
An Efficient Cache Maintenance Scheme for Mobile Environment

A. Kahol S. Khurana S. K. S. Gupta and P. K. Srimani
Cisco Systems Inc. Telcordia Technologies Dept. of Computer Science
170 W. Tasman Dr. 445 South St. Colorado State University
San Jose, CA 95134 Morristown, NJ 07960 Ft. Collins, CO 80523
akahol@cisco.com sumit@research.telcordia.com

�
gupta,srimani � @cs.colostate.edu

Abstract

In this paper we present a new cache maintenance scheme,
called AS, suitable for wireless mobile environment. Our scheme
integrates mobility management scheme of Mobile IP with cache
maintenance scheme used in Coda file system. As opposed to
broadcasting invalidation report schemes [1], AS supports arbi-
trary disconnection patterns and uses less wireless bandwidth. We
present analytical and simulation results to show the superiority of
our caching scheme.

1 Introduction

Data caching is an important technique for improving data
availability and access latencies. It is especially important for mo-
bile computing environments which are characterized by narrow
bandwidth wireless links and frequent voluntary/involuntary dis-
connections from the server. These features of a mobile environ-
ment coupled with the need to support seamless mobility of the
clients distinguish its cache maintenance algorithms unique and
different from those used for wired networks since the protocols
must try to optimize conflicting requirements under the constraints
of limited bandwidth and frequent disconnection from the server.
Further, these protocols should be energy-efficient, and adaptable
to the varying QoS provided by the physical layer of the wireless
network.

Existing cache coherency protocols proposed for mobile en-
vironment are all based on call-back mechanism; since the mo-
bile clients get disconnected voluntarily or involuntarily, the inval-
idation messages (call-back break) used in this scheme often gets
lost. To address this problem, Barbara and Imilienski [1] have de-
veloped a invalidation report broadcasting scheme. Several other
schemes have also been proposed to extend this basic scheme with
respect to optimizing the size of invalidation report [2], adjusting
the periodicity of invalidation reports in accordance to the query
rate and client disconnection time [3] and restricting broadcast to
vicinity of the mobile client [4]. These schemes based on invalida-
tion report broadcasting have the following common characteris-
tics: (1) they assume a stateless server and do not address the issue
of host mobility (except the work by Liu and Maguire [4]); and (2)
the entire cache has to be discarded if the client is disconnected for

a period larger than the periodicity of the broadcast (or some mul-
tiple of it), even when many of the data items stored in the local
cache are still consistent or valid.

Coda file system [5, 6] provides support for disconnected oper-
ations on shared files in UNIX-like environment. Coda uses two
mechanisms for cache coherency. As long as the client is reach-
able from at least one server, call-back mechanism is used. When
disconnection occurs, access to possibly stale data is permitted at
a client to improve availability; these data updates are checked for
consistency upon reconnection and only those modifications that
do not have any conflict are committed. Balance between speed of
validating a cache (after a disconnection) and accuracy of invalida-
tions is achieved by maintaining version time-stamps on volumes
(a subtree in the file system hierarchy). However, validating the
entire cache upon each reconnection puts an unnecessary burden
on the client. Further, since Coda is a distributed file system it as-
sumes a state-full server which may not be appropriate for other
applications such as web caching.

In this paper we present a new cache maintenance scheme,
called AS (Asynchronous Stateful) scheme, suitable for wireless
mobile environment. Our scheme integrates mobility management
scheme of Mobile IP with cache maintenance scheme used in Coda
file system. In our proposed scheme each mobile host or client
(MH) has one designated home Mobile Support Station (MSS)
which maintains certain specific information about the client even
when the client moves out of its immediate area of supervision.
The home MSS maintains for each MH a data structure called
Home Location Cache (HLC) which stores the latest time-stamp
for each data item cached by the MH (i.e., when last time the data
item was invalidated). This concept of HLC fits perfectly into ex-
isting architectures to support mobility in wireless networks (e.g.
mobile IP[7]) which also uses the concept of a home location for
each MH. In implementing our scheme, the same home location
could be used to maintain the HLC. The proposed AS scheme uses
asynchronous invalidation reports (call-backs) to maintain cache
consistency i.e. reports are broadcast by the server only when some
data changes, and not periodically; an MH can continue to use its
cache even after prolonged periods of disconnection from the net-
work, without the need of discarding the entire cache. AS supports
arbitrary disconnection patterns and uses less wireless bandwidth.
We present analytical and simulation results to show the improve-
ments in bandwidth usage of our caching scheme.

Mobile
Hosts

BS

LR

MSC: Mobile Switching Station
BS: Base Station
LR: Location Registrar

LAN/WAN/Internet/ATM etc.

Application
Nodes

Static
Network

Access
Network

MSS

Database Servers

Figure 1. Mobile Computing Environment.

2 System Model

The mobile computing environment considered in this paper is
shown in Figure 1. In this environment, the mobile hosts (MHs)
query the database servers that are connected to a static network.
The mobile hosts communicate with the servers via wireless cellu-
lar network consisting of mobile switching stations (MSS) and base
stations (BS). In accordance with mobility management scheme
used in Mobile IP, each mobile host has a home address and a care-
of-address. The home address is the IP address on the home net-
work of the mobile host. The care-of-address is the address indi-
cating the current location of the mobile host. Two architectural
entities: home agent and foreign agent are used in Mobile IP to de-
liver datagrams to mobile clients. A home agent tunnels any data-
grams sent to the mobile client at its home address to its current
care-of-address(es). A foreign agent (in case mobile uses foreign
care-of-address) on the current network of the mobile client decap-
sulates the packet and delivers it to the mobile client to which the
datagram is addressed. We assume that the mobility agents (home
or foreign agent) (MAs) are located at the MSSs. In this paper we
design our caching architecture based on Mobile IP.

A mobile host can be in two modes: awake or sleep. When
a mobile host is awake (connected to the server) it can receive
messages. Hence this state includes both active and dozing CPU
modes. A MH can be disconnected from the network either vol-
untarily or involuntarily. For our purpose, a disconnected client is
in sleep mode; we use the term wakeup to indicate reconnection.
The objective of the proposed scheme is to minimize the overhead
for the MHs to validate their cache upon reconnection, to allow
stateless servers, and to minimize the bandwidth requirement; the
general approach is to buffer the invalidation messages at mobility
agents of a mobile host.

3 Overview of Proposed Scheme

The caching architecture is shown in Figure 2. The home agent

Cache

Cache

Cache

MH 1

MH 2

MH n

In
te

rf
ac

e
to

 S
er

ve
rs

E
L

E
M

E
N

T

ST
O

R
A

G
E

HLC 1

HLC n

HLC 2

Home MSS

Server
Data

Data
Server

Data

Server

Wired
Network

Wireless Link

Figure 2. System Architecture

of the mobile host maintains its home location cache (HLC). If a
mobile host (MH) is roaming, its HLC is duplicated at the MSS of
its foreign agent. Thus, a MSS always maintains a HLC for each
MH in its coverage area.

�������
for � ���

, as maintained in the
MSS, keeps track of what data has been cached at � �	�

. In gen-
eral,

�����
�
is a list �
������������������� ��� � � ��!#" of each data item � be-

ing cached by � ���
, where � is the identifier of a data item and ���

is the time-stamp of the last invalidation of � . The ��������� ��� � � ��! is
set to TRUE for data items for which an invalidation has been sent
to the MH but no (implicit) acknowledgment has been received.
Note that this time-stamp is the same as that provided by the server
in its invalidation message. Our scheme makes the following as-
sumptions:$

Whenever a data item is updated at the server, it sends out
invalidation messages to all the MSS over the wired network.$
An MH informs its mobility agent before caching any data
item in its local cache.$
The mobility agent, which is nearest to the MH and maintains
the HLC of the MH, forwards the MH any invalidation it re-
ceives from the server.

Each MH maintains a local cache of data items which it fre-
quently accesses. Before answering any queries from the applica-
tion, it checks if the requested data is in a consistent state. We use
call-backs from a MSS to achieve this goal. When a MSS receives
an invalidation from a server, the MSS determines the set of MHs
that are using the data by consulting the HLCs and sends an inval-
idation report to each of them. When a MH receives that invali-
dation message, it marks the particular data item in its local cache
to be invalid. When an MH receives (from the application layer) a
query for a data item, it checks the validity of the item in its local
cache; if the item is valid, it satisfies the query from its local cache
and saves on latency, bandwidth and battery power; otherwise, an
up-link request to the MSS for the data item is required. The MSS
make a request to the server for the data item on behalf of the MH.
When the data item is received the MSS adds an entry to the HLC
for the requested data item and forwards the data item to the MH.
Note that the data item may or may not be cached at the MSS.

A mobile host alternates between active mode and sleep mode.
In sleep mode a mobile client is unable to receive any invalidation
messages sent to it by its HLC. We use the following time-stamp
based scheme by which the MA can decide which invalidations
it needs to retransmit to the mobile host. Each client maintains a

2) add (y, t2) to HLC
3) fwd y to client

1) fetch y from server;

t0
x

t1 t2

z
y

t2

z
y

x changed

t1

(x,t1) (y,t1)

t2

(y,t2)

cache

z z

t4

(z,t4)

z changed

t3

(y,t3)

y changed

lost

(*,t2)

ignored

first query
after wakeup

t5

timestamp

data

(y,z,t5)

invalidation query data

MSS

MH

t5
*

Figure 3. An Example Scenario

time-stamp for its cache called the cache time-stamp. Cache time-
stamp of a cache is the time-stamp of the last message received by
the MH from its MA. The client includes the cache time-stamp in
all its communications with the MA. The MA uses the cache time-
stamp for two purposes:

1. To discard invalidations it no longer needs to keep, and

2. To decide the invalidations it needs to re-send to the client.

Upon receiving a message with time-stamp
�
, the MA discards any

invalidation messages with time-stamp less than equal to
�

from
the MH’s HLC. Further, it sends an invalidation report consisting
of all the invalidation messages with time-stamp greater than

�
in

the MH’s HLC to the MH. When a MH wake-ups after a sleep, it
sends a probe message to its home agent with its cache time-stamp.
In response to this probe message the home agent sends it a inval-
idation report. This way an MH can determine which data items
changed while it was disconnected. A MH defers all queries which
it receives after waking up until it has received the invalidation re-
port from its home agent. In this scheme we do not need to know
the time at which the MH got disconnected and just by using cache
time-stamp we can handle both failures and voluntary disconnec-
tions. Even if the MH wakes up and then immediately goes to sleep
before receiving the invalidation report, consistency of the cache
is not compromised as it would use the same value of cache time-
stamp in its wakeup call again and get the correct information in
the invalidation report. Thus, arbitrary sleep patterns of the MH
can be easily handled.

An Example: Consider the example scenario shown in Fig-
ure 3. Initially, the cache time-stamp of the MH is t0 and MH’s
cache has two data items with ids x and z. When MSS receives an
invalidation message notifying it that x has changed at the server at
time t1, it adds the invalidation message to MH’s HLC and also for-
wards the invalidation message to the MH with (data-item id, time-
stamp), i.e. (x,t1). On receiving the invalidation message from the
MSS, the MH updates its cache time-stamp to t1 and deletes data
item x from its cache. Later when MH wants to access y it sends
a data request with (y, t1) to the MSS. In response to the data re-
quest, the MSS fetches and forwards data item associated with y to
the MH and adds (y, t2) to the MH’s HLC, where t2 is the last up-
dates time-stamp provided by the data server. The MH updates it
time-stamp to t2 and adds y to its cache. Now suppose MH gets dis-
connected from the network and the invalidation message for y is
lost due to this disconnection. When MH wakes up it ignores any

invalidation messages since later upon first query after wakeup it
sends a invalidation check message to the MSS. The MSS uses the
time-stamp in the cache check message to determine send a inval-
idation report with all the missed invalidations by the MH. In this
case, the MSS determines from MH’ cache time-stamp t2 that MH
has missed invalidation for y and z and so it resends them to the
MH.

4 Formal Description

4.1 Data Structures

Every data object has an unique identifier. The letters � , � , and� will be used to denote data identifiers. We will use the notation� � � ��� to denote the data associated with a data item with identifier� . The following data structures are maintained at each MH:$ ���
: Time stamp of the last invalidation report or data received

by the MH from its home MSS.$
cache : Data cache. An item in the data cache is of the form�
��� � � � �����	� ��� ��� � � ��!#" . The data

� � � ��� can be consid-
ered valid only when the � ��� ��� � � ��! is TRUE.$
 ����
 � ���������
 � : A flag set to TRUE when an MH wakes up
and is yet to make its first query after awakening. The flag
is set to FALSE once the the first request after waking up is
made.$
 ����
 � � � � � ��� ! : A flag set to TRUE when an MH has made
its first query after getting reconnected to the network but the
data for it has not been received.

The following data structure is maintained at each MSS:$ ������� ��� � ���
: an array of lists;

������� � � is a list of records
of the type �
��� � � ��������� ��� � � ��!#" one for each data item �
cached by � ���

;
�

is the total number of MHs that are in
the cell of the MSS. � is the time-stamp of the last invalida-
tion of � . The ��������� ��� � � ��! is set to TRUE for data items
for which an invalidation report has been sent but no implicit
acknowledgment has been received.

4.2 Messages$
INVALIDATION REPORT (�
� � ��! � �"
 � ��� � �#����
 � � � ��!):
Sent to an MH by its home MSS to report invalidation of
data items in � � ��! � �"
 � . � is the time-stamp associated with
this report. �#����
 � � � ��! is set if this invalidation report is in
response to the first query of the MH on waking up.$
DATA REQUEST (� � ��� � � �#����
 � � �������
 �) Sent by � �	�

to
its MSS to request data item � when � is not found in its local
cache.

�
is set to the time-stamp

�	�
maintained by the MH.

The flag �#����
 � � �������
 � is set if this is the first data request
after the MH regains connectivity to the network.$
DATA (��� � � � ��� ���): Broadcast by an � � � to send data to
all MHs caching � . � is a time-stamp set to the current time
at the MSS.

ba

:
:
:
:
:
:
:

1

M
Database

1/ M

(size = bq)

µ

µ
µ

queries

λ

1

2

i

N

Mobile Clients
in a Cell

updates

Figure 4. The Query Update Model

4.3 Protocol

An MSS continuously executes the procedure MSS Main,
whose response to various events is as follows:

1. MSS receives a request for data from an MH
(DATA REQUEST): With each request, an MH sends
the time-stamp of the last message it had received from the
MSS. The MSS deletes all the entries in the HLC for the MH
which had been invalidated before the time-stamp carried in
the message. Since the messages are assumed to be received
in order this ensures that the MH was awake at the time each
of the invalidations was received and the MSS no longer
needs to buffer the invalidation.

If the data request is the first after a sleep, all the items cached
by the MH, marked invalid since the last message received
by the MH are repeated through an invalidation report. The
invalidation report carries a time-stamp with it.
Finally the requested data item is sent to the MH and added
to its HLC.

2. Data item(s) updated at MSS: The MSS sends an invalida-
tion report to all the MHs that are caching the changed data
item and to whom a previous invalidation has not been sent
for the same data. It also updates the data time-stamp in the
HLC for these MHs and marks those items as invalid.

Each MH continuously executes the procedure MH Main,
which responds to the various events in the following manner:

1. MH generates a request for a data item: If the MH has wo-
ken up after a sleep and this is the first request, it sends a data
request for the item and sets a flag (

 � ��! � � � � ��� !) to in-
dicate that the buffered invalidations during the sleep period
have not yet been received. On receiving those invalidations
it answers successive queries from the cache.

If the query is not the first after a wake up, the cache is
checked for that data item. If the item is not in the cache a data
request is sent to the MSS and the query is answered once the
data arrives from the MSS.

2. MH receives an INVALIDATION REPORT from the
MSS: The MH sets its cache time-stamp to the to the time-
stamp in the current message and invalidates in its cache all

t

Awake Sleep

wakeup

(1-s)t st

Figure 5. The Sleep Model

the data items mentioned in the report. All invalidations re-
ceived between the time an MH awakens and receives the first
query are ignored.

3. MH receives DATA from the MSS: It updates its cache
with the current information and also updates its cache time-
stamp.

4. MH wakes up after a disconnection: It sets the
 ����
 � ���������
 � flag to TRUE.

5 Performance Analysis

We provide a simple theoretical analysis to estimate the miss
probability and mean query delay for the proposed scheme. For the
purpose of analysis, we consider the performance in a single cell,
(as mobility is assumed to be transparently handled) with one MSS
and

�
mobile hosts.

5.1 Modeling Query-Update Pattern

The query-update model is shown in Figure 4. We assume that
there are � data items in the entire database. Each data item is of
size

���
bits. The time between updates to a data item is assumed

to follow an exponential distribution with mean
�����

. Each MH
queries data items according to a Poisson distribution with mean
rate of � . These queries are uniformly distributed over all data
items in the database.

5.2 Modeling Sleep Pattern

An MH can get connected and disconnected while it is in the
cell. The sleep/wakeup pattern of an MH is modeled by using two
parameters (see Figure 5). One is the fraction
 of the total time
spent by an MH in the sleep mode and the other is the frequency at
which it changes it’s state (sleeping or awake). To model these we
consider an exponentially distributed interval of time

�
with mean�����

. The MH is in the sleep mode for time
 � , and in the awake
mode for time � �
	
 " � . By varying the value of

�
different fre-

quencies of change of state can be obtained.

5.3 Estimation of Miss Ratio

We assume that all queries generated by an MH when it is sleep-
ing, i.e., disconnected from the server, are lost. Thus the effec-
tive rate of query generation by an MH can be approximated as

(b) Miss due to diconnections.

last wakeup for item x
first query afterquery for x

wakeup

t

t-t1 t1

i-th query
for x for x

(a) Miss due to absence of valid data item in cache

item x is invalidated at least once

(i+1)-st query

no query
at least one

last wakeup

Figure 6. Two Mutually Exclusive Events
When Up-links Are Needed

� ��� � � 	
 " � . Since queries are uniformally distributed, the
rate at which queries are generated for a given data item is given by
� � � � � � � . A query made for a specific data item � by an MH
would be a miss in the local cache (and would require an uplink re-
quest) in case of either of the following two events: (Consider the
time interval

�
between the current query for � and the immediately

preceding query for � by the MH)

1. During this interval
�
, the data item � has been invalidated at

least once (see Figure 6(a)).

2. Data item � has not been invalidated during the interval
�
; the

MH has gone to sleep at least once during the interval
�
, it

woke up last time at time
� 	 ���

and the current query is the
very first one after waking up from last sleep (Figure 6(b)).

We compute the probabilities of Event 1 and Event 2 as follows.$
Probability of miss due to absence of valid data item in cache:� �

Event 1
� � ���	 � � � ��

����� " � � 	 ��
���� " � �

� �
� ��� � � � �

� � 	
 " ��� � � �
$

Probability of miss due to disconnection:� �
Event 2

� � ���	 � � �
no invalidation and query for x during t

�

� � �
the query (for x) is 1st after wakeup " � �� ���	 � � ��

�����"��
���� � � �	 ��

������� � ��
������ � � 	 ��
���� �
����"! " � �#� " � �

� � � �
� � � � � � � "%$ � �� � � �

	 � � � �� � � �&� � � �
� � � �&� � ��� �(' �

The probability,
�*)
� � �

, of a query requiring a up-link request is the
sum of the probabilities for Event 1 and Event 2 and is given by�+)
� � � � � �

Event 1
� � � �

Event 2
���

Pmiss eλλq=N

(size = bq)
queries µ q

b + bq a

=Mλi

invalidations
(size = bi)

µ i

µ

=
bi

C

µ q
b + bq a

= Cλq

µ q

µ i
iλ,iλ,~

iλ,~

= C

+

=

Figure 7. Combining the Up-link and Down-
link M/D/1 Queues

5.4 Estimation of Mean Query Delay

We now estimate the mean query delay �-, �/. ��0 . A single wire-
less channel of bandwidth

�
is assumed for all transmissions tak-

ing place in the cell. All messages are queued to access the wire-
less channel and serviced according to the FCFS scheduling policy.
Further, we assume that queries are of size

�21
bits and invalidations

are of size
� �

bits.
In order to determine �-, �/. ��0 we do the following:$

Model the servicing of up-link queries as a M/D/1 queue un-
der the assumption that there is a dedicated up-link channel
of bandwidth

�
. The query arrival rate � 1 is estimated to be�3�+)
� � � � � since there are

�
many MHs in a cell and for each

MH in the cell, the up-link query generation rate is
�*)
� � � � � .

The query service rate
� 1

is then estimated to be 4� 576�8
579:! .$
Model the servicing of invalidation on down-link channel as
a M/D/1 queue under the assumption that there is a dedicated
down-link channel of bandwidth

�
. The average invalidation

arrival rate � � is estimated to be � �
and the invalidation ser-

vice rate
���

is then estimated to be
� � � �

.$
In order to model a single wireless channel of bandwidth

�
for both up-link and down-link traffic and estimate the mean
query service rate � 1

on this shared channel we combine both
up-link and down-link M/D/1 model. Since we are interested
in only the query service rate, the invalidations on the chan-
nel merely add to the delay in servicing the queries. Thus we
assume that the service rate of the channel for both types of
traffic to be

� 1
, the service rate for queries, and adjust the

arrival rate of invalidations in proportion to the service rate
of queries. Thus the effective arrival rate of invalidations is
taken as ;� � � ��<�=6 � � . The combined M/D/1 queue is shown
in Figure 7. Using the standard queuing theory result for an
M/D/1 queue, the average delay experienced by a query go-
ing up-link is given by

� 1 � > � 1 	 � � 1 � ;� � "> � 1 � � 1 	 � � 1 ��;� � " " �$
All queries that are cache hits do not experience any delay.
Thus the average delay experienced by any query in the sys-
tem is given by �
, �/. ��0 � �+)
� � � � 1

.

5.5 A Simple Comparison

Various strategies have been suggested in literature which use
synchronous invalidation reports. They build on the basic ideas in

TS/AT [1] AS (proposed)

Server is stateless (no information about Server is stateful (HLC maintained)
client cache is maintained)

Invalidation reports sent regardless of Invalidation report broadcast only if any
whether clients have any data in cache. client has valid data in cache.
Invalidation reports sent periodically at Invalidation reports sent as and when data

rate
�

(synchronous) changes (asynchronous)
Average cache access latency is

�����
Latency is governed only by the queuing

plus network queuing delay delay on the network.
Traffic on the network is bursty as queries Queries are answered as they are generated

are aggregated for a period of time
�

.
Cache restored for sleep limited to a Arbitrary sleep patterns can be supported

maximum duration of � (TS) or
�

(AT)
Mobility is supported by assuming a Mobility can be transparently supported by

replication of data across all stationary using a mobility aware network layer
nodes (not scalable) e.g. mobile IP

Table 1. Comparison of Salient Features of TS/AT and AS Schemes

Parameter TS [1] Ideal AS

Max sleep time supported � � �
Up-link overhead on wakeup 0 � � or �

Cache access Latency � to
�

0 0
Buffer space required at MSS 	�

��� - 	�
������

Table 2. Comparison of cache invalidation
strategies

[8]. Wu in [9] has proposed an enhancement in which the mobile
host sends back to the server the ids of all cached data items, along
with their time-stamps after a long disconnection. The server iden-
tifies the changed data items and returns a validity report. This re-
sults in wastage of bandwidth and unnecessary up-link requests and
still does not solve the problem for arbitrarily long sleeps, as the lo-
cal cache has to be discarded after a disconnection of time greater
than

�
. Jing in [10] has proposed a Bit-Sequence scheme where

each data item in the database is represented by binary bit. The bit-
sequence structure contains more update history information than
the window � , but results in larger invalidation reports when only
a few things have changed. The cache still has to be discarded if
more than half of the items in the database have changed. Authors
in [3] have suggested an adaptive algorithm which predominantly
uses the TS and Bit-Sequence approaches but provides better tun-
ing of the system according to the current invalidation and query
rates. The basic drawbacks of a stateless scheme still hold.

None of these works investigates the effect of using these
schemes on an actual wireless network. All of the schemes are
based on aggregating queries for a fixed period of time and then an-
swering them after receiving an invalidation report. This provides
very poor network utilization as there is no traffic for long periods
of time followed by a very heavy burst. This also results in higher

queuing delay for answering a query.
Unlike these strategies, all of which use synchronous invalida-

tion reports and are based on the basic scheme of [8], our strategy
is (A)synchronous and (S)tateful; we use the name AS. In order to
compare our scheme with the sleepers and workaholics scheme of
[8], we note the salient features of that scheme as follows:$

A server broadcasts invalidation reports every
�

time units
which carry information about all data items that changed
during the past � ��� � time units. Two variations of this ba-
sic scheme are suggested: (1) TS, where invalidation reports
carry information about changes in data items over a larger
window (��� �

), and (2) AT for which � � �
.$

Clients maintain local caches and use the information in in-
validation reports to update their caches.$
If a client is disconnected from the network and misses � con-
secutive reports, it discards its local cache.$
Queries generated during the past

�
time units are answered

only after receiving an invalidation report.

We also consider an Ideal Scheme to compare our scheme
to with the following characteristics: (1) whenever any data is
changed at the MSS, the invalidation information is available to
the clients instantaneously at no cost; (2) the above holds even
when the MH is disconnected from the MSS, i.e., there is no over-
head due to disconnections. Clearly, the ideal strategy is infeasible
for any practical system; nevertheless, it provides useful reference
points on the achievable hit-rate and delay. Table 1 gives a com-
parison of the salient features of the proposed scheme with those
of the TS and AT schemes; quantitative bounds are shown in Ta-
ble 2 for a system with

�
mobile hosts each of which are caching� data items. The improvement in performance is achieved at the

cost of maintaining additional buffer space at the MSS; since mem-
ory is cheap especially at the stationary MSS, performance benefits
outweigh this relatively minor cost.

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

0 10 20 30 40 50 60 70 80

D
e
la

y
 (

s
e
c
)

s

High Invalidation Rate

MM: Query Rate=1/120
Sim: Query Rate=1/120
MM: Query Rate=1/300
Sim: Query Rate=1/300

(a) High Invalidation Rate

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80

D
e
la

y
 (

s
e
c
)

s

Low Invalidation Rate

MM: Query Rate=1/120
Sim: Query Rate=1/120
MM: Query Rate=1/300
Sim: Query Rate=1/300

(b) Low Invalidation Rate

Figure 8. Delay: Simulation and Mathematical Model

6 Simulation Results & Comparison with
Analysis

We simulated our proposed scheme of cache invalidation in a
single cell with a base station and varying number of mobile hosts;
we experimented for different rates of invalidation of data items.
The purpose of the experiments were twofold: (1) to investigate
how closely the experimental results coincide with the values for
performance metrics (delay, uplink requests) predicted by our sim-
ple model; (2) to investigate how efficiently our proposed scheme
AS manages disconnection in a mobile environment; for this pur-
pose we experimentally compared our scheme AS with an ideal-
ized scheme where it is assumed that the invalidation information
is available to the clients instantaneously at no cost. The default
parameters used for each scenario are as shown in Table 3. Delay
is defined to be the time it takes to answer a query. The delay is
assumed to be zero when there is a local cache hit. We summarize
our observations as follows:$

Comparison with Analytical Results: Figure 8 shows the
comparison between the delay obtained through simulation
and that predicted by the mathematical model. The model
captures the behavior very well and the results are closer at
low invalidation rates. This is because of the heuristic used
in the modeling for estimating the equivalent arrival rate of
invalidation messages.$
Comparison with Ideal Scheme: Figure 9 compares AS
scheme with the ideal scheme in which invalidation infor-
mation is instantly available to the clients at no cost. Fig-
ures 9(a) and (b) show the results for query delay and up-link
messages (in case of a cache miss), respectively. As the num-
ber of queries per second decreases, both the number of up-
links per query and the average delay to answer a query in-
crease. This is a direct consequence of decrease in hit rate.
As delay between queries increases, the probability of an in-
validation occurring between queries increases; this results in
more up-links and higher delay. As the sleep rate increases,
the probability of an invalidation between successive queries

increases even further. In all cases the plots for AS closely
follow that of the ideal scheme, with the difference increas-
ing as the sleep rate increases.

7 Conclusions

We have proposed a new cache maintenance scheme for wire-
less mobile environment that integrates mobility management
scheme of Mobile IP with cache maintenance scheme used in Coda
file system. Our initial theoretical and experimental studies sug-
gest the following advantages: i) the server can be stateless and
the overhead of maintaining state of the cache at the server is of-
floaded to the home agent, ii) upon reconnection the client has to
send only a single message to the home agent to get any invalida-
tions that occurred while the client was disconnected, and iii) being
asynchronous and state-full it avoids repeated broadcast of invali-
dations for data items which may not be relevant to specific mobile
clients.

Several enhancements can be made to this basic scheme. This
includes handling lost invalidation message due to network failure
in the wired network and handling the case when co-located care-
of-address is used by the MH. The lost message can be handled by
using sequence numbers and periodic pooling by the foreign agent
on behalf of the mobile host. In the case when mobile host uses co-
located care-of address, the home MSS can take the full responsi-
bility of maintaining MH’s HLC. Further, as in Coda the client can
itself do periodic polling to detect any lost invalidation reports.

References

[1] D. Barbara and T. Imielinski. Sleepers and Worka-
holics: Caching Strategies in Mobile Environments.
Very Large Databases Journal, December 1995.

[2] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso. Bit-
sequences: an adaptive cache invalidation method in
mobile client/server environments. Mobile Networks
and Applications, 2:115–127, 1997.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

D
e
la

y
 (

s
e
c
)

s

Comparison with Ideal: Delay

Ideal: Query Rate=1/30
AS: Query Rate=1/30

Ideal: Query Rate=1/120
AS: Query Rate=1/120

Ideal: Query Rate=1/300
AS: Query Rate=1/300

(a) Delay

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

U
p

li
n

k
s
 p

e
r

Q
u

e
ry

 (
m

is
s
 r

a
te

)

s

Comparison with Ideal: Miss Rate

Ideal: Query Rate=1/30
AS: Query Rate=1/30

Ideal: Query Rate=1/120
AS: Query Rate=1/120

Ideal: Query Rate=1/300
AS: Query Rate=1/300

(b) Uplinks

Figure 9. Comparison of Delay and Uplinks between AS and Ideal Scheme (� is the percentage
of time a client is disconnected from the network)

[3] Q. Hu and D. K. Lee. Cache algorithms based on
adaptive invalidation reports for mobile environments.
Cluster Computing, 1:39–50, 1998.

[4] G. Y. Liu and G. Q. McGuire Jr. A mobility-aware
dynamic database caching scheme for wireless mobile
computing and communications. Distributed and Par-
allel Databases, 4:271–288, 1996.

[5] L. B. Mummert and M. Satyanarayanan. Variable
granularity cache coherence. Operating Systems Re-
view, 28(1):55–60, January 1994.

[6] L. B. Mummert and M. Satyanarayanan. Large Granu-
larity Cache Coherence for Intermittent Connectivity.
In Proceedings of the 1994 Summer USENIX Confer-
ence, June 1994.

[7] C. Perkins. IP Mobility Support. RFC 2002, October
1996.

[8] D. Barbara and T. Imielinski. Sleepers and worka-
holics: Caching strategies in mobile environments (ex-
tended version). MOBIDATA: An Interactive Journal
of Mobile Computing, 1(1), November 1994.

[9] K. L. Wu, P. S. Yu, and M. S. Chen. Energy-efficient
caching for wireless mobile computing. In 20th Inter-
national conference on data engineering, pages 336–
345, March 1996.

[10] J. Jing, O. Bukhres, A.K. Elmargarmid, and R. Alonso.
Bit-sequences: A new cache invalidation method in
mobile environments. Technical Report CSD-TR-94-
074, Computer sciences department, Purdue univer-
sity, May 1995.

Parameter Value
� 25
� 100�

1/120 query/s� � ����� (low), 1/1800 (high)�	�
1200 bytes�	

64 bytes���
64 bytes

10000 bits/sec� 20%� 1800 sec

Table 3. Default Parameters

