
Scalable Web Caching of Frequently Updated Objects
using Reliable Multicast

Dan Li and David R. Cheriton
Stanford University

Abstract

Frequently updated web objects reduce the benefit of
caching, increase the problem of cache inconsistency,
and aggravate the inefficiency of the conventional "re-
peated unicast" delivery model. In this paper, we inves-
tigate multicast invalidation and delivery of popular,
frequently updated objects to web cache proxies. Our
protocol, MMO, groups objects into volumes, each of
which maps to one IP multicast group. We show that,
by forming volumes of the appropriate size and/or ob-
ject correlation, the benefit from reliable multicast out-
weighs the cost of delivering extraneous data as well as
the overhead of multicast reliability. Moreover, trace-
driven simulations show that the bandwidth saving over
conventional approaches increases significantly as the
audience size grows. We conclude that MMO provides
efficient bandwidth utilization and service scalability,
and makes strong web cache consistency for dynamic
objects practical.

1. Introduction

Web proxy caching [4] is critical to the continuing suc-
cess of the Web. It improves the response time and re-
duces the load on the network and web servers. The
falling cost of memory and disk allows web cache
proxies to hold an increasing amount of web content.
As the Web carries more web objects1 that are both ac-
cessed and modified frequently, the hit rate of web
caches is limited more by consistency than by cache
capacity. Cached copies of frequently updated objects
become stale more often. Frequently retrieving new
copies defeats the benefit of caching.

Frequently updated objects also raise the consistency
protocol overhead. With web cache consistency proto-
cols such as adaptive TTL (Time-To-Live) [15], the
rate of polling by the proxy must be considerably
higher than the rate of modification at the web server in
order to maintain an acceptable stale rate (percentage
of instances that the cache returns a stale document).

1 A web object consists of one or more files a browser needs to re-
trieve from the web server in order to display a URL. A web server
(or server) refers to a web content source; a web cache proxy (also as
a cache or a proxy) refers to a shared URL cache for a group of local
web clients, e.g., hosts within an ISP network or a corporate LAN.

For frequently updated objects such as sports and finan-
cial news that change several times a day, poll ing over-
head can be excessive for the network and the web
server. Alternatively, the web server can send cache in-
validations to web caches. Cao et. al. [7] performed an
excellent study on a TCP-based invalidation protocol,
concluding that strong cache consistency can be main-
tained with little or no extra cost over the current weak-
consistency approaches. However, the web server has
to keep per-proxy state and establi sh TCP connections
to all of the proxies to deli ver the invalidation, a sig-
nificant overhead for widely cached objects. Moreover,
after the invalidation, there is li kely to be a sudden in-
flux of requests from many caches (triggered by client
requests or prefetching [24]), potentiall y saturating the
server and causing link congestion. These bursts of re-
quests may produce peak loads comparable to that ex-
perienced without caching. If servers are engineered for
these peak loads, the benefit of caching for servers is
minimal. Fundamentall y, the "repeated unicast" deli v-
ery model does not scale.

Addressing these problems, we propose MMO  mul-
ticast invalidation followed by multi cast deli very of a
volume of web objects to web cache proxies using the
OTERS reliable multi cast protocol [20]. The cost of
OTERS in this context is evaluated using NS [30]. We
study MMO's performance using trace-driven simula-
tions. From these studies, we conclude that MMO is far
more scalable than conventional and hybrid protocols
and provides strong cache consistency, fast responses,
and eff icient bandwidth utilization.

The rest of the paper is organized as follows. Section 2
describes our proposed protocol. Section 3 discusses a
number of alternatives to be compared with our ap-
proach. Section 4 outlines the simulation environment.
Section 5 assesses the cost of unicast and multicast
transport protocols. Section 6 analyzes the performance
of our protocol. Section 7 discusses related work. Sec-
tion 8 concludes the paper. Appendix A describes web
access traces. Appendix B describes the process of
measuring the transport protocols.

2. A Multicast-based Web Caching Protocol

In MMO, the web server multicasts cache invalidations

and modified objects to a multicast group using the
OTERS reliable multi cast protocol. Web caches sub-
scribe to the multicast group to receive the information.

2.1. OTERS

OTERS (On-Tree Eff icient Recovery using Subcast)
[20] organizes group members into hierarchical sub-
groups by exchanging session messages to elect a des-
ignated receiver or DR for each subgroup. DRs then
employ subcasting2 for local retransmission. Figure 2.1
shows its recovery process.

The notification mode (OTERS-NT) uses ACKs to re-
liably deli ver notifications such as web cache invalida-
tions. Upon receiving a notification, the group member
sends an ACK to its DR, which in turn sends an ACK
to its own DR. Each DR retransmits the notification to
non-responding subgroup members.

The file transfer mode (OTERS-FT) is designed for
files. A receiver learns about parameters of the file
transfer from a prior notification (e.g., a web cache in-
validation), including the starting time, the file length
and the transmission rate. At the end of the file trans-
mission, if the receiver has missed any packets, it sends
a NAK (containing the sequence numbers of all missing
packets) to its DR for retransmissions.

2.2. The Invalidation Phase

In any invalidation protocol, the web server sends in-
validation messages to web caches when an object is
modified. Each web cache then deletes the cached copy
(if one is cached). In the presence of network or process
failures, leases or volume leases [12, 33] can serve as
an eff icient fault-tolerance mechanism. Currently the
HTTP protocol does not support invalidation but the
server part can be implemented in the HTTP accelerator
[8] (a form of web caching at the server location). This
way, invalidation becomes part of a signaling protocol
between web caches such as ICP [32].

In MMO, an invalidation channel is a multicast address
that web cache proxies subscribe to. The web server
uses OTERS-NT to notify the channel subscribers of
modifications to a volume of objects. A proxy that is
not subscribed to the invalidation channel still requests
those objects directly from the web server, which indi-
cates in the response that an invalidation channel exists.

2 Subcasting is multicasting of a packet over a subtree of the multicast
delivery tree. One subcast retransmission can repair an entire subtree's
losses that are caused by one packet drop at the root of the subtree.
OTERS is built on IP encapsulation [26] and IGMP traceroute [10],
with security extensions that involve router changes but impose no
additional state and li ttle processing overhead.

The proxy can join the channel when enough number of
objects in the volume is cached.

The invalidation channel is expected to be long-li ved
and have relatively stable memberships. For example, a
proxy may stay in the channel for 12 hours or longer.
Using OTERS also means that subscribed proxies are
committed to exchanging information and maintaining
the subgroup hierarchy. Fortunately, web caches are
generally stable, well maintained, and well connected to
the Internet. The opposite is dial-up or wireless users,
for whom our scheme is not suitable.

2.3. The Delivery Phase

After a multicast invalidation, the server multi casts the
modified object via OTERS-FT to the invalidation
channel, which subscribed proxies receive and then re-
turn to clients in subsequent requests.

A volume is a set of objects that share the same invali-
dation channel. Having multiple objects per volume is
more eff icient than having one object per volume be-
cause the multicast overhead (including address alloca-
tion, routing and transport session organization) can be
amortized over more objects.

A multi-object volume introduces extraneous data. For
instance, one may receive from the multicast channel a
message that invalidates an object it does not cache, or
receive an object that is modified again before any cli-
ent requests the object. The server, however, can reduce
the amount of extraneous data by limiting the volume
size and assigning related objects to the same volume
(so that a proxy is li kely to cache most of them). The
server can form volumes based on access statistics,

……

Member of subgroup-1

Router

source

……
DR-2

DR-1
unicast NAK

Group member

subcast repair

Figure 2.1 OTERS. Designated Receiver DR-1 unicasts a NAK
(negative acknowledgment) to its own designated receiver − DR-2
− after detecting a packet loss. DR-2 responds with a repair to DR-
1's subtree, assuming DR-2 received this packet. Bold links indi-
cate the path of the retransmission.

URL prefixes, content subjects, etc. [9]. Furthermore,
proxies are less prone to extraneous data than end-users
because a proxy aggregates requests from many end-
users, raising the traffic and hit rate of popular objects.

2.4. The Pros and Cons of MMO

MMO offers several significant advantages. First, mul-
ticast invalidation provides strong cache consistency3

without any per-proxy state at the server and without
aggressive polling by the proxy. Second, proactive
multicast updates provide lower web access time than
on-demand unicast delivery. Third, multicast invalida-
tion and delivery are more scalable to large audiences
than their unicast counterparts.

However, proactive multicast is not always more effi-
cient than on-demand unicast because of multicast
overheads and extraneous data. But MMO compensates
for these potential drawbacks by employing one chan-
nel for both cache invalidation and object delivery to
amortize multicast overheads. MMO also relies on effi-
cient volumes to control the amount of extraneous data.
Hence MMO is more efficient when delivering popular,
frequently modified and correlated web objects in a
volume to a large number of web caches. For example,
the CNNfn.com homepage and top stories can be dis-
seminated in a volume using MMO.

3. Other Web Caching Protocols

To set the stage for comparing MMO with other alter-
natives, we first introduce some hybrid protocols
(MMF, MU, UMF and UU) along with the traditional
ones (AT and PET). Table 1 lists their main features.

3.1. Hybrid Web Caching Protocols

MMF and MU use multicast invalidation, similar to
MMO. Conversely, UMF and UU use unicast invalida-
tion [7]. The web server keeps a list of web caches that
have requested an object since its last modification.

3 There is a small window of opportunity (from the creation of cache
invalidation to the completion of object delivery) for clients to get the
slightly obsolete copy from the proxy.

When the object is modified, the server sends an invali-
dation (via TCP) to each cache on the list.

MU and UU use on-demand TCP delivery. After the in-
validation (either unicast or multicast), the proxy de-
letes the invalidated copy and retrieves a fresh copy
only when the next client request arrives. There is no
extraneous data but the server has to repeatedly unicast
the object on demand.

MMF and UMF use proactive multicast delivery via
Digital Fountain4. After the invalidation (either unicast
or multicast), the server multicasts the modified object
via Digital Fountain to a delivery channel, a multicast
group that is allocated for delivering this object). The
delivery channel is short-lived. Proxies can decide
whether to join it. If a proxy joins the channel, it re-
ceives a copy and returns this copy to clients upon fu-
ture requests. Otherwise, it retrieves a fresh copy (via
TCP) when the next client request arrives.

The delivery channel allows a tradeoff between unicast
and multicast delivery methods, in the amount of extra-
neous data a proxy chooses to receive. The prefetch de-
cision is based on the probability of a future client re-
quest coming before the next modification. We use the
following policy. Define a join threshold W. If no client
has requested the object for the time spanning the last
W invalidations, the proxy does not join the delivery
channel. Otherwise, it does. With this flexibility, MMF
incurs the multicast overhead on each delivery. Section
6 shows that MMO in fact outperforms MMF.

To efficiently support the above schemes, there are two
requirements on multicast routing. First, the invalida-
tion channel is long-lived and requires efficient routing
state maintenance, e.g., limiting membership heartbeats
to occur only at the leaves. Second, the delivery chan-
nel is short-lived and requires fast join/leave and scal-

4 Digital Fountain [5, 29] is designed for bulk data transfer. The
source encodes an entire file using Forward Error Correction codes
and multicasts it continuously by looping through the encoded data. A
receiver tunes to the multicast channel at any time and leaves the
channel as soon as it receives enough encoded packets in order to re-
construct the original file. The source can stop sending once the mul-
ticast group is empty or after having looped several times.

Acronym Invalidation Method Delivery Method
MMO Multicast via OTERS-NT proactive Multicast via OTERS-FT
MMF Multicast via OTERS-NT proactive Multicast via Digital Fountain
UMF Unicast via TCP proactive Multicast via Digital Fountain
MU Multicast via OTERS-NT on-demand Unicast via TCP
UU Unicast via TCP on-demand Unicast via TCP
AT Adaptive TTL on-demand Unicast via TCP
PET Polling-Every-Time on-demand Unicast via TCP

Table 1 Acronyms of the seven web caching protocols

able address allocation. These requirements are consis-
tent with the research community's effort on multicast
routing and are met by proposals such as EXPRESS
single-source multicast routing [17].

3.2. Traditional Web Caching Protocols

Polling-every-time provides strong cache consistency,
li ke all the above protocols. The proxy always sends an
"If-Modified-Since" request to the server before re-
turning any cached copy to clients. The server responds
with either a modified copy or "Not Modified". The
latter case is called a slow hit because the cached copy
is returned to the client after a round trip to the server.
Conversely, in an invalidation-based protocol, all hits
are fast hits because the cached copy is immediately
returned to the client.

Adaptive TTL [15] provides weak cache consistency
and is based on the observation that "older" files are
less li kely to be modified. The proxy sets the TTL of a
cached copy to α times the "age" of the object (i.e.,
from its last modification to now). By default, α is 0.2
in Squid [32] and 0.5 in Harvest [4]. Before the TTL
expires, client requests are served directly from the
cache. They are fast hits but may be stale. Upon the
first client request after the TTL expires, the proxy
sends an "If-Modified-Since" request to the server. The
result may be a modified copy or a slow hit. Then the
TTL of the cached copy is adjusted accordingly.

4. The Simulation Environment

4.1. Web Access Traces

The simulation uses three types of traces. One is the
Surge trace, generated by the Surge HTTP request gen-
erator [2]. Second is the Stanford trace, the server log
of Stanford University's official web site. Third is the
NLANR trace, proxy logs of accesses to CNN.com by
the 8 top-domain proxies in the NLANR (National lab
of Applied Network Research) Cache Hierarchy [23].
Appendix A describes these traces in more detail.

Generate modifications. The traces do not provide the
object modification history so we adopt the hot/cold
model [7] to generate modifications. First, 1% of the
web objects are picked uniformly across the object
popularity ranks as the frequently updated (or hot) ob-
jects. Then, given k hot objects and an average object
li fetime of L seconds, every L / k seconds the modifica-
tion generator randomly picks one from the k objects to
modify. This leads to a geometric li fetime distribution.

Volume formation. The Surge and Stanford traces use

random formation. In other words, a volume of size V
consists of the V most popular, frequently updated ob-
jects. The NLANR trace uses prefix formation. The
volume consists of six objects that share the URL prefix
"http://www.CNN.com/WORLD/meast/9812/17/iraq.stri
ke".

4.2. Join Decision and Caching Decision

A proxy joins the invalidation channel if it caches at
least one object in the volume. In reality, a proxy may
decide to join the channel only after a few objects in the
volume are cached. Our assumption is more conserva-
tive in that it results in more extraneous data.

After the proxy joins the channel, any object in the vol-
ume is cached once accessed. This decision is reali stic
because objects in the volume are popular (based on the
server's statistics) and warrant caching. Caching objects
in the volume that are less popular to a proxy presents
only disk space cost and no extra consistency cost. With
cheap disks and RAM, a deep cache or cache farm can
afford the space in exchange for lower bandwidth con-
sumption and better response time to the end-users. A
volume-wise caching decision also does not reduce the
hit rate in a deep cache because a cache often can reach
a size beyond which the hit rate does not rise much by
adding more cache space. For example, a 24GB cache
is suff icient for a daily web flow of 100 gigabits (ac-
cording to the ISP-caching mailing li st).

4.3. Performance Metrics

The web-caching simulation uses the following per-
formance metrics:

response time: the time from when the proxy receives
a client request to the time it finishes responding. This
metric reflects the user-perceived web access time be-
cause the way a client contacts its proxy is the same re-
gardless of the web caching protocol.

stale rate: the percentage of responses a proxy returns
to its clients that contain stale data. Only adaptive TTL
has a non-zero stale rate. All other protocols offer
strong consistency and therefore zero stale rates.

packet count: the number of distinct packets ex-
changed among the web server and proxies in order to
fulfill the client requests. Packets that a proxy sends to
its clients are not counted because all the protocols in-
cur the same cost. The packet size is assumed to be
1024 bytes, a compromise between two popular net-
work packet sizes: 550 and 1500 bytes.

packet-hop count: the number of hops the packets tra-

verse between the server and proxies, reflecting the
amount of wide-area traffic a caching protocol imposes.

5. Performance of the Transport Protocols

To assess the traffic load of the various web-caching
protocols, we developed a traffic load model for the
transport protocols TCP, OTERS and Digital Fountain.
Appendix B describes the measurement process on the
simulator NS [30]. Measurements show that the traffic
load of a transport session can be modeled as Load(m,n)
= f(m) + n • g(m), where f(m) is the session overhead,
g(m) is the per-packet cost, m is the number of multi-
cast receivers and n is the number of payload packets.

TCP's overhead and per-packet cost are linear in m.
TCP's overhead comes from the 3-way handshake and
the connection termination. The overhead of OTERS
comes from organizing the subgroup hierarchy. The
overhead of Digital Fountain comes from packets that
the network deli vers after a receiver has received all
that are necessary to reconstruct the original file but be-
fore its leave message is propagated all the way up the
multicast deli very tree. The higher rate the source
transmits, or the slower the leave message propagates,
the more Digital Fountain overhead. Additional over-
head may come from flooding of the initial multicast

packet, e.g., in a DVMRP routing domain [31].

Figures 5.1 and 5.2 plot the packet counts of the session
overhead and the per-packet cost respectively. Figures
5.3 and 5.4 plot the packet-hop counts. The session
overhead of Digital Fountain is significantly less than
that of TCP and OTERS. However, in MMF, the Digi-
tal Fountain overhead is amortized over a single deli v-
ery, while in MMO the OTERS overhead is amortized
across multiple deliveries. The per-packet costs of OT-
ERS-FT and Digital fountain are similar and much
lower than that of TCP and OTERS-NT because the
former two use NAKs while the latter two use ACKs.

6. Web Caching Performance Analysis

The traces were replayed through a web caching simu-
lator that implements the 7 protocols (see also Table 1).
Performance data is gathered over requests to objects in
a volume. Requests outside the volume were not con-
sidered. Every set of results has three parameters: V 
the number of objects in the volume, P  the number
of proxies, and L  the average object li fetime (in
minutes). In adaptive TTL, α is set to 0.25. In MMF
and UMF, the join threshold W is set to 1.

6.1. From the Client's Perspective

0

1000

2000

3000

0 100 200 300 400 500
number of multicast receivers

p
ac

ke
ts

TCP
Digital Fountain
OTERS-NT & OTERS-FT

0

100

200

300

400

0 100 200 300 400 500
number of multicast receivers

p
ac

ke
ts

TCP

OTERS-FT

Digital
Fountain
OTERS-NT

Figure 5.1 Session Overhead in packets Figure 5.2 Per-Packet Cost in packets

0

10000

20000

30000

0 100 200 300 400 500
number of multicast receivers

p
ac

ke
t-

h
o

p
s

TCP
Digital Fountain
OTERS-NT & OTERS-FT

0

500

1000

1500

2000

0 100 200 300 400 500
number of multicast receivers

p
ac

ke
t-

h
o

p
s

TCP
OTERS-FT
Digital Fountain
OTERS-NT

Figure 5.3 Session Overhead in packet-hops Figure 5.4 Per -Packet Cost in packet-hops

The response time and the stale rate quantify the service
quality that end-users experience. Figure 6.1 plots the
average response time relative to L, for the NLANR
trace. MMO reduces the response time to 57% of that
of AT when L = 4 hours and to 34% when L = 30 min-
utes. MMO sets the lower bound because it generates
only fast hits. Other protocols' curves, however, shoot
up as the object li fetime shortens, causing more of their
fast hits become slow hits or misses. MMF is faster
than MU because it retrieves objects sometimes proac-
tively and sometimes on demand. AT polls the server
once TTL expires and may discover the document is
not modified. Therefore AT has a higher response time
than all the invalidation-based protocols. PET is the
slowest because it poll s the server on every request.

Figure 6.2 plots the stale rate of AT for the three traces.
It shows that, with α = 0.25, AT can reach a stale rate
of 5% to 15% for objects modified more than once
every four hours. The Stanford trace has a higher stale
rate because it directly records the end-users' access
pattern and hence has more clustered requests (requests
to the same object, e.g., a course’s announcement page,
that occur within a short interval, e.g., 3 hours). With
clustering, more requests occur before the TTL of the
cached copy expires and are subject to stale responses.
Conversely, requests to NLANR top-domain caches are
filtered by lower-level caches. Requests generated by
Surge are also relatively spaced out.

6.2. From the Server's Perspective

Packet counts indicate the amount of traff ic that servers
and caches have to generate to deli ver the web content.
Figures 6.3 and 6.4 plot the packet count vs. L and V re-
spectively for the Surge trace. Figures 6.5 and 6.6 plot
the same for the Stanford trace. Figures 6.7 and 6.8 plot
the packet count vs. P for Surge and NLANR respec-
tively. The figures' Y axes vary in their ranges but all

cover 3 magnitudes in logarithmic scale for easy rela-
tive comparison, except that Figures 6.7 and 6.8 use a
linear scale to show the tangent of the curves.

Overall, MMO sets the lower bound and PET sets the
upper bound. Figure 6.3 shows that, with 500 proxies,
MMO is over an order of magnitude more eff icient than
MMF and UMF, and almost 2 orders of magnitudes
more than AT and PET. MMF and UMF are close to
each other. So are MU and UU, indicating that delivery
(as opposed to invalidation) accounts for the majority of
the traff ic.

Figures 6.3 and 6.5 show that the traff ic load increases
as the object li fetime decreases. The increase is more
significant for MMO than for unicast-based protocols
li ke PET because, as the li fetime shortens, more cached
copies are not referenced before being invalidated
again. Volume size also affects the amount of extrane-
ous data multicast deli vered. On one hand, the web
server would li ke to include as many objects as possible
in one volume in order to amortize the multicast over-
head. On the other hand, as the volume grows, the traf-
fic load of MMO rises faster than that of unicast-based
protocols (Figure 6.6). In this case, the Stanford web
server should choose a volume size of 50 or less.

Despite the extraneous data, multicast-based protocols
perform much better than their unicast counterparts
when the number of proxies is large. Figures 6.5 and
6.6 have just 10 proxies. Figure 6.3 (500 proxies) shows
that MMO outperforms other protocols even with 5-
minute object li fetime. Similarly, in Figure 6.4 (500
proxies), MMO does not even reach the magnitude of
AT's traff ic load at volume size 100, meaning that it can
carry up to 1000 objects in a volume and still outper-
form AT carrying 100 objects. This is because multicast
scales to large audiences with little increase of traff ic.
For example, Figure 5.2 shows that OTERS-FT uses 24

0

100

200

300

400

500

600

0 60 120 180 240
L: object lifetime (in minutes)

m
ill

is
ec

o
n

d
s

MMO MMF & UMF
MU & UU PET
AT

0

5

10

15

0 60 120 180 240
L: object lifetime (in minutes)

p
er

ce
n

ta
g

e

Surge, P=500, V=50
Stanford, P=10, V=50 (507KB)

NLANR, P=8, V=6 (124KB)

Figure 6.1 Average Response Time (NLANR, P=8, V=6) Figure 6.2 Stale Rate of Adaptive TTL

times fewer packets than TCP in order to deliver a
document to 500 receivers. Therefore, MMO is less ef-
ficient than repeated AT only when over 96% of the
data received is extraneous.

Figures 6.7 and 6.8 further explain the audience-size

factor. Tangents of the curves follow the order:

MMO << MMF < UMF << MU < UU < AT << PET,

indicating that invalidation-based protocols are much
more scalable than polling-based protocols. Moreover,

100

1000

10000

100000

0 60 120 180 240
L: object lifetime (in minutes)

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

ts
MMO MMF MU
UMF UU PET
AT

100

1000

10000

100000

0 20 40 60 80 100
V: number of objects in the volume

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

ts

MMO MMF MU UMF
UU PET AT

Figure 6.3 Packet Count (Surge, P=500, V=50) Figure 6.4 Packet Count (Surge, P=500, L=60)

1

10

100

1000

0 60 120 180 240
L: object lifetime (in minutes)

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

ts

MMO MMF
MU UMF
UU PET
AT

1

10

100

1000

0 25 50 75 100
V: number of objects in the volume

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

ts

MMO MMF
MU UMF
UU PET
AT

Figure 6.5 Packet Count (Stanford, P=10, V=50) Figure 6.6 Packet Count (Stanford, P=10, L=60)

0

1000

2000

3000

4000

5000

0 100 200 300 400 500
P: number of proxies

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

ts

MMO MMF
MU UMF
UU PET
AT

0

50

100

150

200

250

300

0 100 200 300 400 500
P: number of proxies

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

ts

MMO MMF
MU UMF
UU PET
AT

Figure 6.7 Packet Count (Surge, L=60, V=50) Figure 6.8 Packet Count (NLANR, L=60, V=6)

MMO is the most scalable of the invalidation-based
protocols.

6.3. Network Load

Figures 6.9 through 6.14 plot the same scenarios as 6.3

to 6.8 but in packet-hop counts. Similar to the server's
case, Figures 6.9 and 6.10 show that MMO is over an
order of magnitude more eff icient than others. With 500
proxies, multicast deli very (MMO, MMF, and UMF)
always performs better than its unicast counterparts
(MU and UU) and polling-based protocols (PET and

1000

10000

100000

1000000

0 60 120 180 240
L: object lifetime (in minutes)

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

t-
h

o
p

s

MMO MMF
MU UMF
UU PET
AT

1000

10000

100000

1000000

0 20 40 60 80 100
V: number of objects in the volume

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

t-
h

o
p

s

MMO MMF MU UMF

UU PET AT

Figure 6.9 Packet-Hop Count (Surge, P=500, V=50) Figure 6.10 Packet-Hop Count (Surge, P=500, L=60)

10

100

1000

10000

100000

0 60 120 180 240
L: object lifetime (in minutes)

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

t-
h

o
p

s

MMO MMF MU UMF

UU PET AT

10

100

1000

10000

0 20 40 60 80 100
V: number of objects in the volume

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

t-
h

o
p

s

MMO MMF

MU UMF

UU PET

AT

Figure 6.11 Packet-Hop Count (Stanford, P=10, V=50) Figure 6.12 Packet-Hop Count (Stanford, P=10, L=60)

0

10000

20000

30000

40000

0 100 200 300 400 500
P: number of proxies

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

t-
h

o
p

s MMO MMF
MU UMF
UU PET
AT

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500
P: number of proxies

tr
af

fi
c

lo
ad

 in
 k

ilo
-p

ac
ke

t-
h

o
p

s MMO MMF
MU UMF
UU PET
AT

Figure 6.13 Packet-Hop Count (Surge, L=60, V=50) Figure 6.14 Packet-Hop Count (NLANR, L=60, V=6)

AT). Figures 6.13 and 6.14 show that MMO is far more
scalable than conventional and hybrid methods from the
network's perspective as well .

7. Related Work

Most related work [7, 15, 16, 29] on web caching pro-
tocols has been described in Section 3 with compari-
sons to MMO in that section and Section 5. Concurrent
with our work, Yu et al. [37] proposed using applica-
tion-level multicast for invalidations. However, their
scheme presumes a pre-configured cache hierarchy in
which each cache tracks web server locations and relays
each HTTP miss up and down the hierarchy to the web
server, and back on response. A wide flat hierarchy
risks overhead from application-level routing whereas a
deeper hierarchy risks latency from multiple cache hops
back to the web server. This scheme, as they acknowl-
edge, is diff icult to apply with a cache mesh [3, 13, 22,
35], an emerging direction on the web. In contrast, in
MMO, caches only interact as participants in a common
multicast transport session; the associated subgroup hi-
erarchy provides dynamic self-organization within a
cache mesh. MMO’s use of native IP multicast reduces
latency and overhead on caches; its use of volumes
minimizes the number of IP multicast addresses needed,
addressing a key motivation of Yu [37] for going to ap-
pli cation-level multicast. Also, the proposed EXPRESS
single-source multicast [17] provides a large number of
multicast addresses per server.

Another application-level technique is piggyback in-
validation and validation [18,19]. However, this ap-
proach is just an optimization over unicast poll ing,
which we have compared earlier.

Continuous multi cast push (CMP) and asynchronous
multicast push (AMP) [1, 26, 27] deliver popular con-
tent to end-users via native multicast. However, the
server has to multicast an object continuously or many
times per modification, while MMO multi casts content
once per modification. Furthermore, to improve the ef-
ficiency, CMP needs to increase the amount of content
carried in a multicast channel and AMP increase the
wait period between two consecutive multicast deli ver-
ies, both of which prolong the end-users’ web access
time. Conversely, MMO reduces the web access time
by always providing “fast hits” from caches.

8. Conclusion

The scalabilit y of web caches for frequently updated
objects can be significantly improved using a reliable
multicast channel to proactively disseminate cache in-
validations and object updates from the web server to
web cache proxies. We have shown that MMO can pro-

vide fast web access, strong cache consistency, efficient
bandwidth utilization and, more importantly, scalabil ity
for both the server and the network.

Considering the MMO benefits in more detail, first, the
response time improves substantiall y for frequently up-
dated objects (with a lifetime under 4 hours) by more
than 40% over conventional caching. Second, the stale
rate is reduced to zero, compared to 5% ~ 15% using a
weak-consistency protocol. Even a 1% stale rate can be
disastrous in applications such as medical and financial
decision-making. Third, considering traff ic load, MMO
is over an order of magnitude more eff icient than hy-
brid protocols, and almost two orders more than tradi-
tional ones (with 500 proxies), allowing web servers
and the Internet infrastructure to meet the explosive
Web growth with better service quality and lower proc-
essing and bandwidth costs.

Forming optimal volumes (so that volume objects are
correlated) works better than using a separate channel
for each delivery (so that proxies may choose whether
or not to join the channel), in terms of reducing extra-
neous traff ic and multicast overheads. Our experiments
show that, even with random volume formation, MMO
can outperform other protocols in a range of volume
sizes; the range widens as the audience size grows (be-
cause of the bigger bandwidth savings over TCP). Also,
the web server can form larger and better-correlated
volumes based on access statistics [9]. Given a rea-
sonably formed volume, carrying both invalidations and
objects in the same channel greatly reduces the multi-
cast session overhead as well as the address allocation
and routing overhead. Conversely, our simulations find
that, using a separate delivery channel, the multicast
overheads can hardly be amortized over a single deli v-
ery, especiall y with most web objects being of small
sizes.

We conclude that MMO, among the seven protocols
studied, is the most eff icient for disseminating popular,
frequently modified and correlated objects in a volume
 such as CNNfn.com or ESPN.com  to a large
number of web cache proxies.

Our results to date are based on a limited set of traces.
Other traces may give different quantitative results.
However, we do not expect them to contradict our basic
findings unless a web site hosts only highly unrelated
objects.5 The use of multicast update of cached objects

5 The extreme is when each object is interesting to a small group of
proxies and there is no overlap of interests among groups. Then no
matter how the volume is constructed, either the amount of extrane-
ous traffic is too much or the volume size and multicast group size are
too small to benefit from multicast. Such objects can be disseminated
via unicast.

in wide-area networks is limited in practice at present
by the lack of WAN multicast support. However, as
multicast is deployed in high-speed WANs to support
compelli ng applications such as Internet TV stations,
MMO is expected to become another attractive use of
multicast. In fact, it completes a spectrum of deli very
options for the server, from end-to-end multicast deli v-
ery for real-time video at one extreme, to multicast up-
date of cached frequently updated objects, to unicast re-
sponse to explicit requests at the other extreme. Con-
sidering this spectrum, this paper recognizes and ad-
dresses an important and growing class of objects that
are less dynamic than video, yet more dynamic than can
be scalably cached and kept consistent using unicast
callbacks.

We hope to evaluate and refine this approach further
with additional simulation and experimental deploy-
ment. One refinement is to employ delta encoding to
propagate object updates [36]. In any case, our results
to date indicate that this approach could play a signifi-
cant role in dealing with the dramatic scaling challenges
arising from the explosive growth of the Web, a growth
rate that shows no sign of abating.

Acknowledgement

The authors would li ke to thank Paul Barford, Conrad
Damon, Tim Torgenrud and the NLANR scientists for
providing valuable web access traces. We also would
li ke to thank Armando Fox, Vincent Laviano, Katia
Obraczka, Craig Partridge, Shankar Ponnekanti, Chetan
Rai, Jonathan Stone, and the USITS reviewers for their
valuable support and comments.

References

1. Almeroth, K.C.; Ammar, M.H.; Zongming Fei; "Scalable
delivery of Web pages using cycli c best-effort multicast" Pro-
ceedings IEEE INFOCOM'98 Conference on Computer
Communications. April 1998. p. 1214-21 vol.3

2. Barford, P.; Crovella, M.; "Generating representative Web
workloads for network and server performance evaluation"
SIGMETRICS '98/PERFORMANCE'98. June 1998. Per-
formance Evaluation Review vol.26 no.1 p. 151-60

3. Bhattacharjee, S.; Calvert, K.L.; Zegura, E.W.; "Self-
organizing wide-area network caches" Proceedings IEEE IN-
FOCOM'98 Conference on Computer Communications. April
1998. p. 600-8 vol.2

4. Bowman, C.M.; Danzig, P.B.; Hardy, D.R.; Manber, U.;
Schwartz, M.F.; "The Harvest information discovery and ac-
cess system" 2nd International WWW Conference. Oct. 1994.
Computer Networks and ISDN Systems (Dec. 1995) vol.28,
no.1-2 p.19-25

5. Byers, J. W.; Luby, M.; Mitzenmacher, M.; Rege, A.; "A
digital fountain approach to reliable distribution of bulk data"

ACM SIGCOMM'98 Conference. Sept. 1998. Computer
Communication Review (Oct. 1998) vol.28, no.4 p. 56-67

6. Calvert, K.; Zegura, E. "GT Internetwork Topology Models
(GT-ITM)" http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm

7. Pei Cao; Chengjie Liu; "Maintaining strong cache consis-
tency in the World Wide Web" 17th International Conference
on Distributed Computing Systems. IEEE Transactions on
Computers (April 1998) vol.47, no.4 p. 445-57

8. Chankhunthod, A.; Danzig, P.B.; Neerdaels, C.; Schwartz,
M.F.; Worrell, K.J.; "A hierarchical Internet object cache"
Proc. of USENIX Annual Technical Conference. Jan. 1996.
p.153-63

9. Cohen, E.; Krishnamurthy, B.; Rexford, J.; "Improving
end-to-end performance of the Web using server volumes and
proxy filt ers" ACM SIGCOMM'98, Computer Communica-
tion Review (Oct. 1998) vol.28, no.4 p.241-53

10. Fenner, W.; Casner, S. "A ''traceroute'' facilit y for IP
Multicast", Internet Draft <draft-ietf-idmr-traceroute-ipm-
02.txt>, November, 1997, work in progress.

11. Floyd, S.; Jacobson, V.; Liu, C.-G.; McCanne, S.; Zhang,
L.; "A reliable multicast framework for light-weight sessions
and application level framing" IEEE/ACM Transactions On
Networking. Dec.1997. vol.5, no.6, p. 784-803

12. Gray, C.G.; Cheriton, D.R.; "Leases: an eff icient fault-
tolerant mechanism for distributed file cache consistency"
12th SOSP. Operating Systems Review 1989. vol.23, no.5, p.
202-210

13. Grimm, C.; Vockler, J.-S.; Pralle, H.; "Load and traff ic
balancing in large scale cache meshes" TERENA Networking
Conference'98. Computer Networks and ISDN Systems (30
Sept. 1998) vol.30, no.16-18 p. 1687-95

14. Gunther, R.; Levitin, L.; Schapiro, B.; Wagner, P.; "Zipfs
law and the effect of ranking on probability distributions" In-
ternational Journal on Theoretical Physics. Feb. 1996. vol.35,
no.2, p. 395-417

15. Gwertzman, J.; Seltzer, M.; "World-Wide Web cache con-
sistency" Proceedings of USENIX Annual Technical Confer-
ence. Jan. 1996. p. 141-51

16. Gwertzman, J.S.; Seltzer, M.; "The case for geographical
push-caching" Proceedings 5th Workshop on Hot Topics in
Operating Systems (HotOS-V). May 1995. p. 51-5

17. Holbrook, H.; Cheriton, D. R.; "EXPRESS Multicast: an
Extended Service Model for Globall y Scalable IP multicast",
SIGCOMM'99, August 1999, Harvard.

18. Krishnamurthy, B.; Wills, C.E.; "Piggyback server invali-
dation for proxy cache coherency" 7th International World
Wide Web Conference. April 1998. Computer Networks and
ISDN Systems (April 1998) vol.30 no.1-7 p.185-93

19. Krishnamurthy, B.; Wills, C.E.; "Study of piggyback
cache validation for proxy caches in the World-Wide Web"
Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems. Dec. 1997.

20. Li, D.; Cheriton, D. R.; "OTERS (On-Tree Eff icient Re-
covery using Subcasting): a Reliable Multicast Protocol" 6th
IEEE International Conference on Network Protocols

(ICNP'98). Oct. 1998. p. 237-245

21. Luby, M. et al. "Practical Loss-Resilient Codes". Proc. of
the 29th ACM Symposium on Theory of Computing, 1997.

22. Melve, I.; Slettjord, L.; Bekker, H.; Verschuren, T.
"Building a Web caching system-architectural considerations"
Proceedings of 8th Joint European Networking Confer-
ence(JENC8). May 1997. p. 121/1-9

23. National Lab of Applied Network Research. "A Distrib-
uted Testbed for National Information Provisioning".
http://ircache.nlanr.net/Cache/

24. Padmanabhan, V.N.; Mogul, J.C.; "Using predictive pre-
fetching to improve World Wide Web latency" ACM Com-
puter Communication Review, July 1996. vol.26, no.3, p.22-
36

25. Perkins, C. "IP Encapsulation within IP", RFC 2003, Oc-
tober 1996.

26. Radriguez, P.; Biersack, E.W.; "Continuous multicast
push of Web documents over the Internet" IEEE NETWORK.
April 1998. vol.12, no.2, p. 18-31

27. P. Rodriguez, E. W Biersack, K. W. Ross "Improving the
WWW: Caching or Multicast?" 1998 Web Cache Workshop.
http://wwwcache.ja.net/events/workshop/papers.html

28. Rizzo, L.; Vicisano, L.; "A reliable multicast data distri-
bution protocol based on software FEC techniques" Proceed-
ings of Fourth Workshop on the Architecture and Implemen-
tation of High Performance Communications Subsystems -
HPCC'97. June 1997. p. 115-24

29. Touch, J. "The LSAM Proxy Cache  a Multicast Dis-
tributed Virtual Cache" 1998 Web Cache Workshop. June
1998. http://wwwcache.ja.net/events/workshop/14/lsam.html

30. UCB/LBNL/VINT Network Simulator - ns (version 2),
http://www-mash.cs.berkeley.edu/ns/

31. D. Waitzman, C. Partridge and S.E. Deering, "Distance
Vector Multicast Routing Protocol", RFC1075, Nov. 1988.

32. Wessels, D.; Claffy, K.; "ICP and the Squid web cache"
IEEE Journal on Selected Areas in Communications. April
1998. vol.16, no.3, p. 345-57

33. Yin, J.; Alvisi, L.; Dahlin, M.; Lin, C.; "Using leases to
support server-driven consistency in large-scale systems"
Proceedings of 18th International Conference on Distributed
Computing Systems. May 1998. p. 285-94

34. Yu, P.S.; MacNair, E.A.; "Performance study of a col-
laborative method for hierarchical caching in proxy servers"
7th International World Wide Web Conference. April 1998.
Computer Networks and ISDN Systems (April 1998) vol.30
no.1-7 p.215-24

35. L. Zhang, S. Michel, K. Nguyen, A. Rosenstein "Adaptive
Web Caching: Toward a New Global Caching Architecture"
1998 Web Cache Workshop, http://wwwcache.ja.net/events/
workshop/25/3w3.html

36. Mogul, J.C.; Dougli s, F.; Feldmann, A.; Krishnamurthy,
B.: "Potential benefits of delta encoding and data compression
for HTTP" ACM SIGCOMM 97 Conference. Computer
Communication Review (Oct. 1997) vol.27, no.4 p. 181-94

37. Haobo Yu, Lee Breslau, and Scott Shenker, "A Scalable
Web Cache Consistency Architecture" ACM SIGCOMM'99

Appendix A. the Web Access Traces

Surge [2] generates 500 proxy traces. Each aggregates
requests from 2000 clients and lasts 15 hours. So the
trace covers one million web clients. Requests are gen-
erated for 100 frequently updated objects (called hot
objects). The number of requests for a hot object and its
popularity rank follow the zipfs law [14]. The most
popular object is accessed an average of 0.5 time per
client, which is fairly conservative for web sites li ke
CNN.com. In other words, a proxy receives 1000 re-
quests to the most popular object and in total 6200 re-
quests to the 100 hot objects. File sizes follow a hybrid
Pareto and log-normal distribution with average 8.6
KB, standard deviation 85 KB, minimum 79 bytes and
maximum 858 KB.

The Stanford trace is a 24-hour server log on December
8, 1998. After filtering out non-cacheable requests, the
log contains 960,548 requests made by 42,804 clients to
97,630 files. 1% of the files are picked (uniformly
across the popularity ranks) as hot objects. Popularity
ranks are obtained by sorting the files based on the
number of requests each file receives. Then out of every
100 files (consecutive on the sorted li st), one is picked
randomly as a hot object. The most popular object is
accessed 51,687 times. The average file size is 24.6 KB
with 1 byte minimum and 225 MB maximum. Clients
are randomly partitioned into 10 groups. Requests from
one group of clients form one proxy trace. The server
trace is thus partitioned into 10 proxy traces.

The NLANR trace [23] consists of eight 24-hour proxy
traces on December 17, 1998, the first day of the Desert
Fox US mili tary operation against Iraq. We selected
CNN.com as the server site and a volume based on the
prefix "http://www.CNN.com/WORLD/meast/9812/17/ir
aq.strike". There are 6 objects in the volume with aver-
age size 20.7 KB, standard deviation 8.4 KB, minimum
8.1 KB and maximum 30.7 KB. In the simulation, we
scale up the number of proxies by replicating the traces.

Table A.1 shows that each NLANR proxy does not
have many clients and requests to CNN.com. This is
because these proxies are at the top of the NLANR
Cache Hierarchy, each covering domains like .uk and
.jp. Their clients are mostly lower-level web cache
proxies. Hence the request streams are already highly
filtered and reduced. Nevertheless, they represent an
important part of the web caching reality.

Only the NLANR trace records the proxy response time
(the time between reading the first byte of the request

and writing the last byte of the reply) and whether the
response is a fast hit (TCP_HIT), a slow hit (RE-
FRESH_HIT) or a miss (REFRESH_MISS). Note that
TCP_MISS (a miss in the proxy's cache) does not occur
in the simulation other than at the first time because any
object in the volume is cached once accessed. Samples
larger than 2 seconds are discarded. For each object, re-
sponse times of multiple requests are averaged into one
value for each response type, which the simulation then
uses. Table A.2 has the response times further averaged
across all objects in the volume. It shows that a fast hit
offers far better response time than a slow hit or miss.

Appendix B. the Transport Protocols

TCP, OTERS and Digital Fountain are simulated on NS
[30]. Ten transit-stub topologies6 are generated by the
GT-ITM internetwork topology generator [6]. Each to-
pology has 1000 nodes, including 5 transit domains and
120 stub domains. Nodes are considered as either back-
bone routers or web cache proxies at the borders of
their respective local area networks. Behind each node
there may be hundreds or thousands of hosts that use
the web caching service and are connected via ISP net-
works or corporate LANs. Links inside a stub domain
are 100Mbps with 1ms delay. Links connecting stub
and transit domains are 45Mbps with 15ms delay. Links
inside a transit domain are 155Mbps with 8ms delay.
Inter-transit-domain links are 155Mbps with 80ms de-
lay. Link delays have random variations that adhere to
an unbounded exponential distribution with 20% aver-
age variation. Losses are random and the link packet er-
ror rate (PER) is 1%. The multicast routing is static
dense mode DVMRP [31].

For a given multicast group size, the following occurs.
Each protocol's simulation is run 10 times on each of
the 10 topologies with different seeds. The seed con-
trols how receivers are randomly chosen from the 1000
nodes. Results of the 100 runs are averaged to produce
the protocol's packet count and packet-hop count. Lin-
ear interpolation is used to estimate the traff ic load of

6 The picture at ftp://ftp.dsg.stanford.edu/pub/papers/ts0.gif shows an
example 100-node topology. The ones used are 10 times larger.

group sizes that are not simulated. Finall y all the results
are plotted in Figures 5.1 through 5.4 and fed to the
web-caching simulation. The simulation is driven by a
packet stream from a Constant Bit Rate (CBR) source
at 100 KB/sec and 1KB packet size. In TCP, the CBR
source reliably unicasts a file to each receiver. Its traff ic
load counts in all the data and ACK packets. Favoring
TCP, we assume the connection setup and termination
takes 5 packets rather than 7.

In OTERS, all the receivers join a multicast group at
time 0 and start organizing the subgroup hierarchy
(called the fusion tree). Whenever there is data in
transmission, each group member sends heartbeats
every 1 second (with random skews) to maintain the
tree. The data transmission starts at 0.2 second, when
the fusion tree is only partially formed. (This overlap
causes extra reliability cost while the tree is under con-
struction, which can happen when group members join
and leave.) One notification is deli vered using OTERS-
NT, followed by a file transfer using OTERS-FT. The
session overhead comes from the session organization
packets. The per-packet cost consists of heartbeats,
ACKs, NAKs, and retransmissions, along with the
payload data. We also tried to extract per-file overhead
but it turns out to be under 1% of the per-packet cost
and therefore is not considered as a separate term in the
traffic load model.

We simulated the Digital Fountain designed by Byers et
al. [5], which uses Tornado codes [21] with n = 2k1.
The data transmission starts at time 0. All the receivers
join the multicast group at time 0 and leave as soon as
k2 packets are received. According to [5], the average of
k2 is tuned to 5.48% over k1. With 1% link PER, no re-
ceiver experiences over 50% losses (which is largely
the case for any well connected web cache). Therefore
the source always needs to send only two packets per
payload packet. Packet-hop-wise, a router may continue
to forward packets toward a receiver after it has left the
group, until its multi cast leave message reaches the
router. To separate this overhead from the per-packet
cost, multiple sets of results are collected for different
file lengths. The session overhead and per-packet cost
are then extracted from them.

Proxy name: bo1 bo2 lj pa pb sd sv uc
clients: 55 57 49 39 55 36 65 48

total # requests to CNN: 2,191 2,402 3,317 4,200 6,686 7,668 5,093 2,833
requests in the volume: 258 301 228 435 521 240 441 315

Table A.1 The number of clients and requests for NLANR proxies

Proxy name: bo1 bo2 lj pa pb sd sv uc
response time of a fast hit: 35 18 58 75 104 127 183 75

response time of a slow hit: 286 215 306 271 440 408 601 292
response time of a miss: 632 564 839 978 971 1,216 950 682

Table A.2 The average response time of NLANR proxies (in milliseconds).

