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Freeblock Scheduling Outside of Disk Firmware

Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger
Carnegie Mellon University

Abstract

Freeblock scheduling replaces a disk drive’s rotational
latency delays with useful background media transfers,
potentially allowing background disk I/O to occur with
no impact on foreground service times. To do so, a free-
block scheduler must be able to very accurately predict
the service time components of any given disk request
— the necessary accuracy was not previously consid-
ered achievable outside of disk firmware. This paper de-
scribes the design and implementation of a working ex-
ternal freeblock scheduler running either as a user-level
application atop Linux or inside the FreeBSD kernel.
This freeblock scheduler can give 15% of a disk’s po-
tential bandwidth (over 3.1MB/s) to a background disk
scanning task with almost no impact (less than 2%) on
the foreground request response times. This can increase
disk bandwidth utilization by over 6�.

1 Introduction

Freeblock scheduling is an exciting new approach to uti-
lizing more of a disk’s potential media bandwidth. It
consists of anticipating rotational latency delays and fill-
ing them with media transfers for background tasks. Via
simulation, our prior work [14] indicated that 20–50%
of a never-idle disk’s bandwidth could be provided to
background applications with no effect on foreground re-
sponse times. Thisfree bandwidth was shown to enable
free segment cleaning in a busy log-structured file sys-
tem (LFS), or free disk scans (e.g., for data mining or
disk media scrubbing) in an active transaction process-
ing system.

At the time of that writing, we and others believed that
freeblock scheduling could only be done effectively from
inside the disk’s firmware. In particular, we did not
believe that sufficient service time prediction accuracy
could be achieved from outside the disk. We were wrong.

This paper describes and evaluates working proto-
types of freeblock scheduling on Linux and within
the FreeBSD kernel. Recent research has successfully
demonstrated software-only Shortest-Positioning-Time-
First (SPTF) [12, 25] schedulers [28, 31], but their pre-
diction accuracies were not high enough to support free-
block scheduling. To squeeze extra media transfers into
rotational latency gaps, a freeblock scheduler must be
able to predict access times to within 200–300µs. It must

also be able to deal with the drive’s cache prefetching al-
gorithms, since the most efficient use of a free bandwidth
opportunity is on the same track as a foreground request.

These requirements can be met with two extensions to
the common external SPTF design: limited command
queueing and request merging. First, by keeping two re-
quests outstanding at all times, an external scheduler can
focus on just media access delays; the disk’s firmware
will overlap bus and command processing overheads
for any one request with the media access of another.
This tighter focus simplifies the scheduler’s timing pre-
dictions, allowing it to achieve the necessary accuracy.
Second, by merging physically adjacent free bandwidth
and foreground fetches into a single request, an external
scheduler can employ same-track fetches without con-
fusing the firmware’s prefetching algorithms.

With its service time prediction accuracy, our external
scheduler’s SPTF decisions match those of the disk’s
firmware, and its freeblock scheduling decisions are ef-
fective. On the other hand, the achieved free bandwidth
is 35% lower than the earlier simulations, because the
external prediction accuracies and control are not per-
fect. Nonetheless, the goals of freeblock scheduling are
met: potential free bandwidth is used for background ac-
tivities with (almost) no impact on foreground response
times. For example, when using free bandwidth to scan
the entire disk during on-line transaction processing, we
measure 3.1 MB/s of steady-state progress or 37 free
scans per day on a 9 GB disk. When employing free-
block scheduling, foreground response times increase by
less than 2%.

The remainder of this paper is organized as follows. Sec-
tion 2 describes freeblock scheduling. Section 3 de-
scribes challenges involved with implementing freeblock
scheduling outside of disk firmware. Section 4 describes
our implementation. Section 5 evaluates our external
freeblock scheduler. Section 6 discusses related work.
Section 7 summarizes this paper’s contributions.

2 Freeblock Scheduling

Current high-end disk drives offer media bandwidths in
excess of 40 MB/s, and the recent rate of improvement in
media bandwidth exceeds 40% per year. Unfortunately,
mechanical positioning delays limit most systems to only
2–15% of the potential media bandwidth. We recently
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Figure 1: Illustration of two freeblock scheduling possibilities. Three sequences of steps are shown, each starting after completing the
foreground request to block A and finishing after completing the foreground request to block B. Each step shows the position of the disk platter,
the read/write head (shown by the pointer), and the two foreground requests (in black) after a partial rotation. The top row, labelled (a), shows the
default sequence of disk head actions for servicing request B, which includes 4 sectors worth of potential free bandwidth (rotational latency). The
second row, labelled (b), shows free reading of 4 blocks on A’s track using 100% of the potential free bandwidth. The third row, labelled (c), shows
free reading of 3 blocks on another track, yielding 75% of the potential free bandwidth.

proposed freeblock scheduling as an approach to increas-
ing media bandwidth utilization [14, 21]. By interleaving
low-priority disk activity with the normal workload (here
referred to as background and foreground, respectively),
a freeblock scheduler can replace many foreground ro-
tational latency delays with useful background media
transfers. With appropriate freeblock scheduling, back-
ground tasks can make forward progress without any
increase in foreground service times. Thus, the back-
ground disk activity is completed for free during the me-
chanical positioning for foreground requests.

This section describes the free bandwidth concept in
greater detail, discusses how it can be used in systems,
and outlines how a freeblock scheduler works. Most of
the concepts were first described in our prior work [14]
and are reviewed here for completeness.

2.1 Where the free bandwidth lives

At a high-level, the time required for a disk media access,
Taccess, can be computed as a sum of seek time, Tseek,
rotational latency, Trotate, and media access time, Ttransfer:

Taccess = Tseek+Trotate+Ttransfer

Of Taccess, only the Ttransfer component represents useful
utilization of the disk head. Unfortunately, the other two
components usually dominate. While seeks are unavoid-
able costs associated with accessing desired data loca-
tions, rotational latency is an artifact of not doing some-
thing more useful with the disk head. Since disk platters
rotate constantly, a given sector will rotate past the disk
head at a given time, independent of what the disk head
is doing up until that time. If that time can be predicted,
there is an opportunity to do something more useful than
just waiting for desired sectors to arrive at the disk head.

Freeblock scheduling is the process of identifying free
bandwidth opportunities and matching them to pend-
ing background requests. It consists of predicting how
much rotational latency will occur before the next fore-
ground media transfer, squeezing some additional media
transfers into that time, and still getting to the destina-
tion track in time for the foreground transfer. The addi-
tional media transfers may be on the current or destina-
tion tracks, on another track near the two, or anywhere
between them, as illustrated in Figure 1. In the two latter
cases, additional seek overheads are incurred, reducing
the actual time available for the additional media trans-



fers, but not completely eliminating it.

The potential free bandwidth in a system is equal to the
disk’s potential media bandwidth multiplied by the frac-
tion of time it spends on rotational latency delays. The
amount of rotational latency depends on a number of
disk, workload, and scheduling algorithm characteris-
tics. For random small requests, about 33% of the to-
tal time is rotational latency for most disks. This per-
centage decreases with increasing request size, becom-
ing 15% for 256 KB requests, because more time is
spent on data transfer. This percentage increases with
increasing locality, up to 60% when 70% of requests are
in the most recent “cylinder group” [16], because less
time is spent on the shorter seeks. The value is about
50% for seek-reducing scheduling algorithms (e.g., C-
LOOK [17, 24] and Shortest-Seek-Time-First [9]) and
about 20% for scheduling algorithms that reduce overall
positioning time (e.g., Shortest-Positioning-Time-First).

2.2 Uses for free bandwidth

Potential free bandwidth exists in the time gaps that
would otherwise be rotational latency delays for fore-
ground requests. Therefore, freeblock scheduling must
opportunistically match these potential free bandwidth
sources to real bandwidth needs that can be met within
the given time gaps. The tasks that will utilize the largest
fraction of potential free bandwidth are those that pro-
vide the freeblock scheduler with the most flexibility.
Tasks that best fit the freeblock scheduling model have
low priority, large sets of desired blocks, and no particu-
lar order of access.

These characteristics are common to many disk-intensive
background tasks that are designed to occur during oth-
erwise idle time. For example, in many systems, there
are a variety of support tasks that scan large portions of
disk contents, such as report generation, RAID scrub-
bing, virus detection, and backup. Another set of exam-
ples is the many defragmentation [15, 29] and replica-
tion [18, 31] techniques that have been developed to im-
prove the performance of future accesses. A third set of
examples is anticipatory disk activities such as prefetch-
ing [7, 11, 13, 19, 27] and prewriting [2, 4, 8, 10].

Using simulation, our previous work explored two spe-
cific uses of freeblock scheduling. One set of experi-
ments showed that cleaning in a log-structured file sys-
tem [22] can be done for free even when there is no truly
idle time, resulting in up to a 300% increase in applica-
tion performance. A second set of experiments explored
the use of free bandwidth for data mining on an active
on-line transaction processing (OLTP) system, showing
that over 47 full scans per day of a 9 GB disk can be made
with no impact on OLTP performance. This resulted in a
7� increase in media bandwidth utilization.

2.3 Freeblock scheduling

In a system supporting freeblock scheduling, there are
two types of requests: foreground requests and freeblock
(background) requests. Foreground requests are the nor-
mal workload of the system, and they will receive top
priority. Freeblock requests specify the background disk
activity for which free bandwidth should be used. As an
example, a freeblock request might specify that a range
of 100,000 disk blocks be read, but in no particular order
— as each block is retrieved, it is handed to the back-
ground task, processed immediately, and then discarded.
A request of this sort gives the freeblock scheduler the
flexibility it needs to effectively utilize free bandwidth
opportunities.

Foreground and freeblock requests are kept in separate
lists and scheduled separately. The foreground scheduler
runs first, deciding which foreground request should be
serviced next in the normal fashion. Any conventional
scheduling algorithm can be used. Device driver sched-
ulers usually employ seek-reducing algorithms, such as
C-LOOK or Shortest-Seek-Time-First. Disk firmware
schedulers usually employ Shortest-Positioning-Time-
First (SPTF) algorithms [12, 25] to reduce overall po-
sitioning overheads (seek time plus rotational latency).

After the next foreground request (request B in Figure 1)
is determined, the freeblock scheduler computes how
much rotational latency would be incurred in servicing
B; this is the free bandwidth opportunity. Like SPTF, this
computation requires accurate estimates of disk geome-
try, current head position, seek times, and rotation speed.
The freeblock scheduler then searches its list of pending
freeblock requests for a good match. (Section 4.3 de-
scribes a specific freeblock scheduling algorithm.) After
making its choice, the scheduler issues any free band-
width accesses and then request B.

3 Fine-grain External Disk Scheduling

Fine-grain disk scheduling algorithms (e.g., Shortest-
Positioning-Time-First and freeblock) must accurately
predict the time that a request will take to complete. In-
side disk firmware, the information needed to make such
predictions is readily available. This is not the case out-
side the disk drive, such as in disk array firmware or OS
device drivers.

Modern disk drives are complex systems, with finely-
engineered mechanical components and substantial run-
time systems. Behind standardized high-level interfaces,
disk firmware algorithms map logical block numbers
(LBNs) to physical sectors, prefetch and cache data, and
schedule media and bus activity. These algorithms vary
among disk models, and evolve from one disk genera-
tion to the next. External schedulers are isolated from



necessary details and control by the same high-level in-
terfaces that allow firmware engineers to advance their
algorithms while retaining compatibility. This section
outlines major challenges involved with fine-grain ex-
ternal scheduling, the consequences of these challenges,
and some solutions that mitigate the negative effects of
these consequences.

3.1 Challenges

The challenges faced by a fine-grained external scheduler
largely result from disks’ high-level interfaces, which
hide internal information and restrict external control.
Specific challenges include coarse observations, non-
constant delays, non-preemption, on-board caching, in-
drive scheduling, computation of rotational offsets, and
disk-internal activities.

Coarse observations. An external scheduler sees only
the total response time for each request. These coarse
observations complicate both the scheduler’s initial con-
figuration and its runtime operation. During initial con-
figuration, the scheduler must deduce from these obser-
vations the individual component delays (e.g., mechani-
cal positioning, data transfer, and command processing)
as well as the amount of their overlap. These delays must
be well understood for an external scheduler to accu-
rately predict requests’ expected response times. During
runtime operation, the scheduler must deduce the disk’s
current state after each request; without this knowledge,
the subsequent scheduling decision will be based on in-
accurate information.

Non-constant delays. Deducing component delays from
coarse observations is made particularly difficult by the
inherent inter-request variation of those delays. If the de-
lays were all constant, deduction could be based on solv-
ing sets of equations (response time observations) to fig-
ure out the unknowns (component delays). Instead, the
delays and the amount of their overlap vary. As a result,
an external scheduler must deduce moving targets (the
component delays) from its coarse observations. In addi-
tion, the variation will affect response times of scheduled
requests, and so it must be considered in making schedul-
ing decisions. Figure 2 illustrates the effect of variable
overlap between bus transfer and media transfer on the
observed response time.

Non-preemption. Once a request is issued to the disk,
the scheduler cannot change or abort it. The SCSI pro-
tocol does include an ABORT message, but most device
drivers do not support it and disks do not implement it
efficiently. They view it as an unexpected condition, so
it is usually more efficient to just allow a request to com-
plete. Thus, an external scheduler must take care in the
decisions it makes.
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Figure 2: Effects of uncertainty on prediction accuracy. This
figure shows two possible scenarios of observed response times when
employing external scheduling. In each scenario, the scheduler issues
request A, waits for its completion, and then issues request B. The two
scenarios only differ in the amount of overlap between the media and
bus transfers. The varying overlap has different effects on the posi-
tioning time of request B and therefore on the amount of available free
bandwidth.

On-board caching. Modern disks have large on-board
caches. Exploiting its local knowledge, disk firmware
prefetches sectors into this cache based on physical local-
ity. Usually, the prefetching will occur opportunistically
during idle time and rotational latency periods1. Some-
times, however, the firmware will decide that a sequential
read pattern will be better served by delaying foreground
requests for further prefetching. An external scheduler is
unlikely to know the exact algorithms used for replace-
ment, prefetching, or write-back (if used). As a result,
cache hits and prefetch activities will often surprise it.

In-drive scheduling. Modern disks support command
queueing, and they internally schedule queued requests
to maximize efficiency. An external scheduler that
wishes to maintain control must either avoid command
queueing or anticipate possible modification of its deci-
sions.

Computation of rotational offsets. A disk’s rotation
speed may vary slightly over time. As a result, an exter-
nal scheduler must occasionally resynchronize its under-
standing of the disk’s rotational offset. Also, whenever
making a scheduling decision, it must update its view of
the current offset.

Internal disk activities. Disk firmware must sometimes
execute internal functions (e.g., thermal recalibration)
that are independent of any external requests. Unless a

1Freeblock scheduling often removes the disk’s opportunity to
prefetch during rotational latency periods. It does so to fetch known-to-
be-wanted data, which we argue is a more valuable activity. In part, we
assert this because the lost prefetching will rarely eliminate subsequent
media accesses, since the prefetched sectors are usually not forward in
LBN order and not aligned to any block boundary or size.
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(a) Seek time over-estimation. The larger predicted seek of
3:3 ms suggests a full rotation, resulting in a predicted re-
sponse time of 10:2 ms. Since the actual seek is smaller
(3:0 ms), the extra rotation does not occur and the request
completes in 4:2 ms, resulting in a �6:0 ms prediction error.
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(b) Seek time under-estimation The predicted seek of 2:5 ms
results in a prediction of rotational latency of 0:3 ms and a
predicted response time of 3:8 ms. Since the actual seek is
larger (2:9 ms), the disk will suffer an extra rotation resulting
in a response time of 9:8 ms. The prediction error is+6:0 ms.

Figure 3: The effects of mispredicted seek times.

device driver uses recent S.M.A.R.T. interface extensions
to avoid these functions, an unexpected internal activity
will occasionally invalidate the scheduler’s predictions.

3.2 Consequences

The challenges listed above have five main consequences
on the operation of an external fine-grained disk sched-
uler.

Complexity. Both the initial configuration and runtime
operation of an external scheduler will be complex and
disk-specific. As a result, substantial engineering may
be required to achieve robust, effective operation. Worse,
effective freeblock scheduling requires very accurate ser-
vice time predictions to avoid disrupting foreground re-
quest performance.

Seek misprediction. When making a scheduling deci-
sion, the scheduler predicts the mechanical delays that
will be incurred for each request. When there are small
errors in the initial configuration of the scheduler or
variations in seek times for a given cylinder distance,
the scheduler will sometimes mispredict the seek time.
When it does, it will also mispredict the rotational la-
tency.

When a scheduler over-estimates a request’s seek time
(see Figure 3(a)), it may incorrectly decide that the disk
head will “ just miss” the desired sectors and have to wait
almost a full rotation. With such a large predicted de-
lay, the scheduler is unlikely to select this request even
though it may actually be the best option.

When the scheduler under-estimates a request’s seek
time (see Figure 3(b)), it may incorrectly decide that the
disk head will arrive just in time to access the desired
sectors with almost no rotational latency. Because of the

small predicted delay, the scheduler is likely to select this
request even though it is probably a bad choice.

Under-estimated seeks can cause substantial unwanted
extra rotations for foreground requests. Over-estimated
seeks usually do not cause significant problems for fore-
ground scheduling, because selecting the second-best re-
quest usually results in only a small penalty. When the
foreground scheduler is used in conjunction with a free-
block scheduler, however, an over-estimated seek may
cause a freeblock request to be inserted in place of an in-
correctly predicted large rotational latency. Like a self-
fulfilling prophecy, this will cause an extra rotation be-
fore servicing the next foreground request even though it
would not otherwise be necessary.

Idle disk head time. The response time for a single
request includes mechanical actions, bus transfers, and
command processing. As a result, the read/write head
can be idle part of the time, even while a request is be-
ing serviced. Such idleness occurs most frequently when
acquiring and utilizing the bus to transfer data or com-
pletion messages. Although an external scheduler can be
made to understand such inefficiencies, they can reduce
its ability to utilize the potential free bandwidth found in
foreground rotational latencies.

Incorrectly-triggered prefetching. Freeblock schedul-
ing works best when it picks up blocks on the source
or destination tracks of a foreground seek. However, if
the disk observes two sequential READs, it may assume
a sequential access pattern and initiate prefetching that
causes a delay in handling subsequent requests. If one
of these READs is from the freeblock scheduler, the disk
will be acting on misinformation since the foreground
workload may not be sequential.



Loss of head location information. Several of the
challenges will cause an external scheduler to some-
times make decisions based on inaccurate head loca-
tion information. For example, this will occur for un-
expected cache hits, internal disk activity, and triggered
foreground prefetching.

3.3 Solutions

To address these challenges and to cope with their con-
sequences, external schedulers can employ several solu-
tions.

Automatic disk characterization. An external sched-
uler must have a detailed understanding of the specific
disk for which it is scheduling requests. The only practi-
cal option is to have algorithms for automatically discov-
ering the necessary configuration information, including
LBN-to-physical mappings, seek timings, rotation speed,
and command processing overheads. Fortunately, mech-
anisms [30] and tools [23] have been developed for ex-
actly this purpose.

Seek conservatism. To address seek time variance and
other causes of prediction errors, an external scheduler
can add a small “ fudge factor” to its seek time estimates.
By conservatively over-estimating seek times, the exter-
nal scheduler can avoid the full rotation penalty asso-
ciated with under-estimation. To maximize efficiency,
the fudge factor must balance the benefit of avoiding
full rotations with the lost opportunities inherent to over-
estimation. For freeblock scheduling decisions, a more
conservative (i.e., higher) fudge factor should be selected
to prefer less-utilized free bandwidth opportunities to ex-
tra full rotations suffered by foreground requests.

Resync after each request. The continuous rotation of
disk platters helps to minimize the propagation of pre-
diction errors. Specifically, when an unexpected cache
hit or internal disk activity causes the external sched-
uler to make a misinformed decision, only one request
is affected. The subsequent request’s positioning delays
will begin at the same rotational offset (i.e., the previous
request’s last sector), independent of how many unex-
pected rotations that the previous request incurred.

Limited command queueing. Properly utilized, com-
mand queueing at the disk can be used to increase the
accuracy of external scheduler predictions. Keeping two
requests at the disk, instead of just one, avoids idling of
the disk head. Specifically, while one request is trans-
ferring data over the bus, the other can be using the disk
head.

In addition to improving efficiency, the overlapping of
bus transfer with mechanical positioning simplifies the
task of the external scheduler, allowing it to focus on
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Figure 4: Limited command queueing. This figure repeats the
two scenarios from Figure 2 but with two requests outstanding at the
drive. That is, the scheduler keeps two requests at the disk — in this
example, request A is being serviced while request B is queued. The
drive completely overlaps the bus transfer of request A with the seek of
request B, eliminating head idle time. Also, notice that the rotational
latency is the same in both scenarios, making predictions easier for
foreground and freeblock schedulers.

media access delays as though the bus and processing
overheads were not present. When the media access
delays dominate, these other overheads will always be
overlapped with another request’s media access (see Fig-
ure 4).

The danger with using command queueing is that the
firmware’s scheduling decisions may override those of
the external scheduler. This danger can be avoided by
allowing only two requests outstanding at a time, one in
service and one in the queue to be serviced next.

Request merging. When scheduling a freeblock access
to the same track as a foreground request, the two re-
quests should be merged if possible (i.e., they are sequen-
tial and are of the same type). Not only will this merging
avoid the misinformed prefetch consequence discussed
above, but it will also reduce command processing over-
heads.

Appending a freeblock access to the end of the previous
foreground request can hurt the foreground request since
completion will not be reported until both requests are
done. This performance penalty is avoided if the free-
block access is prepended to the beginning of the next
foreground request.

4 Implementation

This section describes our implementation of an external
freeblock scheduler and its integration into the FreeBSD
4.0 kernel.



4.1 Architecture

Figure 5 illustrates our freeblock scheduler’s architec-
ture, which consists of three major parts: a foreground
scheduler, a freeblock scheduler, and a common dispatch
queue that holds requests selected by the two schedulers.

The foreground scheduler keeps up to two requests in
the dispatch queue; the remaining pending foreground
requests are kept in a pool. When a foreground request
completes, it is removed from the dispatch queue, and a
new request is selected from the pool according to the
foreground scheduling policy. This newly-selected re-
quest is put at the end of the dispatch queue. Such just-in-
time scheduling allows the scheduler to consider recent
requests when making decisions.

The freeblock scheduler keeps a separate pool of pend-
ing freeblock requests. When invoked, it inspects the dis-
patch queue and, if there is a foreground request waiting
to be issued to the disk, it identifies a suitable freeblock
candidate from its pool. The identified freeblock request
is inserted ahead of the foreground request. The free-
block scheduler will continue to refine its choice in the
background, if there is available CPU time. The device
driver may send the current best freeblock request to the
disk at any time. When it does so, it sets a flag to tell the
freeblock scheduler to end its search.

Whenever there are fewer than two requests at the disk,
the device driver issues the next request in the dispatch
queue. By keeping two requests at the disk, the driver
achieves the desired overlapping of bus and media activ-
ities. By keeping no more than two, it avoids reordering
within the disk firmware; at any time, one request may
be in service and the other waiting at the disk.

The diagram in Figure 5 shows a situation when there are
two outstanding requests at the disk: a freeblock request
fb1 is currently being serviced and a foreground request
fore1 is queued at the disk. When the disk completes
the freeblock request fb1, it immediately starts to work
on the already queued request fore1. When the device
driver receives the completion message for fb1, it issues
the next request, labeled fb2, to the disk. It also sets the
“stop” fl ag to inform the freeblock scheduler. When the
foreground request fore1 completes, the device driver
sends fore2 to the disk, tells the foreground scheduler
to select a new foreground request, and (if appropriate)
invokes the freeblock scheduler.

4.2 Foreground scheduler

Our foreground scheduler implements three scheduling
algorithms: SSTF, SPTF, and SPTF-SWn%. SSTF is
representative of the seek-reducing algorithms used by
many external schedulers. SPTF yields lower foreground
service times and lower rotational latencies than SSTF;

foreground scheduler freeblock scheduler

device driver

fb2

fore1

fb1

disk

fore2

pool of
foreground
requests

pool of
freeblock
requests

current best selection

dispatch 
queuenext selected request

Figure 5: Freeblock scheduling inside a device driver.

SPTF requires the same detailed disk knowledge needed
for freeblock scheduling. SPTF-SWn% was proposed
to select requests with both small total positioning de-
lays and large rotational latency components [14]. It se-
lects the request with the smallest seek time component
among the pending requests whose positioning times are
within n% of the shortest positioning time.

Request timing predictions. For the SPTF and SPTF-
SWn% algorithms, the foreground scheduler predicts re-
quest timings given the current head position. Specifi-
cally, it predicts the amount of time that the disk head
will be dedicated to the given request; we call this time
head time. When using command queueing, the bus ac-
tivity is overlapped with positioning and media access,
reducing the head time to seek time, rotational latency,
and media transfer. Figure 6 illustrates the head time
components that must be accurately predicted by the disk
model.

The disk model in our implementation is completely
parametrized; that is, there is no hard-coded information
specific to a particular disk drive. The parameters fall
into three categories: complete layout information with
slipping and defects, seek profile, and head switch time.
All of these parameters are extracted automatically from
the disk using the DIXtrac tool [23]. The seek profile is
used for predicting seek times, and the layout informa-
tion and head switch time are used for predicting rota-
tional latencies and media transfer times.

The layout information is a compact representation of
all LBN mappings to the physical sector locations (de-
scribed by a sector-head-cylinder tuple). It includes in-
formation about defects and their handling via slipping
or remapping to spare sectors. It also includes skews
between two successive LBNs mapped across a track,
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request is queued at the disk.

cylinder, or zone boundary. To achieve the desired pre-
diction accuracy, the skews are recorded as a fraction of a
revolution—using just an integral number of sectors does
not give the required resolution.

The seek profile is a lookup table that gives the expected
seek time for a given distance in cylinders. The table
includes more values for shorter seek distances (every
distance between cylinder 1–10, cylinders, every 2 nd for
10–20, every 5th for 20–50, every 10th for 50–100, every
25th for 100–500, and every 100 th for distance beyond
500). Values not explicitly listed in the table are interpo-
lated. Since the listed seek times are averages of seeks
of a given distance, a specific seek time may differ by
tens of µs depending on the distance and the conditions
of the drive. Thus, the scheduler may include an explicit
conservatism value to account for this variability.

4.3 Freeblock scheduler

The freeblock scheduler computes the rotational latency
for the next foreground request, and determines which
pending freeblock request could be handled in this op-
portunity. Determining the latter involves computing the
extra seek time involved in going to the candidate’s loca-
tion and determining whether all of the necessary blocks
could be fetched in time to seek to the location of the
foreground request without causing a rotational miss.

The current implementation of our freeblock scheduling
algorithm focuses on the goal of scanning the entire disk
by touching each block of the disk exactly once. There-
fore, it keeps a bitmap of all blocks with the already-
touched blocks marked. When a suitable set of blocks is
selected from the bitmap, the freeblock scheduler creates
a disk request to read them.

The scheduling algorithm greedily tries to maximize the
number of blocks read in each opportunity. To reduce
search time, it searches the bitmap, looking for the most
promising candidates. It starts by considering the source
and destination tracks (the locations of the current and
next foreground requests) and then proceeds to scan the
tracks closest to the two tracks. It keeps scanning pro-
gressively farther and farther away from the source and
destination tracks until it is notified via the stop flag or
reaches the end of the disk. If a better free bandwidth
opportunity is found, the scheduler creates a new request
that replaces the previous best selection.

In early experimentation, we found that two requests on
the same track often trigger aggressive disk prefetching.
When the foreground workload involves sequentiality,
this can be highly beneficial. Unfortunately, a freeblock
request to the same track can make a random foreground
workload appear to have some locality. In such cases,
the disk firmware may incorrectly assume that aggres-
sive prefetching would improve performance.

To avoid such incorrect assumptions, our freeblock
scheduling algorithm will not issue a separate request
on the same track. To reclaim some of the flexibility
lost to this rule, it will coalesce same-track freeblock
fetches with the next foreground request. That is, it
will lower the starting LBN and increase the request size
when blocks on the destination track represent the best
selection. When the merged request completes, the data
are split appropriately.

Request merging only works when the selected freeblock
request is on the same (destination) track as the next fore-
ground request. Recall that the in-service foreground re-
quest cannot be modified, since it is already queued at
the disk. For this reason, our freeblock scheduler will
not consider a request that would be on the source track.

Avoiding incorrect triggering of the prefetcher also pre-
vents another same-track case: any freeblock opportu-
nity that spans contiguous physical sectors that hold non-
contiguous ranges of LBNs (i.e., they cross the logical
beginning of the track). To read all of the sectors would
require two distinct requests, because of the LBN-based
interface. However, since these two freeblock requests
might trigger the prefetcher, the algorithm considers only
the larger of the two.

4.4 Kernel implementation

We have integrated our scheduler into the FreeBSD
4.0 kernel. For SCSI disks (/dev/da), the foreground
scheduler replaces the default C-LOOK scheduler im-
plemented by the bufqdisksort() function. Just like
the default C-LOOK scheduler, our foreground sched-
uler is called from the dastart() function and it puts



requests onto the device’s queue, buf queue, which is the
dispatch queue in Figure 5. This queue is emptied by
xpt schedule(), which is called from dastart() im-
mediately after the call to the scheduler.

The only architectural modification to the direct access
device driver is in the return path of a request. Nor-
mally, when a request finishes at the disk, the dadone()
function is called. We have inserted into this func-
tion a callback to the foreground scheduler. If the
foreground scheduler selects another request, it calls
xpt schedule() to keep two requests at the disk. When
the callback completes, dadone() proceeds normally.

The freeblock scheduler is implemented as a kernel
thread and it communicates with the foreground sched-
uler via a few shared variables. These variables include
the restart and stop flags and the pointer to the next fore-
ground request for which a freeblock request should be
selected.

Before using the freeblock scheduler on a new disk, the
disk performance attributes for the disk model must first
be obtained by the DIXtrac tool [23]. This one time cost
of 3–5 minutes can be a part of an augmented newfs pro-
cess that stores the attributes along with the superblock
and inode information.

The current implementation generates freeblock requests
for a disk scan application from within the kernel. The
full disk scan starts when the disk is first mounted. The
data received from the freeblock requests do not propa-
gate to the user level.

4.5 User-level implementation

The scheduler can also run as a user-level application.
In fact, the FreeBSD kernel implementation was origi-
nally developed as a user-level application under Linux
2.4. The user-level implementation bypasses the buffer
cache, the file system, and the device driver by assem-
bling SCSI commands and passing them directly to the
disk via Linux’s SCSI generic interface.

In addition to easier development, the user-level imple-
mentation also offers greater flexibility and control over
the location, size, and issue time of foreground requests
during experiments. For the in-kernel implementation,
the locations and sizes of foreground accesses are dic-
tated by the file system block size and read-ahead algo-
rithms. Furthermore, the file system cache satisfies many
requests with no disk I/O. To eliminate such variables
from the evaluation of the scheduler effectiveness, we
use the user-level setup for most of our experiments.

Quantum Seagate

Atlas 10k Cheetah 18LP

Year 1999 1998
RPM 10000 10016
Head switch (ms) 0.8 1.0
Avg. seek (ms) 5.0 5.4
Number of heads 6 6
Sectors per track 334–224 360–230
Bandwidth (MB/s) 27–18 28–18
Capacity (GB) 9 9
Zero-latency access yes no

Table 1: Disk characteristics.

5 Evaluation

This section evaluates the external freeblock scheduler,
showing that its service time predictions are very accu-
rate and that it is therefore able to extract substantial free
bandwidth. As expected, it does not achieve the full per-
formance that we believe could be achieved from within
disk firmware — it achieves approximately 65% of the
predicted free bandwidth. The limitations are explained
and quantified.

5.1 Experimental setup

Except where otherwise specified, our experiments are
run on the Linux version of the scheduler. The system
hardware includes a 550MHz Pentium III, 128 MB of
main memory, an Intel 440BX chipset with a 33MHz,
32bit PCI bus, and an Adaptec AHA-2940 Ultra2Wide
SCSI controller. The experiments use 9GB Quantum At-
las 10k and Seagate Cheetah 18LP disk drives, whose
characteristics are listed in Table 1. The system is run-
ning Linux 2.4.2. The experiments with the FreeBSD
kernel implementation use the same hardware.

Unless otherwise specified, the experiments use a syn-
thetic foreground workload that approximates observed
OLTP workload characteristics. This synthetic workload
models a closed system with per-task disk requests sepa-
rated by think times of 30 milliseconds. The experiments
use a multiprogramming level of ten, meaning that there
are ten requests active in the system at any given point.
The OLTP requests are uniformly-distributed across the
disk’s capacity with a read-to-write ratio of 2:1 and a re-
quest size that is a multiple of 4 KB chosen from an ex-
ponential distribution with a mean of 8 KB. Validation
experiments (in [21]) show that this workload is suffi-
ciently similar to disk traces of Microsoft’s SQL server
running TPC-C for the overall freeblock-related insights
to apply to more realistic OLTP environments.

The background workload consists of a single freeblock
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Figure 7: PDFs of prediction error for foreground requests on a Quantum Atlas 10k disk. The three graphs show the distribution of
differences between the scheduler’s predicted head time and the observed time. Negative values denote over-estimation, which means that the
scheduler predicted a longer service time than was measured. The first graph shows the distribution of prediction errors for the user-level foreground
workload with 4KB average request size. The second graph shows the distribution of prediction errors for the user-level foreground workload with
40KB average request size. The third graph shows the distribution of prediction errors for the FreeBSD system running the random small file read
workload.

read request for the entire capacity of the disk. That is,
the freeblock scheduler is asked to fetch each disk sector
once, but with no particular order specified.

5.2 Service time prediction accuracy

Central to all fine-grain scheduling algorithms is the abil-
ity to accurately predict service times. Figure 7 shows
PDFs of error in the external scheduler’s head time pre-
dictions for the Atlas 10k disk. For random 4 KB re-
quests, 97.5% of requests complete within 50 µs of the
scheduler’s prediction. The other 1.8% of requests take
one rotation longer than predicted, because the seek
time was slightly underpredicted and the remaining 0.7%
took one rotation shorter than predicted. For the Chee-
tah 18LP disk, 99.3% of requests complete within 50 µs
of the scheduler’s prediction and the other 0.7% take one
rotation longer or shorter than predicted. We have veri-
fied that more localized requests (e.g., random requests
within a 50 cylinder range) are predicted equally well.

For random 40 KB requests to the Atlas 10k disk, 75% of
requests complete within 150 µs of the scheduler’s pre-
dictions. The disk head times for larger requests are pre-
dicted less accurately mainly because of variation in the
overlap of media transfer and bus transfer. For exam-
ple, one request may overlap by 100 µs more than ex-
pected, which will cause the request completion to occur
100 µs earlier than expected. In turn, because the next
request’s head time is computed relative to the previous
request’s end time, this extra overlap will usually cause
the next request prediction to be 100 µs too low. (Recall
that media transfers always end at the same rotational
offset, normalizing such errors.) But, because the pre-
diction errors are due to variance in bus-related delays
rather than media access delays, they do not effect the
external scheduler’s effectiveness; this fact is particularly
important for freeblock scheduling, which explicitly tries
to create large background transfers.

The FreeBSD graph in Figure 7(c) shows the prediction
error distribution for a workload of 10,000 reads of ran-
domly chosen 3 KB files. For this workload, the file sys-
tem was formatted with a 4 KB block size and populated
with 2000 directories each holding 50 files. Even though
a file is chosen randomly, the file system access pattern is
not purely random. Because of FFS’s access to metadata
that is in the same cylinder group as the file, some ac-
cesses are physically localized or even to the same track,
which can trigger disk prefetching.

For this workload, 76% of all requests were correctly
predicted within 150 µs. 5% of requests, at �800 µs,
are due to bus and media overlap mispredictions. There
are 4% of +6 ms mispredictions that account for an ex-
tra full rotation. An additional 4% of requests at -7.5 ms
misprediction were disk cache hits. Finally, 8% of the
requests are centered around �1.5 and �4.5 ms. These
requests immediately follow surprise cache hits or unex-
pected extra rotations and are therefore mispredicted.

To objectively validate the external scheduler, Figure 8
compares the three external algorithms (SSTF, SPTF,
and SPTF-SW60%) with the disk’s in-firmware sched-
uler. As expected, SPTF outperforms SPTF-SW60%
which outperforms SSTF, and the differences increase
with larger queue depths. The external scheduler’s SPTF
matches the Atlas 10k’s ORCA scheduler [20] (appar-
ently an SPTF algorithm), indicating that their deci-
sions are consistent. We observed the same consistency
between the external scheduler’s SPTF and the Chee-
tah 18LP’s in-firmware scheduler.

5.3 Freeblock scheduling effectiveness

To evaluate the effectiveness of our external freeblock
scheduler, we measure both foreground performance and
achieved free bandwidth. We hope to see significant free
bandwidth achieved and no effect on foreground perfor-
mance.
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Figure 8: Measured performance of foreground scheduling algo-
rithms on a Quantum Atlas 10k disk. The top three lines repre-
sent the external scheduler using SSTF, SPTF-SW60% and SPTF. The
fourth line shows performance when all requests are given immediately
to the Quantum Atlas 10k, which uses its internal scheduling algorithm.
The “disk firmware” line exactly overlaps the “SPTF external” line, si-
multaneously indicating that the firmware uses SPTF and that the exter-
nal scheduler makes good decisions. Linux’s default limit on requests
queued at the disk is 15 (plus one in service).

How well it works. Figure 9 shows both performance
metrics as a function of the freeblock scheduler’s seek
conservatism. This conservatism value is only added to
the freeblock scheduler’s seek time predictions, reduc-
ing the probability that it will under-estimate a seek time
and cause a full rotation. As conservatism increases,
foreground performance approaches its no-freeblock-
scheduling value. Foreground performance is reduced by
<2% at 0.3 ms of conservatism and by<0.6% at 0.4 ms.
The corresponding penalties to achieved free bandwidth
are 3% and 10%.

All three foreground scheduling algorithms are shown in
Figure 9. As expected, the highest foreground perfor-
mance and the lowest free bandwidth are achieved with
SPTF. SSTF’s foreground performance is 13–15% lower,
but it provides for 2.1–2.6�more free bandwidth. SPTF-
SW60% achieves over 80% of SSTF’s free bandwidth
with only a 5–6% penalty in foreground performance rel-
ative to SPTF, offering a nice option if one is willing to
give up small amounts of foreground performance.

Limitations of external scheduling. Having confirmed
that external freeblock scheduling is possible, we now
address the question of how much of the potential is
lost. Figure 10 compares the free bandwidth achieved
by our external scheduler with the corresponding simu-
lation results [14], which remain our optimistic expec-
tation for in-firmware freeblock scheduling. The results
show that there is a substantial penalty (�35%) for ex-
ternal scheduling.

The penalty comes from two sources, with each respon-
sible for about half. The first source is conservatism; its
direct effect can be seen in the steady decline of the simu-
lation line. The second source is our external scheduler’s
inability to safely issue distinct commands to the same
track. When we allow it to do so, we observe unexpected
extra rotations caused by firmware prefetch algorithms
that are activated. We have verified that, beyond conser-
vatism of 0.3 ms, the vertical difference between the two
lines is almost entirely the result of this limitation; with
the same one-request-per-track limitation, the simulation
line is within 2–3% of the measured free bandwidth be-
yond 0.3 ms of conservatism.

Disallowing distinct freeblock requests on the source or
destination tracks creates two limitations. First, it pre-
vents the scheduler from using free bandwidth on the
source track, since the previous foreground request is al-
ways previously sent to the disk and cannot subsequently
be modified. (Recall that request merging allows free
bandwidth to be used on the destination track without
confusing the disk prefetch algorithms.) Second, and
more problematic, it prevents the scheduler from using
free bandwidth for blocks on both sides of a track’s end.
Figure 11 shows a free bandwidth opportunity than spans
LBNs 1326–1334 at the end of a track and LBNs 1112–
1145 at the beginning of the same track. To pickup the
entire range, the scheduler would need to send one re-
quest for 9 sectors starting at LBN 1326 and a second
request for 34 sectors at LBN 1112. The one-request re-
striction allows only one of the two. In this example, the
smaller range is left unused.

5.4 CPU overhead

To quantify the CPU overhead of freeblock scheduling,
we measured the CPU load on FreeBSD for the random
small file read workload under three conditions. First,
we established a base-line for CPU utilization by running
unmodified FreeBSD with its default C-LOOK sched-
uler. Second, we measured the CPU utilization when
running our foreground scheduler only. Third, we mea-
sured the CPU utilization when running both the fore-
ground and freeblock schedulers.

The CPU utilization for unmodified FreeBSD was 5.1%
and 5.4% for our foreground scheduler. Therefore, with
negligible CPU overhead (of 0.3%), we are able to run
an SPTF scheduler. The average utilization of the system
running both the foreground and the freeblock schedulers
was 14.1%. Subtracting the base line CPU utilization of
5.1% when running the workload gives 9% overhead for
freeblock scheduling. In future work, we expect algo-
rithm refinements to reduce this CPU overhead substan-
tially.
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Figure 9: Foreground and free bandwidth for a Quantum Atlas 10k as a function of seek conservatism. The conservatism is only for free-
block scheduling decisions, which must strive to avoid overly-aggressive predictions that penalize the foreground workload. At 0.3 ms, foreground
performance is 1–2% lower. At 0.4 ms, foreground performance is 0.2–0.6% lower. Note that ensuring minimal foreground impact does come at a
cost in achieved free bandwidth.

Comparing the foreground and free bandwidths for the
SPTF-SW60% scheduler in Figure 9 for a conservatism
of 0.4 ms, the modest cost of 8% of the CPU is justified
by a 6� increase in disk bandwidth utilization.

6 Related Work

Before the standardization of abstract disk interfaces,
like SCSI and IDE, fine-grained request scheduling was
done outside of disk drives. Since then, most external
schedulers have used less-detailed seek-reducing algo-
rithms, such as C-LOOK and Shortest-Seek-First. Even
these are only approximated by treating LBNs as cylin-
der numbers [30].

Several research groups [1, 3, 5, 6, 26, 28, 31] have devel-
oped software-only external schedulers that support fine-
grained algorithms, such as Shortest-Positioning-Time-
First. Our foreground scheduler borrows its structure,
its rotational position detection approach, and its use of
conservatism from these previous systems. Our original
pessimism regarding the feasibility of freeblock schedul-
ing outside the disk also came from these projects—their
reported experiences suggested conservatism values that
were too large to allow effective freeblock scheduling.
Also, some only functioned well on old disks, for large
requests, or with the on-disk cache disabled. We have
found that effective external freeblock scheduling re-
quires the additional refinements described in Section 3,
particularly the careful use of command queueing and
the merging of same-track requests.

This paper and its related work section focus mainly on
the challenge of implementing freeblock scheduling out-
side the disk. Lumb et al. [14] discuss work related to
freeblock scheduling itself.

7 Summary

Refuting our original pessimism, this paper demonstrates
that it is possible to build an external freeblock scheduler.
From outside the disk, our scheduler can replace many
rotational latency delays with useful background media
transfers; further, it does this with almost no increase
(less than 2%) in foreground service times. Achiev-
ing this goal required greater accuracy than could be
achieved with previous external SPTF schedulers, which
our scheduler achieves by exploiting the disk’s com-
mand queueing features. For background disk scans,
over 3.1 MB/s of free bandwidth (15% of the disk’s to-
tal media bandwidth) is delivered, which is 65% of the
simulation predictions from previous work.

Given previous pessimism that external freeblock
scheduling was not possible, achieving 65% of the po-
tential is a major step. However, our results also indicate
that there is still value in exploring in-firmware freeblock
scheduling.
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Figure 10: Measured and simulated free bandwidth as a function of conservatism. The line labeled simulation shows the expected free
bandwidth obtained from our simulated, in-firmware freeblock scheduler operating at the given level of conservatism. The line labeled simulation
no track shows a case when the simulated freeblock scheduler does not put a non-merged freeblock request on the same track as a foreground
request, mimicking a major limitation of our external scheduler. The line labeled external scheduler shows the actual measured free bandwidth
obtained from a disk by our freeblock scheduler implementation.
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Figure 11: A limitation of the external scheduler. This diagram
illustrates a case where the potential free bandwidth spans the start/end
of a track. In this case, no single contiguous LBN range covers the
potential free bandwidth. Two requests would be needed, one to LBN
1326 and one to LBN 1112. Since our scheduler can only send one
free bandwidth request per track, the system will select the range from
LBNs 1112-1145. This wastes the opportunity to access LBNs 1326-
1334.
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