed Time for Task 147.5 sec 103.8 sec
Task Computation Time 90.3 sec 90.3 sec
Other CPU Time 17.6 sec 9.6 sec
Task I/O Wait Time 51.0 sec 4.3 sec
False Idle Time 39.6 sec 3.9 sec
Time-Critical Requests 153 153
Avg. Response Time 62.7 ms 29.1 ms
Max. Response Time 6,165 ms 95.1 ms
Time-Limited Requests 2,693 2,693
Avg. Response Time 42.5 ms 19.3 ms
Max. Response Time 11,000 ms 73.6 ms
Avg. Time Limit 31.0 ms 33.8 ms
% Satisfied in Time 95.9 % 86.5 %
Time-Noncritical Reqs. 7,989 7,989
Avg. Response Time 1,207 ms 15,300 ms
Max. Response Time 10,500 ms 69,700 ms
Total Request Count 10,835 10,835
Avg. Response Time 903.4 ms 11,256 ms
Avg. Service Time 8.0 ms 12.1 ms
% Disk Buffer Hits 22.4 % 8.2 %
Avg. Seek Distance 31 cyls 217 cyls
Avg. Seek Time 1.5 ms 4.2 ms
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design point [33]. Additional results, available in [3], show
that simply excluding time-noncritical requests from the
average response time is not sufficient because of the per-
formance effects of time limits. We believe that overall sys-
tem metrics must be produced directly (e.g., with a system-
level model) rather than inferred from subsystem metrics.

8 CONCLUSIONS AND FUTURE WORK

The conventional design-stage I/O subsystem performance
evaluation methodology is too narrow in scope. Because
standalone subsystem models ignore differences in how
individual request response times affect system behavior,
they can lead to erroneous conclusions. As a consequence,
many previous results must be viewed with skepticism un-
til they are verified either in real environments or with a
more appropriate methodology.

Conventional methodology fails to accurately model
feedback effects between I/O subsystem performance and
the workload. Open subsystem models completely ignore
feedback effects. As a result, open subsystem models tend
to overestimate performance changes and allow unrealistic
concurrency. When performance decreases, prediction error
grows rapidly as the lack of feedback quickly causes satu-
ration. When I/O subsystem performance increases, per-
formance prediction errors of up to 30 percent are observed.
Closed subsystem models assume unqualified feedback,
generating a new request to replace each completed re-
quest. As a result, closed subsystem models tend to under-
estimate performance changes and completely ignore bursti-
ness in request arrival patterns. Closed subsystem models
rarely correlate with real workloads, leading to performance
prediction errors as large as an order of magnitude.

Conventional methodology also relies upon I/O sub-
system metrics, such as the mean request response time.
These metrics do not always correlate well with overall
system performance metrics, such as the mean elapsed time
for user tasks. For example, the use of request criticality by
the disk scheduler reduces elapsed times for user tasks by
up to 30 percent, while concurrently increasing the mean
I/O response time by as much as two orders of magnitude.

A new methodology based on system-level models is
proposed and shown to enable accurate predictions of both
subsystem and overall system performance. A simulation
infrastructure that implements the proposed methodology
is described and validated. The system-level simulation
model’s performance predictions match measurements of a
real system very closely (within 5 percent in all comparisons).

Given the problems associated with conventional meth-
odology, the obvious next step is to reevaluate previous
storage subsystem research using the proposed methodol-
ogy. This will require libraries of system-level traces col-
lected from real user environments. Our instrumentation
limits the length of system-level traces to the capacity of a
dedicated kernel memory buffer. By partitioning the trace
buffer into two or more sections and collecting trace data in
one section as others are being copied to disk, much longer
traces can be collected. Because all system activity is traced,
the activity (CPU, memory, and I/O) related to trace collec-
tion can be identified and removed from the trace. Trace-

collection overhead would, therefore, impact the traced
workload only if users perceive the performance degrada-
tion and change their behavior. Sensitivity studies would be
needed, but this approach may enable acquisition of very
long system-level traces.

Criticality-based disk scheduling also appears promis-
ing. More thorough investigation is needed to understand
the issues involved with more sophisticated algorithms,
main memory saturation, and the reliability of new data.
Some of these factors are explored in [3], [14].
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