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Abstract

We describe how to manage distributed file system
caches based upon groups of files that are accessed to-
gether. We use file access patterns to automatically con-
struct dynamic groupings of files and then manage our
cache by fetching groups, rather than single files. We
present experimental results, based on trace-driven work-
loads, demonstrating that grouping improves cache perfor-
mance. At the file system client, grouping can reduce LRU
demand fetches by 50 to 60%. At the server, cache hit rate
improvements are much more pronounced, but vary widely
(20 to over 1200%) depending upon the capacity of inter-
vening caches. Our treatment includes information theo-
retic results that justify our approach to file grouping.

1. Introduction

Dynamic file grouping is an effective mechanism for ex-
ploiting the predictability of file access patterns and im-
proving the caching performance of distributed file sys-
tems [2, 7, 12, 18, 21, 24, 25]. We build dynamic group-
ings of files based on observed file access patterns, and then
improve cache performance by fetching groups, rather than
single files. Such predictive grouping provides many of the
advantages of predictive prefetching with none of the re-
source contention and timing issues. Our grouping model
is more general than prior work in file grouping, requiring
no input beyond observations of the sequence of file access
requests. In modeling inter-file relationships, we also pro-
vide a treatment of file access predictability and the effects
of varying our observation and metadata tracking models.

Prefetching has been frequently used to improve perfor-
mance by predicting future access patterns from past ob-
servations. In spite of improvements in accuracy, predic-
tive prefetching [8, 11, 13, 26] has problems inherent in its
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approach. Specifically, incorrect predictions can be detri-
mental to overall system performance. Once a prefetch op-
eration has been initiated, it is difficult to preempt, and if
not accurate will contend with the demand driven work-
load. Even with perfect prediction of subsequent access
events, each predictive request will incur access latencies.
For predictive prefetching to be effective, predictions must
be made far enough in advance to effectively mask the la-
tency of the prefetch request. On the other hand, automated
grouping does not impose any such timing restrictions. If a
group is constructed and utilized, then we can expect a per-
formance gain. If the system experiences a sudden increase
in workload, group construction can be delayed, while ac-
cess statistics may continue to be gathered without conflict-
ing with the existing workload.

Automated group construction improves upon existing
approaches because it is more general, adaptive, and based
on a stronger and less intrusive predictive model. Our
grouping mechanism is based on the automated construc-
tion of groups from observed file access patterns. We go
beyond existing file grouping systems in that we do not re-
quire any knowledge of the explicit underlying structure.
Examples of the state of the art in file grouping include C-
FFS [7], which bases grouping on a directory-membership
heuristic, and Hummingbird [18] which utilizes the under-
lying structure of web page links. With our grouping mech-
anism we establish relationships by observing file access
behavior, without relying on inference from file location or
content.

2. Grouping Model

We group files to reduce access latency. By fetching
groups of files, instead of individual files, we increase cache
hit rates when groups contain files that are likely to be ac-
cessed together. In this way, grouping providesimplicit
prefetching, preloading a cache with files likely to be ac-
cessed in the near future. This increases cache performance
in two ways: (1) implicit prefetching reduces demand fetch
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Figure 1. Inter-file relationship graph.

operations; (2) good file groupings reduce inaccurate cache
evictions by increasing the retention priority of soon-to-
be-accessed group members. In this section we present
our general model for grouping, which is based on the on-
line identification of inter-file relationships. Applying this
model for caching is discussed in�3.

2.1. File Relationship Graphs

Figure 1 represents an inter-file relationship graph, and a
simple grouping for groups of size three. The nodes repre-
sent seven files,A throughG, while each edge is numbered
in order of decreasing likelihood. For fileB it is more likely
to subsequently access fileC than fileD. In this particular
relationship graph, to construct groups of size three requires
little more than grouping each file with its two most likely
successors. This process would continue until we have a
minimal covering set of subsets. This is an important dis-
tinction from prior art, we do not attempt to produce a par-
tition of the relationship graph, simply a minimal covering
set.

When grouping is used for data and file placement, a dis-
joint partitioning has traditionally been required. We specif-
ically allow overlapping graph partitions because dividing
files into disjoint subsets penalizes scenarios where a single
popular file is read within multiple distinct working sets.
A typical example would be a shell executable that is read
upon using any script, or themake utility, the executable of
which is often accessed when working with different build
trees. With replication of such commonly read files, the
requirement for disjoint graph partitions is an unnecessary
and harmful restriction.

For optimizing file placement, groups are collocated on
storage to reduce access latency. An excessive number of
group transitions would increase average I/O latency. For
file prefetching, group membership is used to allow for
group retrieval of multiple files, and augmenting cache re-
placement decisions with prior knowledge of which files are
likely to be requested in the near future. For such a grouping
cache, group overlaps do not impose any significant consis-
tency issues, and reducing the number of inter-group tran-

sitions is equivalent to reducing the total number of remote
fetch requests performed.

2.2. Relationship Strength

The success and accuracy of grouping is dependent on
both the predictive model used to evaluate the strength of re-
lationships, and the nature of the workload driving the stor-
age system. The strength of a relationship, an edge priority
in Figure 1, is equivalent to the likelihood of the target node
succeeding the current node in an access sequence. There
are many subtle issues involved in the estimation of a file’s
access likelihood, most of which are taken for granted in
prior work on file access prediction. A workload can vary in
predictability from system to system, and at different times
and timescales. How file accesses are tracked and what data
is used to predict subsequent accesses can also affect the
predictability of a workload, we refer to this as the choice
of predictive model.

There are subtle decisions that are made when we at-
tempt to predict file access behavior, including: (1) whether
we consider frequency or recency to be better estimators of
access likelihood, (2) where in the system access informa-
tion is gathered,i.e., the existence of intervening caches,
(3) what we predict, do we track and predict single files
or sequences of files, and (4) what information we extract
from the system, and upon which we base our predictions,
i.e., do we consider the absolute time of an event or just its
sequence, or do we differentiate events based on the iden-
tity of the driving client, program, user, or process. Many of
these questions are only implicitly addressed in prior work,
especially the use of frequencyvs. recency for estimating
access likelihood. Contrary to common assumptions, we
have found recency to often be a better choice than fre-
quency for estimating the likelihood of future access. This
was found to be particularly true when given a context, such
as a preceding file access event.

The distinction between caching and placement-
optimization problems illustrates a choice between recency
and frequency of access. LRU caching assumes that recency
of access indicates a higher likelihood of access in the near
future. On the other hand, placement optimization attempts
to increase the spatial locality ofhot data,i.e., most likely to
be accessed next. In a sense, caching can be seen as a place-
ment problem for which we attempt to place currently hot
data items where access costs are lowest. For prior work on
data placement [4, 29] the likelihood of access was simply
calculated as an overall relative frequency of access. This
approach could produce a clearly defined and small subset
of the address space, thanks to a very high skew in access
frequencies. And yet, for data caching problems, it is of-
ten assumed that the least recently accessed member of a
current subset is the least likely to be accessed in the near



future. This approach is equivalent to defining likelihood
of access as being proportional to recency of access. We
believe that the best estimator of likelihood needs to be de-
termined for each workload, and may combine elements of
both frequency and recency. For the aggregating cache we
have found that recency was consistently superior to fre-
quency in maintaining a limited list of potential successors.

Recording the time of an event as opposed to its order
in a sequence is inaccurate, and so we base our groupings
on the observed sequence of files accessed and make no at-
tempt to include precise timing information. Timing infor-
mation can be seriously affected by workload volumes and
system loads. In addition, access timing can be affected
by the on-line predictive algorithm if it modifies the per-
formance of the underlying storage system,e.g., the appli-
cation of grouping or prefetching would be sure to change
the timing of a given workload. The most general invariant
is the actual sequence of access events, which is driven by
user and application behavior. For this reason we limit our
tracking to the sequence of files accessed. This broadens
the applicability of our results, as they are independent of
precise timing issues.

Architectural factors, such as the existence of interven-
ing caches, can also affect the choice of predictive model.
If sequence information is gathered at the system-call level,
it is most likely to be representative of the driving applica-
tion and user behavior. An NFS file server cache would not
have access to such information, but would in fact deal with
workloads filtered through client caches. Filtering through
an intervening cache has the potential to significantly re-
duce the importance of recency in evaluating likelihood of
access. Although the architecture of the aggregating cache,
described below in� 3, allows the collection of unfiltered
workload information, we have found dynamic file group-
ing to be effective at improving the performance of such
NFS-like server caches in the presence of intervening LRU
caches.

3. The Aggregating Cache

We propose the aggregating cache as an example of
grouping for improved cache management, and as a mech-
anism for building dynamic groups with minimal metadata
requirements. Figure 2 illustrates the location of relation-
ship metadata in our distributed file system model. The
client interacts with the local file system interface normally,
but requests for files from the remote server result in the
retrieval of file data based on predetermined groups of re-
lated files, all of which are opportunistically brought into
the cache. In short, group information is maintained at the
server, and used in retrievals performed by the file system’s
client-side cache manager, or locally to the server when the
server-side storage manager retrieves files from server stor-

Storage Server

Single Request
and Retrieval

Relationship
Metadata

File Store
Server

Group
Retrieval

Single
Request

Data Client

Cache Manager

Single Request
and Retrieval

Local File System Interface

Remote File Server

Client System

G
ro

u
p

 R
etrieval

S
ingle R

equest

Local Storage

Disk+Memory Cache

Figure 2. The aggregating cache.

age. Our experiments indicate that only a very small num-
ber of successors are needed to capture most relationship in-
formation. Dynamic group construction is based on simple
per-file metadata, consisting of immediate successor lists.

Immediate and Transitive Successors – Given an access
to file A, a successor ofA is simply any file subsequently ac-
cessed. This definition is too broad, and for our purposes we
define two distinct kinds of successors. Theimmediate suc-
cessor of a file A is the file observed to directly follow file
A in the access sequence. The list oftransitive successors
of file A is a list constructed of the most likely immediate
successors of fileA. In other words, the list of transitive
successors is a predicted sequence of access events start-
ing with file A, and built by recursively following the most
likely immediate successor. Throughout the remainder of
this paper, successor refers to an immediate successor un-
less otherwise noted.

Retrieving a Group of Successors – The server is respon-
sible for constructing a group, of sizeg, for retrieval by the
client. The server maintains only immediate successor in-
formation for each file. No effort is made to extend the
information tracked beyond a single immediate successor.
Our system will currently make a best-effort to retrieve a
group ofg files. For a group of two or three files this is
simply a matter of retrieving the requested file and one or
two of its immediate successors. Larger groups require a
more forward-looking approach, where the list of transitive
successors is followed as far as possible. This mechanism
depends on the chaining of “most-likely” immediate succes-
sor predictions. Upon receiving a group ofg files, the client
uses LRU replacement for its cache, placing the requested
file at the head of its list, with the remaining members of
the group appended to the end. This avoids assigning a high
priority to unconfirmed successors, though exact placement
of the remaining group members was found to have little



effect if the cache is several times the group size.

4. Experimental Results

The aggregating cache was found to reduce demand
fetches when used for client or server-side caching
through simulation against traces gathered from the Coda
project [16]. Further experimentation against the same
workloads demonstrated that recency was a better estima-
tor of per-file succession likelihood than frequency counts.
We also evaluated the predictability of the workloads when
tracking single file successors compared to tracking succes-
sor sequences of different lengths and found that tracking
single file successors was the best choice for these work-
loads. Workload predictability was evaluated usingsucces-
sor entropy, which we define and discuss in�4.5.

4.1. Experimental Workloads

Simulations were run on file system traces gathered us-
ing Carnegie Mellon University’s DFSTrace system [16].
The tests covered several systems for durations ranging
from a single day to over a year. The traces represent varied
workloads, particularlymozart a personal workstation,ives,
a system with the largest number of users,dvorak a sys-
tem with the largest proportion of write activity, andbarber
a server with the highest number of system calls per sec-
ond. For clarity we will refer to these traces asworkstation,
users, write, andserver respectively. These traces provide
information at the system-call level, and represent the orig-
inal stream of access events (not filtered through a cache).
For these CMU traces we are measuring the hit-rate for a
whole file cache based on file open requests. This assumes
a coarse granularity for the analysis, we focus on patterns
of file requests and are not concerned with intra-file access
patterns.

4.2. Client Caching

To improve upon the performance of a client cache, we
implemented cache replacement based on our dynamically
constructed groups. When demand fetches are replaced
with requests for groups of files we observe reductions in
demand fetches, and increases in cache hit ratios. Figure 3
demonstrates the reduction in demand fetches of an LRU
cache when using groups. The number of demand fetches is
directly proportional to the cache miss rate, but we present
the absolute number of fetches to emphasize the similarity
of the results across different workload volumes. Each line
represents the number of demand fetches performed by a
cache, with a particular group size, as a function of cache
capacity. Group sizes ranged from one (LRU) to groups
of ten files (labeledg10 in the figure). The most modest
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Figure 3. Number of file fetches, proportional
to cache miss rate, as a function of cache
size.

performance gains are for thewrite workload, which is not
surprising when we consider that this workload exhibited
the heaviest write activity. The greatest gains are observed
for theserver workload, which represents a server that fea-
tured minimal user-interactive workloads. This particular
workload is representative of more application-driven ac-
cess patterns, that will tend to be more predictable than user
behavior.

For theserver workload we see the most dramatic perfor-
mance gains, with groups of only two or three files reducing
cache miss rates by over 40%, while using groups of five or
more files reduces miss rates by over 60%. With groups up
to size five we see a dramatic reduction in the number of
remote fetch operations. Specifically, we are measuring the
total number of requests made by the client to the remote file
server. For groups larger than five files we see less dramatic
gains, but no deterioration in performance. This suggests
that most short term access relationships are captured with
groups of approximately five files. This also suggests that
the group construction process remains successful at find-
ing highly related files for groups beyond five files, as we
are not polluting a good cache when using larger groups.



4.3. Server-Side Caching

When used for server-side caching, grouping shows im-
pressive performance gains over more basic caching al-
gorithms. Our grouping model assumes that relationship
information can be gathered at the system-call level and
access-statistics piggy-backed with client file requests to the
server. Although such a solution is feasible with minimal
impact on system performance, we now consider the effects
of losing such detailed information. Specifically, we con-
sider the case where grouping is used to improve the perfor-
mance of a server cache, and demonstrate how it can dra-
matically improve hit rates compared to traditional caching
schemes. When an intervening client cache filters requests
to the server, and access statistics are completely discarded,
then the server is only aware of the client cache misses. If
an aggregating cache is used at the client it can forward all
access statistics to the server, but in this section we assume
no cooperation from the intervening client caches.

Figure 4 shows the performance of a server cache (hit
rate) given LRU filtering of access requests by a client
cache. We compare three cache management schemes for
the server cache: LRU replacement, LFU replacement, and
an aggregating cache that attempts to track and retrieve
groups of five related files (labeledg5 in the figure).

It is no surprise that LRU outperforms LFU replace-
ment, but the most important observation from the figure
is how rapidly the performance of the cache degrades. As
the client cache capacity approaches the fixed server cache
capacity, we see a dramatic drop in the hit rate for the server
cache. This is consistent both for the dedicated workstation
workstation, and the more populous systemusers. Regard-
less of the nature of the request source (multi-user or ded-
icated system) this degradation appears very rapidly, and
both LRU and LFU caching quickly become ineffectual. In
contrast, the aggregating cache maintains consistent perfor-
mance, and shows a much milder degradation in hit rate. All
independent locality of reference is quickly masked by the
intervening cache, rendering straightforward LRU caching
useless. In contrast, the grouping scheme manages to main-
tain a higher hit rate in spite of this filtering effect because
it captures inter-file relationships. Although the interven-
ing cache masked all observable locality for LRU and LFU
(these schemes assume an independence of access), the in-
terdependence among file access events is not masked by
filtering, allowing the aggregating cache to maintain rea-
sonable hit rates even when requests are filtered by a client
cache larger than the server cache.

These results strongly suggest that grouping greatly
improves the performance of server-side caching, which
would otherwise be rendered ineffective when client caches
(including disk-based persistent caching) meet or exceed a
server’s memory-based cache capacity.
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Figure 4. Server cache hit rates for varying
client cache sizes.

4.4. Metadata Maintenance

A short list of potential successors is enough to cap-
ture inter-file relationships, and regardless of the maximum
length of such a list, recency is consistently a better replace-
ment heuristic than frequency. Figure 5 compares the per-
formance of frequency and recency-based metadata man-
agement schemes for maintaining a per-file list of possible
successors. Each line plots the likelihood of a successor re-
placement policy failing to keep a future successor within
the per-file successor lists. This likelihood is basically an
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Figure 5. Likelihood of successor replace-
ment policies evicting a future successor.

average miss rate for all file successor lists, weighted by the
access frequency of each file. Each line is plotted as a func-
tion of the number of successors, i.e., the capacity of the
per-file successor lists.

Our results consistently show recency to be superior to
frequency when implementing a replacement policy for a
small fixed amount of per-file successor metadata. Figure 5
presents results for two possible replacement schemes and
one upper bound, each line represents one of the following
schemes:

� LRU – maintains a list of the most recent successors.

� LFU – maintains a list of the most frequent successors.

� Oracle – an oracle that has perfect knowledge of all
previously observed immediate successor events. This
oracle will accurately predict any future successor that
has ever been previously observed to follow the cur-
rent file. This gives an upper bound on the best perfor-
mance possible by any on-line algorithm regardless of
state-space limitations.

For both replacement policies it can be seen that only a
small number of files is needed to closely match the opti-
mal policy, but pure LRU replacement is consistently supe-

rior. This supports our view that, in a context, recency of
access is an important, if not dominant, factor in estimat-
ing the likelihood of future access events. This is contrary
to popular intuition drawn from prior work on predictive
prefetching, where more complex models, using frequency-
counting as likelihood estimates, are expected to act as bet-
ter predictors of future events.

In short, these results support our decision to maintain a
small list of immediate successors for each file in the sys-
tem. Using only a small amount of additional metadata,
effective tracking of immediate successors is feasible.

4.5. Successor Predictability

Through quantifying the predictability of a workload we
are able to justify the decision to track single file successors.
We are also able to better understand how an aggregating
server-side cache can remain useful in spite of intervening
client caches. We begin by definingsuccessor entropy, our
metric for quantifying the predictability of a given work-
load. The successor entropy of an access sequence is cal-
culated as the access-weighted conditional entropy of the
immediate successors of all files, disregarding files that are
accessed only once. We show that this metric gives an ob-
jective and easily understood measure of unpredictability in
file access sequences.

Entropy is simply a measure of disorder [17]. Self-
information,H, quantifies this measure for a particular se-
quence of symbols/events given their individual likelihoods.
Assuming a source withm possible symbols,si, conditional
entropy is defined as:

H�C� � �
m

∑
i�1

Pr�si�C� � log�Pr�si�C�� (1)

Where Pr�si�C� is simply the probability of occurrence of
symbol si given knowledge that conditionC is satisfied.
Relevant conditional likelihood models include predictive
models based on data compression and contextual model-
ing [26, 11]. For the results presented in this paper we deal
with a model that associated relationships on a per-file ba-
sis. The condition,C, is therefore knowledge of the current
file access. If we definesi� j to be thejth immediate succes-
sor of file fi, in a sequence wheren files appear more than
once, then we can define the successor entropy,HS, of a file
access sequence as follows:

HS �
n

∑
i�1

Pr� fi� �H� fi� (2)

H� fi� � �
mi

∑
j�1

Pr�si� j� fi� � log�Pr�si� j� fi��

Where each file,fi, hasmi unique successors, Pr� fi� is the
fraction of file access events that referred to filef i, and
Pr�si� j� fi� is the fraction of all accesses following filef i that
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Figure 6. Tracking successor sequences.

referred to successorsi� j. These probabilities are taken as
relative frequency counts, but to avoid any arbitrary deci-
sion regarding the balance between frequency and recency,
i.e., the choice of a rate of decay for frequency counters, we
validate our tests by running them at multiple time scales.
Our average is weighted by file access frequency to ac-
count for the severe access skew that is typical of file system
workloads.

Equation 2 is defined over all filesf i that appear in an
access sequence more than once to avoid falsely evaluating
a non-repeating sequence as being very predictable (having
a low value ofHS). Without this condition, if we were to en-
counter a workload that is largely non-repetitive it would be
falsely evaluated as having a very low average conditional
entropy (high predictability), as the majority of files would
only appear once and subsequently have one unchanging
successor. To avoid this, only files that repeat at least once
are considered when calculating the average. Files that oc-
cur only once in the sequence contribute to increasing con-
ditional entropy of their predecessors, but do not lower the
result of our metric. This corresponds to the intuitive result
that an on-line predictive algorithm cannot be expected to
predict a symbol that it has never encountered before. In
short, successor entropy quantifies the unpredictability of
a file access sequence, with lower values indicating more
predictable workloads.

Although it can be argued that associating files with suc-
cessor sequences can make our model more discriminat-
ing of inter-file relationships and possibly improve the pre-
dictability of our workload, we have found that simply asso-
ciating files with single successors provides the greatest pre-
dictability for our workloads. Figure 6 illustrates the suc-
cessor sequences that would be tracked for filesA, B, C, and
D, given the access sequenceACDBEWAXYBUVWDE-
CAB. If file C often appears in two distinct patternsCDB
andCAB, then tracking a single successor,D or A, would
not be likely to capture the relationship betweenC andB. If
this behavior is common, it would be better to capture this
by tracking successor sequences instead of single files. On
the other hand, tracking such sequences would require more
metadata and reduce the likelihood of repeated successors,
making it more difficult to identify common trends.
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To determine whether it would be useful to support the
tracking of distinct successor sequences we measured suc-
cessor entropy, as defined by Equation 2, for successor
sequences of length one (single file) to twenty, and con-
sistently found single file successors to be the most pre-
dictable. Figure 7 plots the successor entropy of our test
workloads as a function of successor sequence length. Each
line shows the predictability of a given workload against a
choice of successor sequence length. Successor entropy is
evaluated with logarithms to base two, giving a value in bits,
with higher values indicating reduced predictability.

For all four test workloads, predicting single file suc-
cessors on a per-file basis results in greater predictability
than attempting to predict lengthier successor sequences.
This is apparent from the consistent increase in successor
entropy as the choice of successor sequence length is in-
creased. Theserver workload, which showed the best per-
formance improvements with an aggregating cache, can be
clearly seen to be the most predictable of the four work-
loads. When tracking single file successors, as in the aggre-
gating cache, this workload has an average successor en-
tropy significantly less than one bit, indicating very little
variation in successors on a per-file basis. This is consistent
with the higher performance of the aggregating client cache
exhibited in Figure 3(a). When the workload is more pre-
dictable, with more stable inter-file relationships, grouping
is in turn more effective at capturing stable, highly related,
groups.

The greater predictability of tracking single file succes-
sors is equally true when we consider the server caching
scenario with varying intervening cache capacities. Fig-
ure 8 demonstrates that for the tested systems, and regard-
less of intervening cache size, there is a consistent increase
in the successor entropy as we increase sequence length.
From the figure we can also gauge the effects of intervening
LRU caches on predictability. An intervening cache size of
10 results in a less predictable workload, while increases
in cache size from 50 to 1000 show a distinctly more pre-
dictable workload. Increasing cache sizes were detrimental
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Figure 8. Successor entropy as a function of
successor symbol length for varying cache
filters.

to a simple cache using LRU/LFU because they would mask
any single localized working set. For the aggregating cache,
which uses inter-file dependencies, this effect is reduced. In
fact, as the cache size exceeds the size of a small work-
ing set, the cache misses will more accurately reflect initial
requests to new working sets. Figure 8 indicates that inter-
file relationships inferred from such sequences are proba-
bly more predictable than the original workload, especially
when attempting to predict longer sequences.

These results are consistent for all tested workloads.
When we track successors on a per-file basis, a single
successor is consistently more predictable than a length-
ier successor sequence. Also, when a workload is affected
by the presence of intervening caches, while traditional
caching schemes will fail, successor relationships remain
predictable and grouping remains effective.

5. Related Work

Our aggregating cache applied predictive information
differently from prior work on predictive prefetching sys-
tems, but we use similar data structures. Griffioen and Ap-
pleton presented a file prefetching scheme based on graph-

based relationships [8]. Their probability graphs are sim-
ilar in purpose to our relationship graphs, but are limited
to tracking frequency of access within a particular “look-
ahead” window size. In contrast, the aggregating cache is
primarily based on immediate recency (succession), and re-
quires no concept of look-ahead window size. The use of
the last successor model for file prediction, and more elab-
orate techniques based on pattern matching, were first pre-
sented by Lei and Duchamp [13]. Later work by Kroeger
and Long [10] compared the predictive performance of the
last successor model to Griffioen and Appleton’s scheme,
and more effective schemes based on context modeling and
data compression [11]. The first proposed application of
data compression techniques to file access prediction was
presented by Vitter and Krishnan [5, 26]. Recent work by
Shriveret al. [19] has provided analytical reasoning for the
benefits of read-ahead buffering and prefetching.

Our approach differs from these prefetching works be-
cause we use our metadata to group related files, and not to
initiate explicit prefetches of related files. Our model op-
portunistically fetches related files and does not need any
minimum probability threshold to decide when a prefetch is
required. Our approach further differs from prefetchers in
requiring minimal metadata. We only track a single event
beyond each file access and maintain a limited list of imme-
diate successors per file.

Although the aggregating cache is based on the server-
side maintenance of relationship metadata, no such decision
is forced by the approach. Implementing an aggregating
cache with only client-side metadata produces a traditional
prefetching cache. Alternatively, with no client modifica-
tion, the aggregating cache can be implemented as a solely
server-side implementation (as described in�4.3). Having
cooperative client and server-side modules, as with AFS or
Coda [9], allows us to gather more access information at
the server, while imposing no critical timing issues for the
client.

Grouping has previously been applied for data place-
ment. The earliest such works used frequency-based es-
timates of access likelihood to optimize the placement of
popular data. Attempts to optimally place files on disk were
originally done manually, placing frequently accessed files
closer to the center of the disk. The need to automate this
process was addressed by the work of Staelin and Garcia-
Molina [21, 22, 23]. This work dealt with optimal place-
ment, but offered models based on the assumption that file
access events are independent. These approaches made no
attempt to capture dynamic relationships between files. The
Berkeley Fast File System (FFS) [15, 20] includes attempts
to group related data,e.g. file data and metadata, into cylin-
der tracks on disk. As we mentioned above in� 2.1, these
approaches have traditionally required the formation of dis-
joint groups while we make no such requirement of our



groupings, allowing the most popular files to exist in mul-
tiple groups. Prior work by Aky¨urek and Salem replicated
similar “hot” data blocks to a common area on disk to im-
prove disk performance [1].

Dynamic groups [24] attempt to exploit inter-file rela-
tionships, but require explicit application hints to deter-
mine group membership. Earlier work on the automatic
detection of working sets includes the work of Tait and
Duchamp [25]. TheSeer project also attempted to use file
groups, but for mobile file hoarding [12]. Seer used a re-
lationship estimator based on the overlap of file open and
close events, and applied a clustering algorithm to build file
hoards from such related files. In our approach we are not
dependent on such a specific measure of inter-file relation-
ship, and make no attempt to construct a large file hoard.
Instead, we require only knowledge of the sequence of file
access events, and build small groups of highly related files.

Examples of the state of the art in automated file group-
ing include C-FFS [7] (collocating FFS), which bases
grouping on a directory-membership heuristic, and Hum-
mingbird [18] which utilizes the underlying structure of
web files. In contrast, our model does not require any
knowledge of underlying data structure, as our grouping
mechanism establishes relationships based on observed file
access behavior, as opposed to inference from file location
or content.

Our study has considered the effects of filtering re-
quests through an intervening cache. In earlier work we
studied the effect of this scenario on server-side cache hit
rates [2]. Zhouet al. have addressed this issue for multi-
level caches [30]. In the Web domain, especially coop-
erative caching and web proxies, Wolmanet al. have ad-
dressed similar issues [27, 28]. In that context, the authors
were specifically interested in the usefulness of cooperative
caching schemes at different system scales. Other recent
work in this area includes the Hummingbird file system,
which is very effective at improving the performance of
caching web proxies [18]. The prefetching nature of the ag-
gregating cache is similar to Bestavros’ work on the use of
speculation [3] to reduce server loads and improve service
times, and later work by Duchamp on “Prefetching Hyper-
links” [6]. Specifically, the similarity lies in the non-volatile
maintenance of relationship information at the server, and
its use to reduce server loads and service times. In con-
trast, our study targets general file system workloads, and is
based on a more general scheme for relationship tracking.
In a WWW environment, the server (or proxy) cache has
the advantage of being able to receive more detailed client
access information, and the additional luxury of embedded
relationship hints (the hyperlinks found in most HTML doc-
uments). We make no assumptions about the access infor-
mation used to build file groups, and the results presented
in this study used only the file access sequences.

6. Conclusions and Future Work

For distributed file system caches we have described ex-
periments with an aggregating cache, based on file group-
ing, which shows considerable performance improvements
without the timing issues of prefetching schemes. Ag-
gregating client caches can dramatically reduce demand
fetches, especially for workloads with a high degree of
predictability, without requiring the explicit prefetching of
files. At the file system client, grouping reduced LRU de-
mand fetches by 50 to 60%. The aggregating cache also
proved useful as a server cache, where traditional LRU
can suffer dramatically due to the filtering of client work-
loads through intervening caches. For LRU client caches
of less than 200 file capacity, the aggregating cache im-
proved server cache hit rates by 20 to 1200%. For larger
client caches, the aggregating cache continued to provide
hit rates of 30 to 60% where simple LRU caching fails to
provide any hits. To construct the small groups used by the
aggregating cache we maintain per-file successor lists that
are managed using LRU replacement. This is contrary to
common practice that assumes frequency counts to be good
estimates of future access likelihood. Instead, a pure re-
cency estimate was found to be consistently superior. The
ideal likelihood estimate may well be based on a combina-
tion of recency and frequency, but the exact nature of such
an ideal is a subject of future investigation. The aggregat-
ing cache associated lists of single file successors with in-
dividual files, and usingsuccessor entropy as a predictabil-
ity metric, we have demonstrated that tracking such single
file successors yielded more predictable behavior than more
elaborate schemes involving lengthier successor sequences.
Successor entropy was also able to demonstrate how succes-
sor predictability can remain high, and even be improved,
when workloads are affected by large intervening caches.

Future research includes more work on group construc-
tion, the use of grouping in optimizing data placement for
different storage scenarios, and the evaluation of different
metadata choices for prediction and grouping decisions. To
apply grouping for general placement problems, we need
further work on the process of forming groups of arbitrary
size, and an analysis of the effects of group formation on
storage requirements. For the aggregating cache we did not
need to consider group overlap, where files appear as mem-
bers of multiple groups, as this does not require any addi-
tional resources beyond the existing per-file successor lists.
If we attempt to place data on a storage medium based on
group membership, group overlap can result in poor space
utilization. Furthermore, practical group sizes for different
media vary dramatically,e.g., the capacity of a disk track or
flash media compared to the capacity of a tape or file sys-
tem volume suggest different group sizes. We are currently
extending successor entropy for use as part of a more gen-



eral purpose visualization tool for I/O workloads [14], and
we also intend to investigate the effectiveness of our model
for improving mobile file hoarding applications.
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