1. Probabilities and Events:

A random experiment is an experiment whose outcome cannot be predicted in a deterministic fashion. Each random experiment has a set of possible outcomes that form the sample space of the experiment. For instance, the outcome of rolling a dice on a table can be any integer value between 1 and 6.

An event E is an arbitrary subset of this sample space, like obtaining an even value after rolling a dice. Since events are sets, the usual set operations apply to them.

We can associate with each event A, a probability $P(A)$ measuring its relative likelihood. This probability should obey to the three following axioms:

1. For any event A, $P(A) \geq 0$.
2. If S denotes the sample space of an experiment then $P(S) = 1$.
3. If events A and B are disjoint ($A \cap B = \emptyset$) then $P(A \cup B) = P(A) + P(B)$

From these axioms one can show that $P(\emptyset) = 0$ and $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

The conditional probability $P(A|B)$ is the probability of the occurrence of an event A given that event B has already occurred. It is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

As a result, we have $P(A \cap B) = P(A|B)P(B)$. Two events are said to be independent if

$$P(A \cap B) = P(A)P(B)$$

2. Random Variables

A random variable (rv) X over a sample space S is a function that assigns a real number $X(S)$ to any event E in S. A discrete random variable is a random variable whose values are always integer.

All random variables have a cumulative distribution function (cdf) defined as

$$F(z) = P(X \leq z)$$

Discrete random variables

Assume that a discrete rv X can have n possible values $\{x_1, \ldots, x_n\}$. To each of these values we can associate a probability p_i. These p_i's define the probability mass function (pmf) of X and will always verify the relation

$$\sum_{i=1}^{n} p_i = 1$$
The cdf of \(X \) is then given by:

\[
F(z) = \sum_{x_i \leq z} p_i ,
\]

its mean by

\[
\mu = E(X) = \sum_{i=1}^n p_i x_i ,
\]

and its standard deviation by

\[
\sigma^2 = E(X - \mu)^2 = \sum_{i=1}^n p_i (x_i - \mu)^2 .
\]

The variance measures the degree of dispersion of the rv. A rv with a zero variance would have its mean as sole possible value. The standard deviation \(\sigma \) is the square root of the variance.

Discrete random variables

Continuous random variables have a *probability density function* (pdf) \(f(x) \) such that

\[
f(x) = \lim_{\Delta x \to 0} P(x < X \leq x + \Delta x)
\]

We will always have

\[
\int_{-\infty}^{\infty} f(x)dx = 1
\]

The cdf of a continuous rv is the integral of its pdf

\[
F(z) = \int_{-\infty}^{z} f(x)dx
\]

The mean of a continuous rv is given by

\[
\mu = E(X) = \int_{-\infty}^{\infty} xf(x)dx
\]

and its variance by

\[
\sigma^2 = E(X - \mu)^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x)dx
\]

Covariance and Correlation Coefficient

If two variables \(X \) and \(Y \), with respective means \(\mu_X \) and \(\mu_Y \), are not independent, their covariance

\[
\text{cov}(X,Y) = E(X - \mu_X)(Y - \mu_Y)
\]
will be different from zero. While variances are always positive, covariances can have negative values. The correlation coefficient \(\rho_{XY} \) is often used to measure the strength of a possible linear dependence between two r.v's:

\[
\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{\sigma_X^2 \sigma_Y^2}}
\]

A coefficient of correlation equal to one indicates a perfect linear dependence between the two r.v's. Conversely a coefficient of correlation equal to zero indicates the absence of any linear dependence between the two r.v's but does not guarantee that the two r.v's are independent.

3. Sample Statistics

If \(x_1, x_2, \ldots, x_n \) are \(n \) observations of the value of an unknown quantity \(X \), they constitute a sample of size \(n \) for the population on which \(X \) is defined. This sample will have

1. a sample mean \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \)

2. a sample variance \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \)

4. The Central Limit Theorem

If the \(n \) mutually independent random variables \(x_1, x_2, \ldots, x_n \) have the same distribution, and if \(\mu = E(x_i) \) and \(\sigma^2 = E((x_i - \mu)^2) \) exist, then the r.v

\[
\frac{1}{\sigma/\sqrt{n}} \sum_{i=1}^{n} x_i - \mu
\]

is distributed according to the standard normal distribution (zero mean and unit variance).

5. Estimation

Estimating a mean

Assume that we have a sample \(x_1, x_2, \ldots, x_n \) consisting of \(n \) independent observations of a given population. The sample mean \(\bar{x} \) is an unbiased estimator of the mean \(\mu \) of the population.

For large values of \(n \), the (1-\(\alpha \))% confidence interval for \(\mu \) is given by

\[
\left[\bar{x} - \frac{z_{\alpha/2} \sigma}{\sqrt{n}}, \bar{x} + \frac{z_{\alpha/2} \sigma}{\sqrt{n}} \right]
\]

where \(z_{\alpha/2} \) satisfies \(F(u_{\alpha/2}) = 1 - \frac{\alpha}{2} \) for the standard normal distribution. For \(\alpha = .05 \), \(z_{0.025} = 1.96 \).

1. This is the critical assumption. Without it, you cannot apply the formula.
In nearly all cases, the population variance σ^2 is unknown. We can construct a similar confidence interval by replacing the unknown σ in the preceding formula by the standard-deviation s of the sample but the value $z_{\alpha/2}$ must now be read from a table of Student's t-distribution with $n-1$ degrees of freedom whenever $x < 30$.

Estimating a proportion

Mean response times are a poor estimator of customer satisfaction. Quantiles and proportions are a much better index of the actual performance of the system. A α quantile represents the value x such that $P(X > x) = 1 - \alpha$ as in “95% of the customers have to wait less than 50 seconds for the video of their choice.” A proportion p represents the probability $P(X \leq \theta)$ for some fixed threshold θ as in “97% of our customers have to wait less than a minute.”

The main advantage of proportions over quantiles is that their confidence intervals are much easier to obtain. Assume that we have n independent observations x_1, x_2, \ldots, x_n of a given population variable X and that this variable has a continuous distribution. Let p represent the proportion we want to estimate, say $P(X \leq \theta)$, and k represent the number of observations that are $\leq \theta$. The rv k is distributed according to a binomial distribution

$$P(k \text{ out of } n) = \binom{n}{k} p^k (1-p)^{n-k}$$

with mean np and variance $np(1-np)^{n-k}$.

The sample random variable $\hat{p} = \frac{k}{n}$ has a mean equal to p and a variance equal to $\frac{p(1-p)}{n}$. For $n \geq 30$, the distribution of \hat{p} is approximately normal and we have

$$P\left[\hat{p} - z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} < p \leq \hat{p} + z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \right] = 1 - \alpha$$