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Abstract

Caching in the World Wide Web currently follows a
naive model, which assumes that resources are referenced
many times between changes.  The model also provides no
way to update a cache entry if a resource does change,
except by transferring the resource’s entire new value.
Several previous papers have proposed updating cache
entries by transferring only the differences, or ‘‘delta,’’
between the cached entry and the current value.

In this paper, we make use of dynamic traces of the full
contents of HTTP messages to quantify the potential
benefits of delta-encoded responses.  We show that delta
encoding can provide remarkable improvements in
response size and response delay for an important subset
of HTTP content types.  We also show the added benefit of
data compression, and that the combination of delta en-
coding and data compression yields the best results.

We propose specific extensions to the HTTP protocol for
delta encoding and data compression.  These extensions
are compatible with existing implementations and
specifications, yet allow efficient use of a variety of encod-
ing techniques.

1. Introduction
The World Wide Web is a distributed system, and so often

benefits from caching to reduce retrieval delays.  Retrieval of
a Web resource (such as document, image, icon, or applet)
over the Internet or other wide-area network usually takes
enough time that the delay is over the human threshold of
perception. Often, that delay is measured in seconds.  Caching
can often eliminate or significantly reduce retrieval delays.

Many Web resources change over time, so a practical cach-
ing approach must include a coherency mechanism, to avoid
presenting stale information to the user. Originally, the Hy-
pertext Transfer Protocol (HTTP) provided little support for
caching, but under operational pressures, it quickly evolved to
support a simple mechanism for maintaining cache coherency.

In HTTP/1.0 [3], the server may supply a ‘‘last-modified’’
timestamp with a response.  If a client stores this response in a
cache entry, and then later wishes to re-use the response, it
may transmit a request message with an ‘‘if-modified-since’’
field containing that timestamp; this is known as a conditional

retrieval. Upon receiving a conditional request, the server
may either reply with a full response, or, if the resource has
not changed, it may send an abbreviated reply, indicating that
the client’s cache entry is still valid.  HTTP/1.0 also includes a
means for the server to indicate, via an ‘‘expires’’ timestamp,
that a response will be valid until that time; if so, a client may
use a cached copy of the response until that time, without first
validating it using a conditional retrieval.

The proposed HTTP/1.1 specification [6] adds many new
features to improve cache coherency and performance.
However, it preserves the all-or-none model for responses to
conditional retrievals: either the server indicates that the
resource value has not changed at all, or it must transmit the
entire current value.

Common sense suggests (and traces confirm), however, that
even when a Web resource does change, the new instance is
often substantially similar to the old one. If the difference (or
delta) between the two instances could be sent to the client
instead of the entire new instance, a client holding a cached
copy of the old instance could apply the delta to construct the
new version.  In a world of finite bandwidth, the reduction in
response size and delay could be significant.

One can think of deltas as a way to squeeze as much benefit
as possible from client and proxy caches.  Rather than treating
an entire response as the ‘‘cache line,’’ with deltas we can
treat arbitrary pieces of a cached response as the replaceable
unit, and avoid transferring pieces that have not changed.

In this paper, we make use of dynamic traces of the full
contents of HTTP messages to quantify the potential benefits
of delta-encoded responses. Although previous
papers [2, 8, 18] have proposed the use of delta encoding, ours
is the first to use realistic traces to quantify the benefits.  Our
use of traces from two different sites increases our confidence
in the results.

We show that delta encoding can provide remarkable im-
provements in response-size and response-delay for an impor-
tant subset of HTTP content types.  We also show the added
benefit of data compression, and that the combination of delta
encoding and data compression yields the best results.

We propose specific extensions to the HTTP protocol for
delta encoding and data compression.  These extensions are
compatible with existing implementations and specifications,
yet allow efficient use of a variety of encoding techniques.

2. Related work
The idea of delta-encoding to reduce communication or

storage costs is not new. For example, the MPEG-1 video
compression standard transmits occasional still-image frames,
but most of the frames sent are encoded (to oversimplify) as
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changes from an adjacent frame.  The SCCS and RCS [16]
systems for software version control represent intermediate
versions as deltas; SCCS starts with an original version and
encodes subsequent ones with forward deltas, whereas RCS
encodes previous versions as reverse deltas from their succes-
sors. Jacobson’s technique for compressing IP and TCP
headers over slow links [10] uses a clever, highly specialized
form of delta encoding.

In spite of this history, it appears to have taken several years
before anyone thought of applying delta encoding to HTTP,
perhaps because the development of HTTP caching has been
somewhat haphazard.  The first published suggestion for delta
encoding appears to have been by Williams et al. in a paper
about HTTP cache removal policies [18], but these authors did
not elaborate on their design until later [17].

The possibility of compressing HTTP messages seems to
have an longer history, going back at least to the early drafts
of the HTTP/1.0 specification.  However, until recently, it
appears that nobody had attempted to quantify the potential
benefits of loss-free compression, although the GloMop
project [7] did explore the use of lossy compression.  A study
done at the World Wide Web Consortium reports on the
benefits of compression in HTTP, but for only one example
document [15]. Also, our traces suggest that few existing
client implementations offer to accept compressed encodings
of arbitrary responses (apparently, Lynx is the one exception).
(Before the Web was an issue, Douglis [4] wrote generally
about compression in distributed systems.)

The WebExpress project [8] appears to be the first
published description of an implementation of delta encoding
for HTTP (which they call ‘‘differencing’’).  WebExpress is
aimed specifically at wireless environments, and includes a
number of orthogonal optimizations.  Also, the WebExpress
design does not propose changing the HTTP protocol itself,
but rather uses a pair of interposed proxies to convert the
HTTP message stream into an optimized form.  The results
reported for WebExpress differencing are impressive, but are
limited to a few selected benchmarks.

Banga et al. [2]  describe  the  use of optimistic deltas, in
which a layer of interposed proxies on either end of a slow
link collaborate to reduce latency.  If the client-side proxy has
a cached copy of a resource, the server-side proxy can simply
send a delta.  If only the server-side proxy has a cached copy,
it may optimistically send its (possibly stale) copy to the
client-side proxy, followed (if necessary) by a delta once the
server-side proxy has validated its own cache entry with the
origin server.  The use of optimistic deltas, unlike delta encod-
ing, actually increases the number of bytes sent over the net-
work, in an attempt to improve latency by anticipating a ‘‘Not
Modified’’ response from the origin server.  The optimistic
delta paper, like the WebExpress paper, did not propose a
change to the HTTP protocol itself, and reported results only
for a small set of selected URLs.

We are also analyzing the same traces to study the rate of
change of Web resources [5].

3. Motivation and methodology
Although two previous papers [2, 8] have shown that com-

pression and delta encoding could improve HTTP perfor-
mance for selected sets of resources, these did not analyze
traces from ‘‘live’’ users to see if the benefits would apply in
practice. Also, these two projects both assumed that the HTTP
protocol could not be modified, and so relied on interposing
proxy systems at either end of the slowest link.  This approach
adds extra store-and-forward latency, and may not always be
feasible, so we wanted to examine the benefits of end-to-end
delta encoding and compression, as an extension to the HTTP
protocol.

Although we propose such an extension in section 7, we
have not yet finished an implementation.  In this paper, we use
a trace-based analysis to quantify the potential benefits from
both proxy-based and end-to-end applications of compression
and delta encoding. Both of these applications are supported
by our proposed changes to HTTP.  We also analyze the utility
of these techniques for various different HTTP content-types
(such as HTML, plain text, and image formats), and for
several ways of grouping responses to HTTP queries.  We
look at several different algorithms for both delta encoding
and data compression, and we examine the relative perfor-
mance of high-level compression and modem-based compres-
sion algorithms.

We used two different traces in our study, made at busy
Internet connection points for two large corporations. One of
the traces was obtained by instrumenting a proxy; the other
was made by capturing raw network packets and reconstruct-
ing the data stream.  Both traces captured only references to
Internet servers outside these corporations, and did not include
any ‘‘inbound’’ requests.  Because the two traces represent
different protocol levels, time scales, user communities, and
criteria for pre-filtering the trace, they give us several views of
‘‘real life’’ reference streams, although certainly not of all
possible environments.

Since the raw traces include a lot of sensitive information,
for reasons of privacy and security the authors of this paper
were not able to share the traces with each other.  That, and
the use of different trace-collection methods, led us to do
somewhat different analyses on the two trace sets.

3.1. Obtaining proxy traces
Some large user communities often gain access to the Web

via a proxy server.  Proxies are typically installed to provide
shared caches, and to allow controlled Web access across a
security firewall.  A proxy is a convenient place to obtain a
realistic trace of Web activity, especially if it has a large user
community, because (unlike a passive monitor) it guarantees
that all interesting activity can be traced without loss, regard-
less of the offered load.  Using a proxy server, instead of a
passive monitor, to gather traces also simplifies the task, since
it eliminates the need to reconstruct data streams from TCP
packets.

3.1.1. Tracing environment
We were able to collect traces at a proxy site that serves a

large fraction of the clients on the internal network of Digital
Equipment Corporation.  Digital’s network is isolated from the
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Internet by firewalls, and so all Internet access is mediated by
proxy relays.  This site, located in Palo Alto, California, and
operated by Digital’s Network Systems Laboratory, relayed
more than a million HTTP requests each weekday.  The proxy
load was spread, more or less equally, across two Alpha-
Station 250 4/266 systems running Digital UNIX V3.2C.

To collect these traces, we modified version 3.0 of the
CERN httpd code, which may be used as either a proxy or a
server. We made minimal modifications, to reduce the risk of
introducing bugs or significant performance effects.  The
modified proxy code traces a selected subset of the requests it
receives:

• Only requests going to HTTP servers (i.e., not FTP or
Gopher).

• Only those requests whose URL does not end in one of
a set of suffixes, such as ‘‘.gif’’, ‘‘.jpeg’’, ‘‘.au’’,
‘‘.mpeg’’, etc.  These URLs were omitted in order to
reduce the size of the trace logs.

This pre-filtering considered only the URL in the request, not
the HTTP Content-type in the response; therefore, many
responses with unwanted content-types leaked through.

For each request that is traced, the proxy records in a disk
file the client and server IP addresses, timestamps for various
events in processing the request, and the complete HTTP
header and body of both the request and the response.

This particular proxy installation was configured not to
cache HTTP responses, for a variety of logistical reasons.
This means that a number of the responses in the trace con-
tained a full body (i.e., HTTP status code = 200) when, if the
proxy had been operating as a cache, they might have instead
been ‘‘Not Modified’’ responses with no body (i.e., HTTP
status code = 304). The precise number of such responses
would depend on the size of the proxy cache and its replace-
ment policy. We still received many ‘‘Not Modified’’ respon-
ses, because most of the client hosts employ caches.

3.1.2. Trace duration
We collected traces for almost 45 hours, starting in the

afternoon of Wednesday, December 4, 1996, and ending in the
morning of December 6.  During this period, the proxy site
handled about 2771975 requests, 504736 of which resulted in
complete trace records, and generated almost 9 GBytes of
trace file data.  (Many requests were omitted by the pre-
filtering step, or because they were terminated by the request-
ing client.)  While tracing was in progress, approximately
8078 distinct client hosts used the proxy site, which (including
the untraced requests) forwarded almost 21 GBytes of
response bodies, in addition to HTTP message headers (whose
length is not shown in the standard proxy log format).

3.2. Obtaining packet-level traces
When a large user community is not constrained to use a

proxy to reach the Internet, the option of instrumenting a
proxy is not available.  Instead, one can passively monitor the
network segment connecting this community to the Internet,
and reconstruct the data stream from the packets captured.

We collected a packet-level trace at the connection between
the Internet and the network of AT&T Labs -- Research, in
Murray Hill, New Jersey.  This trace represents a much
smaller client population than the proxy trace.  All packets

between internal users and TCP port 80 (the default HTTP
server port, used for more than 99.4% of the HTTP references
seen at this site) on external servers were captured using
tcpdump [13]. A negligible number of packets were lost due
to buffer overruns.  The raw packet traces were later reas-
sembled into individual TCP streams. (This is a complex
process, described in more detail in [14].) These streams were
then split into files representing the body of each successful
request and a log containing information about URLs, time-
stamps, and request and response headers.

Between Friday, November 8 and Monday, November 25,
1996, (17 days) we collected a total of 51,100,000 packets,
corresponding to roughly 19 Gbytes of raw data. Unlike the
proxy-based trace, this one was not pre-filtered to eliminate
requests based on their content-type or URL extension.

4. Trace analysis software
Because the two traces were obtained using different tech-

niques, we had to write two different systems to analyze them.

4.1. Proxy trace analysis software
We wrote software to parse the trace files and extract

relevant HTTP header fields.  The analysis software then
groups the references by unique resource (URL), and to
instances of a resource.  We use the term instance to describe
a snapshot in the lifetime of a resource.  In our analyses, we
group responses for a given URL into a single instance if the
responses have identical last-modified timestamps and
response body lengths.  There may be one or more instances
per resource, and one or more references per instance.

The interesting references, for the purpose of this paper,
were those for which the response carried a full message body
(i.e., HTTP status code = 200), since it is only meaningful to
compute the difference between response bodies for just these
references. Once the analysis program has grouped the
references into instances, it then iterates through the referen-
ces, looking for any full-body reference which follows a pre-
vious full-body reference to a different instance of the same
resource. (If two references involve the same instance, then
presumably the server should have sent a ‘‘Not Modified’’
response, with status = 304 and no response body, rather than
two identical responses.)

For each such pair of full-body responses for different in-
stances of a resource, the analysis program computes a delta
encoding for the second response, based on the first response.
This is done using several different delta-encoding algorithms;
the program then reports the size of the resulting response
bodies for each of these algorithms.

The delta computation is done by extracting the relevant
response bodies from the trace log files into temporary files,
then invoking one of the delta-encoding algorithms on these
files, and measuring the size of the output.

The delta-encoding algorithms that we applied include:
• diff -e: a fairly compact format generated by the UNIX

‘‘diff’’ command, for use as input to the ‘‘ed’’ text
editor (rather than for direct use by humans).1

1Because HTML files include lines of arbitrary length, and
because the standard ed editor cannot handle long lines, actual
application of this technique would require use of an improved
version of ed [11].
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• compressed diff -e: the output of diff -e, but compressed
using the gzip program.

• vdelta: this program inherently compresses its
output [9].

We used diff to show how well a fairly naive, but easily
available algorithm would perform. We also used vdelta, a
more elaborate algorithm, because it was identified by Hunt et
al. as the best overall delta algorithm, based on both output
size and running time [9].

The UNIX diff program does not work on binary-format
input files, so we restricted its application to responses whose
Content-type field indicated a non-binary format; these in-
cluded ‘‘text/html’’, ‘‘application/postscript’’, ‘‘text/plain’’,
‘‘application/x-javascript’’, and several other formats. Vdelta
was used on all formats.

4.2. Packet-level trace analysis software
We processed the individual response body files derived

from the packet trace (see section 3.2) using a Perl script to
compute the size of the deltas between pairs of sequentially
adjacent full-body responses for the same URL, and the size of
a compressed version of each full-body response.

While the proxy-based trace, by construction, omitted many
of the binary-format responses in the reference stream, the
packet-based trace included all content types.  We classified
these into ‘‘textual’’ and ‘‘non-textual’’ responses, using the
URL extension, the Content-type HTTP response-header, or
(as a last resort) by scanning the file using a variant of the
UNIX file command.

In our traces we saw 1,366,401 requests, of which 26,501
(1.9%) had gaps, due to packet losses and artifacts of the
techniques required to process 19 Gbytes of trace data (see
[14] for more details on trace-processing).  Another 38,589

(2.8%) of the requests were detected as duplicates created by
artifacts of the processing techniques.  Both these sets were
excluded from further analysis. To further restrict our analysis
only to those references where the client received the complete
HTTP response body, we included only those TCP streams for
which we collected SYN and FIN packets from both client and
server, or for which the size of the reassembled response body
equaled the size specified in the Content-length field of the
HTTP response. This left us with 1,080,143 usable responses
(79% of the total).

5. Results of trace analysis
This section describes the results of our analysis of the

proxy and packet-level traces.

5.1. Overall response statistics for the proxy trace
The 504736 complete records in the proxy trace represent

the activity of 7411 distinct client hosts, accessing 22034 dis-
tinct servers, referencing 238663 distinct resources (URLs).
Of these URLs, 100780 contained ‘‘?’’ and are classified as
query URLs; these had 12004 unique prefixes (up to the first
‘‘?’’ character).  The requests totalled 149 MBytes (mean =
311 bytes/message).  The request headers totalled 146 MBytes
(mean = 306 bytes), and the response headers totalled 81
MBytes (mean = 161 bytes).  377962 of the responses carried
a full body, for a total of 2450 MB (mean = 6798 bytes); most
of the other types of responses do not carry much (or any)

information in their bodies.  17211 (3.4%) of the responses
carried a status code of 304 (Not Modified).

Note that the mean response body size for all of the referen-
ces handled by the proxy site (7773 bytes) is somewhat larger
than the mean size of the response bodies captured in the
traces. This is probably because the data types, especially
images, that were filtered out of the trace based on URL exten-
sion tend to be somewhat larger than average.

5.2. Overall response statistics for the packet-level trace
The 1090025 usable records in the packet-level trace

represent the activity of 465 clients, accessing 20956 servers,
referencing 625657 distinct URLs.  Of these URLs, 105010
contained ‘‘?’’ and are classified as query URLs; these had
15438 unique prefixes (up to the first ‘‘?’’ character). 26216
of the URLs contained ‘‘cgi’’, and so are probably references
to CGI scripts.

The mean request and response header sizes were 281 bytes
and 173 bytes, respectively.  828837 of the responses carried a
full body, for a total of 6239 MB of response bodies (mean =
7882 bytes for full-body responses).  145273 (13.4%) of the
responses carried a status code of 304 (Not Modified).  We
omitted from our subsequent analyses 8839 full-body respon-
ses for which we did not have trustworthy timing data, leaving
a total of 819998 fully-analyzed responses.

The mean response size for the packet-level trace is higher
than that for the proxy trace, perhaps because the latter ex-
cludes binary-format responses, some of which tend to be
large. The difference may also simply reflect the different
user communities.

5.3. Characteristics of responses
Figure 5-1 shows cumulative distributions for total response

sizes, and for the response-body size for full-body responses,
for the proxy trace.  The distributions for the packet-level trace
are similar, and omitted for reasons of space.  The median
full-response body size was 3976 bytes for the proxy trace,
and 3210 bytes for the packet-level traces, which implies that
the packet-level trace showed larger variance in response size.
Note that over 99% of the bytes carried in response bodies, in
this trace, were carried in the status-200 responses; this is
normal, since HTTP responses with other status codes either
carry no body, or a very small one.
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Figure 5-1: Cumulative distributions of response sizes
(proxy trace)

Delta encoding and/or caching are only useful when the
reference stream includes at least two references to the same
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URL (for delta encoding), or two references to the same (URL,
last-modified-date) instance (for caching).  Figure 5-2 shows
the cumulative distributions in the proxy trace of the number
of references per URL, and per instance.  Curves are shown
both for all traced references, and for those references that
resulted in a full-body response.  We logged at least two
full-body responses for more than half (57%) of the URLs in
the trace, but only did so for 30% of the instances.  In other
words, resource values seem to change often enough that rela-
tively few such values are seen twice, even for URLs that are
referenced more than once.  (An alternative explanation is that
the values do not change, but the origin servers provide
responses that do not allow caching.)
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(proxy trace)

5.4. Calculation of savings
We define a response as delta-eligible if the trace included

at least one previous status-200 response for a different in-
stance of the same resource.  (We did not include any response
that conveyed an instance identical to the previous response
for the same URL, which probably would not have been
received by a caching proxy.) In the proxy trace, 113356 of
the 377962 status-200 responses (30.0%) were delta-eligible.
In the packet-level trace, 83991 of the 819998 status-200
responses (10.2%) were delta-eligible. In the proxy trace, only
30% of the status-200 responses were excluded from con-
sideration for being identical, compared to 32% for the packet-
level trace.

We attribute much of the difference in the number of delta-
eligible responses to the slower rate of change of image
responses, which were mostly pre-filtered out of the proxy
trace. In the packet-level trace, 66% of the status-200 respon-
ses were GIF or JPEG images, but only 3.5% of those respon-
ses were delta-eligible; in contrast, 25% of the status-200
HTML responses were delta-eligible.  Some additional part of
the discrepancy may be the result of the smaller client popula-
tion in the packet-level traces, which might lead to fewer
opportunities for sharing.

Our first analysis is based on the assumption that the deltas
would be requested by the proxy, and applied at the proxy to
responses in its cache; if this were only done at the individual
clients, far fewer of the responses would be delta-eligible.  In
section 5.5.1, we analyze the per-client reference streams
separately, as if the deltas were applied at the clients.

For each of the delta-eligible responses, we computed a
delta using the vdelta program, based on the previous
status-200 instance in the trace, and two compressed versions

of the response, using gzip and vdelta. For those responses
whose HTTP Content-type field indicated an ASCII text for-
mat (‘‘text/html’’, ‘‘text/plain’’, ‘‘application/postscript’’, and
a few others), we also computed a delta using the UNIX diff -e
command, and a compressed version of this delta, using gzip.
66413 (59%) of the delta-eligible responses in the proxy trace
were text-format responses, as were 54856 (65%) of the delta-
eligible responses in the packet-level trace.

For each response, and for each of the four computations,
we measured the number of response-body bytes saved (if
any). We also estimated the amount of retrieval time that
would have been saved for that response, had the delta or
compression technique been used. (We did not include the
computational costs of encoding or decoding; see section 6 for
those costs.)

Our estimate of the improvement in retrieval time is
simplistic, but probably conservative.  We estimated the trans-
fer time for the response from the timestamps in our traces,
and then multiplied that estimate by the fraction of bytes saved
to obtain a prediction for the improved response transfer time.
However, in the proxy traces it is not possible to separate the
time to transmit the request from the time to receive the first
part of the response, so our estimate of the original transfer
time is high.  We compensated for that by computing two
estimates for the transfer time, one which is high (because it
includes the request time) and one which is low (because it
does not include either the request time, or the time for receiv-
ing the first bytes of the response).  We multiplied the fraction
of bytes saved by the latter (low) estimate, and then divided
the result by the former (high) estimate, to arrive at our es-
timate of the fraction of time saved.

For the packet-level traces, we were able to partially
validate this model.  We measured the time it actually took to
receive the packets including the first N bytes of an M-byte
transfer, where N is the number of bytes that would have been
seen if delta encoding or compression had been used.  The
results agree with our simpler model to within about 10%, but
are still conservative (because we did not model the reduction
in the size of the last data packet).

Figure 5-3 shows the distribution of latencies for the impor-
tant steps in the retrieval of full-body (status-200) responses
from the proxy trace.  The four steps measured are:  (1) the
time for the proxy to read and parse the client’s request,
(2) the time to connect to the server (including any DNS
lookup cost), (3) the time to forward the request and to receive
the first bytes of response (i.e., the first read() system call),
and (4) the time to receive the rest of the response, if any.
(The spikes at 5000 msec may represent a scheduling anomaly
in the proxy software; the spike at 10000 msec simply
represents the sum of two 5000-msec delays.)  We used the
sum of steps 3 and 4 as the high estimate for transfer time, and
step 4 by itself as the low estimate.

Figure 5-4 shows a similar view of the packet-level trace.
The individual steps are somewhat different (the packet-level
trace exposes finer detail), and the latencies are all measured
from the start of the connection (the client’s SYN packet).
The steps are (1) arrival of the server’s SYN, (2) first packet
of the HTTP request, (3) first packet of the response header,
(4) first packet of the response body, and (5) end of the
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response. The figure also shows the transfer time for the
response body, which is similar to (but smaller than) the
transfer-time estimate used in figure 5-3.

5.5. Net savings due to deltas and compression
Table 5-1 shows (for the proxy trace) how many of the

responses were improved, and by how much.  The left-hand
columns show the results relative to just the delta-eligible
responses; the right-hand columns show the same results, but
expressed as a fraction of all full-body responses.  Because
these account for more than 99% of the response-body bytes in
the traces, this is also nearly equivalent to the overall improve-
ment for all traced responses.

In table 5-1, the row labeled ‘‘unchanged’’ shows how
many delta-eligible responses would have resulted in a zero-
length delta. (An ‘‘unchanged’’ response is delta-eligible be-
cause its last-modified time has changed, although its body has
not.) The rows labelled ‘‘diff -e’’, ‘‘diff -e | gzip’’, and
‘‘vdelta’’ show the delta-encoding results only for those
responses where there is at least some difference between a
delta-eligible response and the previous instance.  Two other
lines show the results if the unchanged responses are included.
The rows labelled ‘‘vdelta compress’’ and ‘‘gzip compress’’
show the results for compressing the responses, without using
any delta encoding.  The final row shows the overall improve-
ment (not including unchanged responses), assuming that the
server uses whichever of these algorithms minimizes each
response.

It is encouraging that, out of all of the full-body responses,
table 5-1 shows that 22% of the response-body bytes could be
saved by using vdelta to do delta encoding.  This implies that
the use of delta encoding would provide significant benefits
for textual content-types.  It is remarkable that 77% of the
response-body bytes could be saved for delta-eligible respon-
ses; that is, in those cases where the recipient already has a
cached copy of a prior instance.  And while it appears that the
potential savings in transmission time is smaller than the
savings in response bytes, the response-time calculation is
quite conservative (as noted earlier).

For the 88017 delta-eligible responses where the delta was
not zero-length, vdelta gave the best result 92% of the time.
diff -e without compression and with compression each was
best for about 2% of the cases, respectively, and simply com-
pressing the response with gzip worked best in 2% of the
cases. Just over 1% of the delta-eligible responses were best
left alone.  The vdelta approach clearly works best, but just
using diff -e would save 52% of the response-body bytes for
delta-eligible responses.  That is, more than half of the bytes in
‘‘new’’ responses are easily shown to be the same as in their
predecessors.

Table 5-2 shows, for the responses in the packet-level trace,
how much improvement would be available using deltas if one
introduced a proxy at the point where the trace was made.  The
results in table 5-2 are somewhat different from those in table
5-1, for several reasons.  The packet-level trace included a
larger set of non-textual content types, which leads to a reduc-
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Relative to delta-eligible responses
N = 113356, 701 MBytes, 160551 seconds

Relative to all status-200 responses
N = 377962, 2462 MBytes, 557373 seconds

Computation
Improved
references

MBytes
saved

Retrieval
time saved

Improved
references

MBytes
saved

Retrieval
time saved

unchanged 25339 (22.4%) 145 (20.8%) 11697 (7.3%) 25339 (6.7%) 145 (6.0%) 11697 (2.1%)

diff -e 37806 (33.4%) 215 (30.8%) 23400 (14.6%) 37806 (10.0%) 215 (8.8%) 23400 (4.2%)

diff -e (inc. unchanged) 63145 (55.7%) 361 (51.6%) 35098 (21.9%) 63145 (16.7%) 361 (14.8%) 35098 (6.3%)

diff -e | gzip 39800 (35.1%) 264 (37.7%) 32331 (20.1%) 39800 (10.5%) 264 (10.8%) 32331 (5.8%)

vdelta 86825 (76.6%) 394 (56.2%) 47647 (29.7%) 86825 (23.0%) 394 (16.1%) 47647 (8.5%)

vdelta (inc. unchanged) 112164 (98.9%) 539 (77.0%) 59344 (37.0%) 112164 (29.7%) 539 (22.0%) 59344 (10.6%)

vdelta compress 75414 (66.5%) 207 (29.6%) 27285 (17.0%) 302739 (80.1%) 832 (34.0%) 104092 (18.7%)

gzip compress 73142 (64.5%) 237 (33.8%) 31567 (19.7%) 289914 (76.7%) 965 (39.4%) 124045 (22.3%)

best algorithm above 112198 (99.0%) 541 (77.2%) 59490 (37.1%) 340845 (90.2%) 1270 (51.9%) 152086 (27.3%)

Table 5-1: Improvements assuming deltas are applied at proxy (proxy trace)

Relative to delta-eligible responses
N = 83991, 645 MBytes, 195814 seconds

Relative to all status-200 responses
N = 819998, 6216 MBytes, 2053775 seconds

Computation
Improved
References

MBytes
saved

Retrieval
time saved

Improved
References

MBytes
saved

Retrieval
time saved

unchanged 26489 (31.5%) 184 (28.5%) 37028 (18.9%) 26489 (3.1%) 184 (2.9%) 37028 (1.8%)

diff -e 37318 (44.4%) 203 (31.5%) 47063 (24.0%) 37318 (4.4%) 203 (3.2%) 47063 (2.2%)

diff -e (inc. unchanged) 63807 (76.0%) 387 (60.0%) 84091 (42.9%) 63807 (7.5%) 387 (6.0%) 84091 (4.0%)

diff -e | gzip 40063 (47.7%) 246 (38.2%) 62511 (31.9%) 40063 (4.7%) 246 (3.8%) 62511 (3.0%)

vdelta 57151 (68.0%) 362 (56.2%) 81572 (41.7%) 57151 (6.8%) 362 (5.7%) 81572 (3.9%)

vdelta (inc. unchanged) 83640 (99.6%) 546 (84.7%) 118600 (60.6%) 83640 (9.9%) 546 (8.5%) 118600 (5.6%)

vdelta compress 73414 (87.4%) 270 (41.9%) 66411 (33.9%) 589819 (71.9%) 1054 (17.0%) 248565 (12.1%)

gzip compress 70859 (84.4%) 307 (47.6%) 75321 (38.5%) 596949 (72.8%) 1230 (19.8%) 291300 (14.2%)

Table 5-2: Improvements assuming deltas are applied at a proxy (packet-level trace)

tion in the effectiveness of delta encoding and compression
(see section 5.7).  Because the packet-level trace analysis uses
a somewhat more accurate (and so less conservative) model
for the savings in transfer time, similar reductions in the num-
ber of bytes transferred lead to different reductions in transfer
time.

Taken together, the results in tables 5-1 and 5-2 imply that
if delta encoding is possible, then it is usually the best way to
transmit a changed response.  If delta encoding is not possible,
such as the first retrieval of a resource in a reference stream,
then data compression is usually valuable.

5.5.1. Analysis assuming client-applied deltas
Table 5-3 shows (for the proxy trace) what the results

would be if the deltas were applied individually by each client
of the proxy, rather than by the proxy itself.  For delta-eligible
responses, client-applied deltas perform about as well as
proxy-applied deltas.  However, a much smaller fraction of the
responses are delta-eligible at the individual clients (19% in-
stead of 30%), and so the overall improvement from delta
encoding is also much smaller.  In other words, the success of

delta encoding depends somewhat on the large, shared cache
that a proxy would provide. Alternatively, a reference stream
longer than our two-day trace might show a larger fraction of
per-client delta-eligible responses.

5.6. Distribution of savings
Tables 5-1, 5-2, and 5-3 report mean values for improve-

ments in the number of bytes saved, and the amount of time
saved. One would not expect delta encoding to provide the
same improvement for every delta-eligible response.  In some
cases, especially for small responses or major changes, delta
encoding can save only a small fraction of the bytes. In other
cases, such as a small change in a large response, delta encod-
ing can save most of the response bytes.  Figure 5-5 shows the
distribution of the fraction of response bytes saved, for all
delta-eligible responses in the proxy trace.  (Note that the
vertical axis is a log scale.)

Although delta encoding saves few or no bytes for many of
the delta-eligible responses, the bimodal distribution in figure
5-5 suggests that when delta encoding does work at all, it
saves most of the bytes of a response.  In fact, for delta-
eligible responses in the proxy trace, the median number of
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Relative to delta-eligible responses
N = 59550, 296 Mbytes, 105020 seconds

Relative to all status-200 responses
N = 377962, 2450 MBytes, 557373 seconds

Computation
Improved
references

MBytes
saved

Retrieval
time saved

Improved
references

MBytes
saved

Retrieval
time saved

unchanged 16417 (27.6%) 67 (22.8%) 6175 (5.9%) 16417 (4.3%) 67 (2.8%) 6175 (1.1%)

diff -e 23072 (38.7%) 126 (42.9%) 15475 (14.7%) 23072 (6.1%) 126 (5.2%) 15475 (2.8%)

diff -e (inc. unchanged) 39489 (66.3%) 194 (65.7%) 21650 (20.6%) 39489 (10.4%) 194 (7.9%) 21650 (3.9%)

diff -e | gzip 24424 (41.0%) 157 (53.3%) 22326 (21.3%) 24424 (6.5%) 157 (6.4%) 22326 (4.0%)

vdelta 42223 (70.9%) 195 (66.0%) 31047 (29.6%) 42223 (11.2%) 195 (8.0%) 31047 (5.6%)

vdelta (inc. unchanged) 58640 (98.5%) 262 (88.8%) 37223 (35.4%) 58640 (15.5%) 262 (10.7%) 37223 (6.7%)

Table 5-3: Improvements assuming deltas are applied at individual clients (proxy trace)

0 10020 40 60 80
% of response-body bytes saved per response

1

100000

N
um

be
r 

of
 r

es
po

ns
es

10

100

1000

10000 Using ’diff -e’

Using ’diff -e’ + gzip

Using vdelta

Figure 5-5: Distribution of response-body bytes saved for delta-eligible responses (proxy trace)

bytes saved per response by delta encoding using vdelta is
2177 bytes (compared to a mean of 4994 bytes).  For half of
the delta-eligible responses, vdelta saved at least 96% of the
response-body bytes (this includes cases where the size of the
delta is zero, because the response value was unchanged).
This is encouraging, since it implies that the small overhead of
the extra HTTP protocol headers required to support delta
encoding will not eat up most of the benefit.

5.7. Influence of content-type on coding effectiveness
The output size of delta-encoding and data-compression al-

gorithms depends on the nature of the input [9, 12], and so, in
the case of HTTP, on the content-type of a response. The
effectiveness of delta encoding also depends on the amount by
which the two versions differ, which might also vary with
content-type. We subdivided the packet-level traces by
content-type and analyzed each subset independently, to see
how important these dependencies are in practice.

Table 5-4 shows, first of all, what fraction of the delta-
eligible responses had bodies that were entirely unchanged
from the previous instance.  This might happen because the
two requests came from separate clients, or because the server
was unable to determine that an ‘‘If-Modified-Since’’ request
in fact refers to an unmodified resource, or because while the
resource body was not modified, some important part of the
response headers did change. The table also shows other
type-specific differences in the data; for example, ‘‘text/html’’
responses change more often than ‘‘text/plain’’ responses, but
the ‘‘text/plain’’ responses that remain unchanged are smaller
than the ‘‘text/plain’’ responses that do change.  The last

column shows a conservative estimate for the amount of time
wasted in the transmission of unchanged responses.

Table 5-5 show the delta-encoding effectiveness, broken
down by content-type, for vdelta. This table also shows a
dependency on content-type; for example, delta encoding of
changed responses seems to be more effective for
‘‘application/octet-stream’’ resources than for ‘‘text/html’’
resources. (Most ‘‘octet-stream’’ resources seem to be as-
sociated with the PointCast application.)  Somewhat surpris-
ingly, the vdelta algorithm improved about half of the
‘‘image/gif’’ and ‘‘image/jpeg’’ responses, albeit not reducing
the byte-counts by very much (both these image formats are
already compressed).  We suspect that the savings may come
from eliding redundant header information in these formats.

The apparent scarcity of delta-eligible images greatly
reduces the utility of delta encoding when it is viewed in the
context of the entire reference stream.  However, we believe
that in many bandwidth-constrained contexts, many users
avoid the use of images, which suggests that delta encoding
would be especially applicable in these contexts.

Table 5-6 shows the effectiveness of compression, using the
gzip program, broken down by content-type.  Although a
majority of the responses overall were improved by compres-
sion, for some content-types compression was much less ef-
fective. It is not surprising that ‘‘image/gif’’ and
‘‘image/jpeg’’ responses could not be compressed much, since
these formats are already compressed when generated.  The
‘‘application/x-msnwebqt’’ responses (used in a stock-quote
application) compressed nicely, but doing so would not save



POTENTIAL BENEFITS OF DELTA ENCODING AND DATA COMPRESSION FOR HTTP

This is a corrected version of a paper appearing in Proc. ACM SIGCOMM ’97 9

Content-type Delta-eligible
Refs

MBytes Total
time

Refs
unchanged

Bytes
unchanged

Time
wasted

All delta-eligible 83991 645 195814 31.5% 28.5% 18.9%

text/html 45812 400 130378 32.1% 33.4% 22.3%

application/octet-stream 17797 124 31767 0.1% 0.1% 0.1%

image/gif 17024 88 26117 60.5% 42.0% 22.8%

image/jpeg 2101 25 5397 52.5% 43.1% 32.7%

text/plain 493 2 459 22.1% 21.1% 13.0%

application/x-msnwebqt 400 0 93 36.0% 28.3% 0.0%

application/other 107 2 440 43.9% 36.4% 12.2%

image/other 85 0 117 7.1% 14.5% 0.3%

other or unknown 170 4 1045 32.9% 30.4% 6.1%

Table 5-4: Summary of unchanged response bodies by content-type (packet-level trace)

All status-200 All delta-eligible Not including unchanged All delta-eligible

Content-type Refs MBytes Refs MBytes Total
time

Refs
improved

Bytes
saved

Time
saved

Refs
improved

Bytes
saved

Time
saved

All content-types 819998 6216 83991 645 195814 68.0% 56.2% 41.7% 99.6% 84.7% 60.6%

text/html 185636 1276 45812 400 130378 67.9% 61.7% 44.8% 100.0% 95.1% 67.1%

application/octet-stream 77531 819 17797 124 31767 99.9% 85.7% 63.6% 100.0% 85.8% 63.8%

image/gif 434476 2222 17024 88 26117 37.6% 5.4% 6.7% 98.0% 47.4% 29.5%

image/jpeg 106039 1513 2101 25 5397 47.5% 6.8% 6.1% 100.0% 49.9% 38.8%

text/plain 7023 67 493 2 459 77.7% 70.6% 23.6% 99.8% 91.6% 36.6%

application/x-msnwebqt 401 0 400 0 93 64.0% 57.5% 0.3% 100.0% 85.8% 0.3%

application/other 1301 116 107 2 440 48.6% 7.5% 8.6% 92.5% 43.9% 20.8%

image/other 2319 9 85 0 117 92.9% 76.0% 12.4% 100.0% 90.5% 12.7%

other or unknown 5002 105 170 4 1045 66.5% 40.2% 68.4% 99.4% 70.6% 74.5%

Table 5-5: Summary of savings by content-type, for vdelta (packet-level trace)

much transfer time at all, because the responses are already
quite short.

5.8. Effect of clustering query URLs
A significant fraction of the URLs seen in the proxy trace

(42% of the URLs referenced) contained a ‘‘?’’ character, and
so probably reflect a query operation (for example, a request
for a stock quote).  By convention, responses for such URLs
are uncachable, since the response might change between
references (HTTP/1.1, however, provides explicit means to
mark such responses as cachable, if appropriate).  In this trace,
23% of the status-200 responses were for query URLs.  (There
are fewer status-200 responses for query URLs than distinct
query URLs in the trace, because many of these requests yield
a status-302 response, a redirection to a different URL.)

Housel and Lindquist [8], in their paper on WebExpress,
point out that in many cases, the individual responses to dif-
ferent queries with the same ‘‘URL prefix’’ (that is, the prefix
of the URL before the ‘‘?’’ character) are often similar enough
to make delta encoding effective.  Since users frequently make

numerous different queries using the same URL prefix, it
might be much more effective to compute deltas between dif-
ferent queries for a given URL prefix, rather than simply be-
tween different queries using an identical URL.  Banga et
al. [2] make a similar observation. We will refer to this tech-
nique as ‘‘clustering’’ of different query URLs with a com-
mon prefix.  (Such clustering is done implicitly for POST
requests, since POST requests carry message bodies, and so
the response to a POST may depend on input other than the
URL.)

The WebExpress paper did not report on the frequency of
such clustering in realistic traces.  We found, for the proxy
trace, that the 100780 distinct query URLs could be clustered
using just 12004 prefix URLs.  Further, of the 86191
status-200 responses for query URLs, only 28186 (33%) were
delta-eligible if the entire URL was used, but 76298 (89%)
were delta-eligible if only the prefix had to match.

Tables 5-7 and 5-8 show that clustering not only finds more
cases where deltas are possible, but also provides significantly
more reduction in bytes transferred and in response times.  In
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Content-type Refs MBytes Total
time

Refs
improved

Bytes
saved

Time
saved

All status-200 819998 6216 2053775 72.8% 19.8% 14.2%

image/gif 434476 2222 823893 55.7% 4.6% 3.0%

text/html 185636 1276 516791 99.7% 68.8% 41.4%

image/jpeg 106039 1513 434467 99.1% 2.8% 2.6%

application/octet-stream 77531 819 196252 65.9% 10.4% 12.3%

text/plain 7023 67 20160 95.2% 55.7% 30.6%

image/other 2319 9 2173 98.6% 47.0% 25.3%

application/other 1301 116 19423 83.2% 35.2% 20.3%

application/x-msnwebqt 401 0 94 99.5% 56.3% 0.4%

video/* 225 88 13365 93.3% 12.6% 11.0%

text/other 45 0 66 100.0% 71.7% 38.8%

other or unknown 5002 105 27088 62.5% 26.2% 19.1%

Table 5-6: Summary of gzip compression savings by content-type (all status-200 responses in packet-level trace)

fact, a comparison of tables 5-8 and 5-1 shows that when
queries are clustered, delta encoding improves query response
transfer efficiency more than it does for responses in general.
(We note, however, that because most query responses are
generated on the fly, and are somewhat shorter on average
than other responses, the query processing overhead at the
server may dominate any savings in transfer time.)

Computation
Improved
References

MBytes
saved

Retrieval
time saved

unchanged 9285 (10.8%) 12 (3.2%) 1575 (1.1%)

diff -e 4925 (5.7%) 27 (6.8%) 3437 (2.4%)

diff -e | gzip 5112 (5.9%) 34 (8.8%) 5226 (3.7%)

vdelta 18876 (21.9%) 61 (15.3%) 12217 (8.7%)

N = 86191, 400 MBytes, 141076 seconds

Table 5-7: Improvements relative to all status-200
responses to queries (no clustering)

Comput.
Improved
References

MBytes
saved

Retrieval
time saved

unchanged 14044 (16.3%) 6 (1.6%) 1145 (0.8%)

diff -e 38890 (45.1%) 97 (24.4%) 9800 (6.9%)

diff -e|gzip 40438 (46.9%) 226 (56.6%) 18015 (12.8%)

vdelta 60711 (70.4%) 262 (65.6%) 24817 (17.6%)

diff -e♣ 52934 (61.4%) 103 (25.9%) 10946 (7.8%)

vdelta ♣ 74755 (86.7%) 268 (67.2%) 25962 (18.4%)

♣: including unchanged responses

N = 86191, 419 MBytes, 141076 seconds

Table 5-8: Improvements when clustering queries
(all status-200 responses to queries)

6. Including the cost of end-host processing
The time savings calculation described in section 5.4 omits

any latency for creating and applying deltas, or for compress-
ing and decompressing responses.  Since these operations are
not without cost, in this section we quantify the cost of these
operations for several typical hardware platforms. We chose
three systems: a 50 MHz 80486 (running BSD/OS, SPECint92
= 30), which would now be considered very slow; a 90 MHz
Pentium (running Linux, SPECint95 = 2.88); and a 400 MHz
AlphaStation 500 (running Digital UNIX V3.2G), SPECint95
= 12.3).  The 90 MHz Pentium might be typical for a home
user, and the 400 MHz AlphaStation is typical of a high-end
workstation, but by no means the fastest one available.

Table 6-1 shows the results, which were computed from 10
trials on files (or, for deltas, pairs of instances) taken from the
packet-level trace.  For the delta experiments, we used 65 pairs
of text files and 87 pairs of non-text files; for the compression
experiments, we used 685 text files and 346 non-text files.
The files were chosen to be representative of the entire set of
responses. (We sorted the responses in order of size, and
chose every nth entry to select 1% of the pairs, and 0.1% of
the single-instance responses.)  We express the results in terms
of the throughput (in KBytes/sec) for each processing step,
and for the sequential combination of the server-side and
client-side processing steps.  (Deltas created by diff are applied
using the ed program; deltas and compressed output created by
vdelta are fed to the vupdate program.) For deltas, the
throughput is calculated based on the average size of the two
input files.

We also show the standard deviations of these values.  The
deviations are large because there is a large fixed overhead for
each operation that does not depend on the size of the input,
and so throughputs for the larger files are much larger than the
means. Much of this fixed overhead is the cost of starting a
new process for each computation (which ranges from 15 to
34 msec. on the systems tested).  However, since several of the
delta and compression algorithms already exist as library func-
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50 Mhz 80486 BSD/OS 2.1 90 MHz Pentium Linux 2.0.0 400 MHz AlphaStn 500/DUNIX 3.2G

Text Non-text Text Non-text Text Non-text

Computation Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

diff -e 72.2 57.2 ∅ ∅ 136.5 134.6 ∅ ∅ 406.9 305.2 ∅ ∅

ed 90.1 64.4 ∅ ∅ 101.5 94.3 ∅ ∅ 1294.9 1420.4 ∅ ∅

both steps above 39.7 29.7 ∅ ∅ 55.7 52.2 ∅ ∅ 281.8 210.3 ∅ ∅

diff -e | gzip 33.6 29.3 ∅ ∅ 90.7 83.3 ∅ ∅ 153.4 135.9 ∅ ∅

gunzip | ed 14.8 14 ∅ ∅ 37.9 33.6 ∅ ∅ 472.3 407.9 ∅ ∅

both steps above 9.6 8.6 ∅ ∅ 26.6 23.7 ∅ ∅ 114.4 99.4 ∅ ∅

vdelta 63.4 46.4 89.4 60.8 183.1 160.1 193.4 133.2 149.6 331.9 188 226.9

vupdate 100.3 97.3 176.7 175.6 272 301.6 460.3 570.7 331.9 529 341.3 406.3

both steps above 37.7 29.2 55.9 40.2 106.4 102.2 122 90.1 100.7 133.6 117.1 136

gzip 72.9 43.4 56.8 31.5 100.5 78.6 106 78.4 252 151.6 189 139.4

gunzip 145.4 124.2 139.3 110.1 199.6 220.6 218.6 216.4 412.9 563.5 374.9 407.4

both steps above 47.6 31.2 39.6 24.3 64.2 54 70.1 56.8 147.9 103.2 121.8 100.3

vdelta (compress) 102.4 58.6 86.2 45.6 134.2 105.5 130.4 100.2 121.5 117.4 133.3 118.5

vupdate (decomp) 181.4 154.9 250.1 264.3 172.7 197.3 259.8 394.7 155.5 87.1 125.9 136.9

both steps above 63.8 40.9 60.7 38.5 73.1 64.6 79.9 74.2 66.2 46.7 63.3 60.7

vdelta (library) 924.8 781.6 1579.6 1660.6 2640.3 1879.5 3713.2 3460.6

vupdate (library) 5189.5 5325.3 7939.3 10647.5

both steps above 1606.1 1208.5 2245.6 2338.6

Values are in Kbytes/sec., based on elapsed times ∅: not applicable

Table 6-1: Overheads for compression and delta encoding

tions, an implementation could easily avoid this overhead2.
The last three lines in table 6-1 show preliminary measure-
ments of a library version of the vdelta and vupdate algorithms
on two of the tested platforms.  The results of these tests
suggest that simply eliminating the use of a separate process
reduces overheads by an order of magnitude.  Although the
Alpha’s performance for the non-library versions of vdelta and
vupdate are poor, relative to the much slower Pentium, the
results for the library version of vdelta imply that the Alpha’s
poor performance on the non-library code is due to some
aspect of the operating system, not the CPU.

We did not make an attempt to include these costs when
calculating the potential net savings in section 5.5, because
(1) we have no idea of the actual performance of the end
systems represented in the trace, (2) some of the computation
could be done in parallel with data transfer, since all of the

2The existing versions of the ‘‘diff -e’’ command generates
output that is not entirely compatible with the ed command. ed
requires one additional line in its input stream, which is normally
generated by running another UNIX command.  This adds sig-
nificant overhead on some versions of UNIX, and since there is a
simple, efficient fix for this problem, our measurements do not
include the execution of this additional command.

algorithms operate on streams of bytes (3) it would not be
always necessary to produce the delta-encoded or compressed
response ‘‘on-line’’; these could be precomputed or cached at
the server, and (4) historical trends in processor performance
promise to quickly reduce these costs.

However, we make several observations.  First, the through-
puts for almost all of the computations (except, on the slowest
machine, for ‘‘gunzip | ed’’) are faster than a Basic-rate ISDN
line (128 Kbits/sec, or 16KBytes/sec), and the library im-
plementations of vdelta and vupdate computations are sig-
nificantly faster than the throughput of a T1 line (1.544
Mbits/sec, or 193 KBytes/sec.)  This suggests that delta encod-
ing and compression would certainly be useful for users of
dialup lines (confirming [2]) and T1 lines, would probably be
useful for sites with multiple hosts sharing one T3 line, and
might not be useful over broadband networks (at current levels
of CPU performance).

Second, computation speed often scales with CPU perfor-
mance, but not always. For example, the cost of using ed to
apply a delta appears to depend on factors other than CPU
speed. Generally, vdelta seems to be the most time-efficient
algorithm for both delta encoding and compression, except
sometimes when compared against ‘‘diff -e’’ (which produces
much larger deltas).
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Finally, the cost of applying a delta or decompressing a
response is lower than the cost of creating the delta or com-
pressed response (except for some uses of ed), for a given
CPU. This is encouraging, because the more expensive
response-creation step is also the step more amenable to cach-
ing or precomputation.

6.1. What about modem-based compression?
Many users now connect to the Internet via a modem; in

fact, most of the slowest links, and hence the ones most likely
to benefit from data compression, are modem-based.  Modern
modems perform some data compression of their own, which
could reduce the benefit of end-to-end (HTTP-based) com-
pression. However, we believe that a program which can see
the entire input file, and which has available a moderate
amount of RAM, should be able to compress HTML files
more effectively than a modem can.

We conducted a simple experiment to test this, transferring
both plain-text and compressed versions of several HTML
files via FTP over both 10 MBit/sec Ethernet LAN and
modem connections. URLs for these files are listed in table
6-2; our measurements used local copies of these URLs, made
in January, 1997.  Table 6-3 shows the measurements.  The
modems involved were communicating at 28,800 bps, and
used the V.42bis compression algorithm (a form of the
Lempel-Ziv-Welch algorithm; gzip uses the Lempel-Ziv algo-
rithm). We used FTP instead of HTTP for a number of
reasons, including the lack of caching or rendering in FTP
clients; the retrieved files were written to disk at the client (a
75 MHz Intel 486 with Windows 95).

File URL

A http://www.w3.org/pub/WWW/Protocols/

B http://www.w3.org/pub/WWW/

C http://www.specbench.org/osg/cpu95/results/results.html

D http://www.specbench.org/osg/cpu95/results/rint95.html

Table 6-2: URLs used in modem experiments

Table 6-3 shows that while the modem compression al-
gorithms do work, and the use of high-level compression al-
gorithms reduce the link-level bit rate, the overall transfer time
for a given file is shorter with high-level compression than
with modem compression.  For example, the achieved transfer
rate for file C using only modem compression was 55.3 Kbps
(over a nominal 28.8 Kbps link), while the transfer rate for the
vdelta-compressed version of the same file was only 16.3
Kbps. But, ignoring the costs of compression and decompres-
sion at the client and server, the overall transfer time for the
file was 68% shorter when using high-level compression.

We found that although vdelta provided greater savings for
large files (C and D), for the smaller files (A and B) the gzip
algorithm apparently provides better results.  It might be use-
ful for an HTTP server generating compressed responses to
choose the compression algorithm based on both the document
size and the characteristics of the network path, although it
could be difficult to discover if the path involves a compress-
ing modem. In any case, using high-level compression seems
almost always faster than relying on modem compression, par-
ticularly for large files.

When the costs of compression and decompression, shown
in table 6-4, are included, the overall transfer time for the
longer files (A, C, and D) is still much better using high-level
compression. For the measurements in table 6-4, we used the
slowest available system (the 50 MHz 80486 running
BSD/OS); the results in table 6-1 imply that a more modern
CPU would reduce these costs substantially.

7. Extending HTTP to support deltas
We have proposed a simple extension to HTTP to support

the use of deltas [14], but space here permits only a brief
description. We assume the use of HTTP/1.1 [6], which
(while not yet widely deployed) provides better control over
caching than does HTTP/1.0.

When an HTTP client wishes to check the validity of a
cache entry, it sends a ‘‘conditional GET’’ to the server. This
request indicates the identity of the cached response (using the
‘‘entity-tag’’ and ‘‘If-None-Match’’ features of HTTP/1.1).
We extend this by adding an optional ‘‘Delta’’ header, so that
the client may express to the server the set of delta-encoding
algorithms it understands.

If resource has changed, and if the server supports at least
one of the delta encodings known to the client, the server may
choose to use a delta-encoded response. The server knows
exactly which previous instance to base the delta on, since the
client’s entity-tag specifies this unambiguously. A delta-
encoded response is marked to indicate which encoding is
used, and to prevent improper caching by shared proxies.

The use of deltas would slightly increase HTTP header
sizes. Conditional request headers would be about 14 bytes
longer, or 5% of the observed mean request size.  (The client
might choose to omit the ‘‘Delta’’ header on requests for
images, thus avoiding this overhead.)  The headers for delta-
encoded responses would be slightly longer than for normal
responses, but the increase would be much less than the
decrease in response body size.

8. Future work
We have not been able to explore all aspects of delta encod-

ing in this study.  Here we discuss several issues that could be
addressed using a trace-based analysis.  Of course, the most
important proof of the delta-encoding design would be to im-
plement it and measure its utility in practice, but because
many variations of the basic design are feasible, we may need
additional trace-based studies to establish the most effective
protocol design.  (The previous studies [2, 8] did implemen-
tations, but using a double-proxy-based approach that adds
store-and-forward delays.)

We also note that all of our analyses would benefit from a
more accurate model for the transfer time, perhaps including a
model of network congestion.

8.1. Delta algorithms for images
A significant fraction of the responses in our traces (or

logged but not traced by the proxy), and an even larger frac-
tion of the response body bytes, were of content-type
‘‘image/*’’ (i.e., GIF, JPEG, or other image formats). Delta-
eligible image responses are relatively rare, but if these could
be converted to small deltas, that would still save bandwidth.
While vdelta appears capable of extracting deltas from some
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Size (bytes) LAN transfer (secs) Modem transfer (secs)

File HTML gzip vdelta HTML gzip vdelta HTML gzip vdelta saved w/vdelta

A 17545 6177 7997 0.17 (0.05) 0.12 (0.04) 0.10 (0.00) 6.6 (0.52) 4.7 (0.58) 5.8 (0.54) 0.8 sec (13%)

B 6017 2033 2650 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 2.2 (0.20) 1.8 (0.30) 2.0 (0.42) 0.2 sec (12%)

C 374144 39200 35212 1.22 (0.04) 0.22 (0.04) 0.20 (0.00) 66.4 (0.17) 25.1 (3.07) 21.8 (2.95) 44.6 sec (67%)

D 97125 10223 8933 0.38 (0.04) 0.12 (0.04) 0.12 (0.04) 17.7 (0.12) 6.9 (1.04) 6.1 (0.99) 11.6 sec (66%)

Times are the mean of at least 7 trials; standard deviations shown in parentheses

Table 6-3: Effect of modem-based compression on transfer time

File gzip
compr.

gunzip
decomp.

gzip
total

vdelta
compr.

vdelta
decomp.

vdelta
total

A 0.151 0.065 0.216 0.121 0.042 0.163

B 0.061 0.031 0.092 0.044 0.020 0.064

C 2.028 0.319 2.347 1.438 0.020 1.458

D 0.481 0.100 0.581 0.290 0.020 0.310

Table 6-4: Compression and decompression times (seconds)
for files in tables 6-2 and 6-3

pairs of these image files, it performs much worse than it does
on text files. We also have evidence that vdelta does poorly
on images generated by cameras, such as the popular ‘‘Web-
Cam’’ sites, many of which are updated at frequent intervals.
MPEG compression of video streams relies on efficient deltas
between frames, so we have some hopes for a practical image-
delta algorithm.

8.2. Effect of cache size on effectiveness of deltas
Our trace analyses assumed that a client (or proxy) could

use any previously traced response as the base instance for a
delta. Although in many cases the two responses involved
appear close together in the trace, in some cases the interval
might be quite large.  This implies that, in order to obtain the
full benefits of delta encoding shown in our analyses, the
client or proxy might have to retain many GBytes of cached
responses. If so, this would clearly be infeasible for most
clients.

It would be fairly simple to analyze the traces using a max-
imum time-window (e.g., 1 hour or 24 hours) rather than look-
ing all the way back to the beginning of the trace when search-
ing for a base instance. By plotting the average improvement
as a function of the time-window length, one could see how
this parameter affects performance.  It might be somewhat
harder to model the effect of a limited cache size.

8.3. Deltas between non-contiguous responses
Our analyses of delta-eligible responses looked only at the

most recent status-200 response preceding the one for which a
delta was computed.  This policy simplifies the analysis, and
would also simplify both the client and server implemen-
tations, since it limits the number of previous instances that
must be stored at each end.

It is possible, however, that reductions in the delta sizes
might be possible by computing deltas between the current
instance and several previous instances, and then sending the
shortest. The complexity and space and time overheads of this

policy are significant, but the policy would not be hard to
support in the protocol design. We could modify our trace
analysis tools to evaluate the best-case savings of such
policies.

8.4. Avoiding the cost of creating deltas
The response-time benefits of delta encoding are tempered

by the costs of creating and applying deltas.  However, as
shown in section 6, the cost of creating a delta is usually much
larger than the cost of applying it.

Fortunately, it may be possible to avoid or hide the cost of
creating deltas, in many cases.  Whenever a server receives
several requests that would be answered with the same delta-
encoded responses, it could avoid the computation cost of
delta-creation by simply caching the delta.  We could estimate
the savings from this technique by counting the number of
status-304 (Not Modified) and unchanged responses for a
given URL, following a delta-eligible response for that URL
in the trace.  (The estimate would be conservative, unless the
trace included the server’s entire reference stream.)

Even when a delta is used only once, it may be possible for
the server to hide the cost of creating it by precomputing and
caching the delta when the resource is actually changed, rather
than waiting for a request to arrive.  While this might substan-
tially increase the CPU and disk load at the server (because it
would probably result in the creation of many deltas that will
never be used), it should reduce the latency seen by the client,
especially when the original files are large.  Many studies have
shown that Web server loads are periodic and bursty at many
time scales (e.g., [1]). If the server sometimes has background
cycles to spare, why not spend them to precompute some
deltas?

8.5. Decision procedures for using deltas or compression
While our results show that deltas and compression improve

overall performance, for any given request the server’s deci-
sion to use delta encoding, compression, or simply to send the
unmodified resource value may not be a trivial one.  It would
not make much sense for the server to spend a lot more time
deciding which approach to use than it would take to transfer
the unmodified value.  The decision might depend on the size
and type of the file, the network bandwidth to the client,
perhaps the presence of a compressing modem on that path
(see section 6.1), and perhaps the past history of the resource.
We believe that a simple decision algorithm would be useful,
but we do not yet know how it should work.
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9. Summary and conclusions
Previous studies have described how delta encoding and

compression could be useful.  In this study, we quantified the
utility based on traces of actual Web users. We found that,
using the best known delta algorithm, for the proxy trace 77%
of the delta-eligible response-body bytes and 22% of all
response-body bytes could have been saved; at least 37% of
the transfer time for delta-eligible responses and 11% of the
total transfer time could have been avoided.  For the packet-
level trace, we showed even more savings for delta-eligible
responses (85% of response-body bytes), although the overall
improvement (9% of response-body bytes) was much less im-
pressive. We confirmed that data compression can sig-
nificantly reduce bytes transferred and transfer time, for some
content-types. We showed that the added overheads for en-
coding and decoding are reasonable, and support for deltas
would add minimal complexity to the HTTP protocol. We
conclude that delta encoding should be used when possible,
and compression should be used otherwise.

The goal for a well-designed distributed system should be to
take maximal advantage of caches, and to transmit the min-
imum number of bits required by information theory, given
acceptable processing costs.  delta encoding and compression
together will help meet these goals.
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