
Optimistic Deltas for WWW Latency Reduction�

Gaurav Banga
Rice University

gaurav@cs.rice.edu, http://www.cs.rice.edu/˜gaurav/

Fred Douglis
AT&T Labs – Research

douglis@research.att.com, http://www.research.att.com/˜douglis/

Michael Rabinovich
AT&T Labs – Research

misha@research.att.com, http://www.research.att.com/˜misha/

1997 USENIX Technical Conference.

Abstract

When a machine is connected to the Internet via a slow
network, such as a 28.8 Kbps modem, the cumula-
tive latency to communicate over the Internet to World
Wide Web servers and then transfer documents over the
slow network can be significant. We have built a sys-
tem that optimistically transfers data that may be out of
date, then sends either a subsequent confirmation that
the data is current or a delta to change the older version
to the current one. In addition, if both sides of the slow
link already store the same older version, just the delta
need be transferred to update it.

Our mechanism is optimistic because it assumes that
much of the time there will be sufficient idle time to
transfer most or all of the older version before the
newer version is available, and because it assumes that
the changes between the two versions will be small rel-
ative to the actual document. Timings of retrievals of
random URLs in the Internet support the former as-
sumption, while experiments using a version reposi-
tory of Web documents bear out the latter one. Per-
formance measurements of the optimistic delta sys-
tem demonstrate that deltas significantly reduce la-
tency when both sides cache the old version, and op-
timistic deltas can reduce latency, to a lesser degree,
when content-provider service times are in the range of
seconds or longer.

�Copyright to this work is retained by the authors. Permission is
granted for the noncommercial reproduction of the complete work
for educational or research purposes.

1 Introduction

The Internet, and particularly the World Wide Web
(W 3), consists of an ever-increasing number of
servers, networks, and personal machines with dra-
matically varying qualities of service. Individuals
often access the W 3 via modems with bandwidth
of 14.4–28.8 Kbps, while their provider might have
a T1 link or better to the rest of the Internet. But
then the actual access may be to another site with
low bandwidth, high server load, or both. Thus the
latency to respond to the user’s request for a page
is unpredictable: often fairly low, but sometimes
extremely high. The unpredictability and generally
slow response may be exacerbated in environments
with even poorer quality of service, such as cellular
telephony or wide-area wireless networks.

A number of techniques have been implemented or
proposed to deal with HTTP latency. A browser can
direct its request to a proxy-caching server (henceforth
referred to as a server proxy) on the other end of the
low-speed connection, and then the latency for retriev-
ing pages elsewhere in the Internet can be eliminated
when someone else has retrieved those pages in the
recent past. (Recency is a function of the size of the
cache, any expiration dates in the pages, and any con-
straints passed from the browser to the cache [5, 12].
Also, some pages are flagged as uncacheable, and the
proxy-caching server is obliged to pass those requests
through to the content provider. Caching is discussed
further in Section 2.) America Online (AOL) uses a
proprietary protocol between the browser on a user’s
machine and an enormous cache of W 3 pages within



Optimistic Deltas for WWW Latency Reduction 2

the AOL server cluster. Prefetching pages during peri-
ods when the modem would otherwise be idle can re-
duce or eliminate the latency of following a link, if the
prefetch is accurate and the user thinks between clicks
long enough for prefetching to complete [18, 22]. Pad-
manabhan and Mogul’s study of persistent HTTP con-
nections [17] indicates that a persistent connection be-
tween a client and proxy, or between one of them and a
content provider, will eliminate TCP connection setup
and slow-start overhead.

We look at the problem of latency from another per-
spective: using computation to improve end-to-end
network latency. The idea of trading off computation
for I/O bandwidth has appeared numerous times in past
systems. Examples include application-specific deltas
and compression, such as Low-bandwidth X[15]; com-
pressed network or disk I/O [3, 6, 7]; replicated file
systems [2]; shared memory [16]; and checkpoint-
ing [9, 19]. It seems that the same tradeoffs apply in
the domain of the W 3.

We address the issue of latency from the perspec-
tive of sending the differences between versions of a
page, or deltas, in order to avoid sending entire pages.
Briefly, deltas are used in two ways. First, if both ends
of the slow link store the same version of a page, and
the server proxy obtains a new copy of the page, it can
send a delta to the user’s machine. This hopefully will
reduce the transfer time on the slow link. Second, if
the user’s machine does not store the older version, the
server proxy can send a potentially obsolete version of
the page immediately and request the new version in
parallel. It follows this with a delta against the obsolete
version if necessary. Thus, the idle time on the slow
link when the server proxy is waiting for a response
from the end server is not wasted.

The size of the delta may turn out to be large, in
which case the server proxy may have to abort send-
ing the stale version (if one is being sent) and just send
the current page received. In this case, work for send-
ing the stale data and calculating the delta is wasted.
Worse, as the server proxy does not pipeline the data
from the content provider to the client but instead waits
till the whole page has been received (since it needs
to compute a delta), the end latency as perceived by
the client may be somewhat larger. Our approach opti-
mistically assumes that this case is uncommon; hence
we refer to the case where stale data is transferred as
an optimistic delta. The experiments described in this
paper support this assumption. In contrast, we refer to
the case where both sides share a cached version as a
simple delta.

As we were going to press, we found that the “sim-
ple deltas” case is similar to a system from IBM called
WebExpress [13]. WebExpress is geared toward a low-

bandwidth wireless environment, where bandwidth is
precious, so it has similar goals but makes different
trade-offs. It focusses on small changes to dynamic
data (CGI output), sending deltas between a base ver-
sion that is shared by the client- and server-side “in-
tercepts” (similar to the client and server proxies de-
scribed here). However, WebExpress has apprently not
been used so far for arbitrary W 3 pages, nor does it
send stale data optimistically. The limited bandwidth,
high error rate, and contention in a wireless environ-
ment suggest that transferringdata that may not be used
could have more negative consequences than over a
single-user modem.

Our work also has some similarity to Dingle and
Partl [5], who proposed that a hierarchy of proxy-
caching servers could be used to send stale data as a
MIME multipart document, causing the browser to dis-
play the stale data immediately and to replace it with
more recent versions as they become available. The
main difference with our work is that Dingle and Partl
do not address the latency of obtaining the final ver-
sion of the data. Our approach attempts to reduce this
latency by sending the the current version as a delta.
In addition, we do not display the stale page: it is in-
tercepted by a client proxy [20], typically co-located
with the browser on the same machine, and passed to
the browser once it is updated or known to be current.
In the case where the “stale” page is actually current,
our system behaves like the proposal in [5]. Finally, in-
tercepting the stale data by a client-side proxy permits
the transmission of the stale data to be aborted trans-
parently once it becomes clear that simply sending the
current version is more efficient (e.g., if the delta turns
out to be too large relative to the page, or if the current
page became available very quickly).

The rest of this paper is organized as follows. Sec-
tion 2 provides some background into caching in the
HTTP protocol and an analysis of HTTP latency. Sec-
tion 3 discusses some data analysis to support our hy-
potheses that delta sizes will be small and that there will
be sufficient idle time to transfer stale copies. Next,
Section 4 describes the design of our system, and Sec-
tion 5 covers experimental results. Finally, Section 6
discusses the status of the system and future work, and
Section 7 offers some conclusions.

2 Background

In this section we briefly describe caching in HTTP and
analyze the dynamics of a typical HTTP transfer. This
description provides background for the discussion in
the following sections.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 3

2.1 Caching in the HTTP Protocol

The HyperText Transfer Protocol (HTTP) [4] supports
caching in clients (i.e. browsers) and intermediate
servers known as proxy-caching servers. To display a
page, a client without a cached copy will uncondition-
ally send a page request to the content-provider or a
proxy-caching server. A client with the page already
cached may return the cached copy or contact another
host to determine whether the page has changed. This
check for page currency is done by sending an HTTP
GET request with a header specifying If-Modi�ed-
Since followed by the timestamp of the cached copy.
If a proxy-caching server is used, it can respond to
a page request or currency check request if it has a
cached copy that is deemed usable and if the client has
not specified that the cache must not be used (with a
Pragma: no-cache1 directive, most commonly sent
when a user tells a browser to reload a fresh copy of
a page).

The proxy-caching server decides whether or not the
cached page is usable and, if so, whether or not the
client’s cached copy is current, based on the optional
extra information that the clients can send with their re-
quests and which HTTP servers can send back with a
page. Beyond the Pragma: no-cache directive men-
tioned above, the client may specify a bound on the age
of the cached copy it is willing to accept (the Cache-
control: max-age directive). Content-providers can
specify when the page was last modified, whether or
not the page can be cached (the Cache-control: no-
cache field), and how long a client or proxy-caching
server should cache the page (the Expires field). Dy-
namic data, often the output of a CGI script, is typically
sent with no Last-Modi�ed timestamp and set up to
expire from the cache immediately (equivalent to dis-
abling caching).

Currently, if a page has no Last-Modi�ed times-
tamp, checking for the freshness of a cached copy
requires retrieving the fresh copy from the content
provider and shipping it all the way to the client
browser. Similarly, changes to a page with the times-
tamp will require the proxy to obtain the file from the
content provider and transmitting the entire file to the
client; the transmission is elided only if the page has
not been modified at all.

2.2 Analysis of HTTP Latency

We now present an analysis of the timing dynamics
of a typical HTTP transaction. We assume a setting
where the Web browser (client) talks to a server proxy

1HTTP 1.1 alternatively supports a Cache-control: no-cache

directive, which when sent by the client is equivalent to Pragma:

no-cache. In this paper we refer to the pragma to mean either header.

transfer

L

T

2

1

T
wait

3

4 5

6

7

8

9

Lslow

client content-providerserver proxy

L
fast

Figure 1: Timeline for typical HTTP request.

on the other side of a low bandwidth and high latency
link, which in turn talks to HTTP servers (content-
providers) on the Internet. We use this analysis to make
a case for the usefulness of optimistic deltas.

Consider Figure 1, which depicts the timeline cor-
responding to an HTTP transaction between a client, a
server proxy, and a content provider. Packets 1, 2 and
3 correspond to the SYN, SYN/ACK and ACK pack-
ets that are exchanged as part of the TCP 3-way hand-
shake in the connection establishment phase between
the client and the server proxy. The client sees this con-
nection as established after a delay of approximately
2 � Lslow where Lslow is one half of the round-trip
latency of the link between the client and the server
proxy. At this point the client sends packet 4 which
contains the HTTP request. After the server proxy gets
this packet (at approximately time 3�Lslow), if it needs

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 4

to go to the end server to satisfy this request or to val-
idate its cached copy, it initiates a connection with the
content provider (packets 5, 6 and 7). The latter con-
nection is established after a further delay of 2�Lfast,
where Lfast is one half of the round-trip latency of the
link between the server proxy and the content provider.
The server proxy then forwards the client’s HTTP re-
quest to the content provider (packet 8).

On receipt of this HTTP request the content provider
does whatever is necessary to produce the response.
This may include several relatively slow activities,
such as forking off a child server and/or passing de-
scriptors to it, forking off a script to produce the re-
sponse document, invoking and waiting for the re-
sponse from a search engine, etc. For our purposes we
will view these activities as a certain latency shown as
time Twait in the figure. The magnitude of Twait is
thus a function of the server in question, the particu-
lar URL being served and the load on the server. This
time can be highly variable. Some simple experiments
on the Internet indicate that it varies from a couple of
hundred milliseconds to several seconds. After the re-
sponse (packet 9) is available and sent off it takes an-
other L = Lslow + Lfast time before the client starts
seeing it. The amount of time Ttransfer that it takes
to transfer the response is dependent on the size of the
response and speed of the link.

If we put in typical values for the various time
parameters in the figure (Lslow = 160ms, Lfast =
60ms, Twait varying from 200ms to several sec-
onds, Ttransfer for a 2-KByte response at 20 Kbps is
800ms2), we notice that if Twait is large, the low band-
width link is idle for a substantial portion of the time.
Also, regardless of the magnitude of Twait we want to
minimize the amount of data we transfer over the slow
link. These two observations lead to the idea of opti-
mistic deltas. We want to effectively utilize the slow
link in its idle time, and if possible, reduce the amount
of data transferred, in order to reduce the total latency
perceived by the client. If the client and server proxy
both cache the same older version, only a delta needs to
be sent over the slow link decreasing Ttransfer. If the
client and server proxy do not cache the same version,
the server proxy can transfer its cached version while
waiting for data from the content-provider and subse-
quently send a delta. Here again, Ttransfer is shorter
if Twait is long enough.

3 Data Analysis

Simple deltas benefit by trading off computation of the
deltas for a reduction in bandwidth and latency over the

2This number is very approximate and will in practice be larger
because of TCP’s congestion control algorithms.

slow link when both sides store the same old version
of a page. Optimistic deltas trade off an increase in the
amount of data transferred, by sending an older version
during an idle time of the slow link followed by a delta,
for a reduction in end-to-end latency. The viability of
either form of deltas is thus dependent on “smallness”
of deltas, which we evaluate in Section 3.1. Optimistic
deltas depend additionally upon long idle times on the
slow link, which we consider in Section 3.2.

3.1 Delta Sizes

To test the hypothesis that deltas would be sufficiently
small, we wanted to take a sample ofW 3 pages and see
how large the differences were between two versions of
the same page, relative to the page itself. We consid-
ered two sources of sample pages: the version archive
of the AT&T Internet Difference Engine (AIDE) [8],
which stores versions of pages for future visual com-
parison of their changes, and a set of random URLs
obtained from AltaVista [1]. The random pages were
tracked by AIDE as well, but they were considered sep-
arately from those pages that were actually registered
explicitly, either by individuals or by inclusion in a list
of popular URLs collected from a set of bookmark files
within AT&T. The random URLs and popular URLs
were archived daily if changes were detected, while
the pages tracked for individual users were typically
archived upon explicit request.

Throughout our experiments, we computed deltas
using vdelta, a program that generates compact deltas
by essentially compressing the deltas in the process of
computing them, and which can be used as a stand-
alone compression program as well [10].3 We must
consider the possibility that W 3 pages that are com-
pressed in a stand-alone fashion will compress so well
that the deltas between two versions of a page are not
much smaller than the compressed page. In this case
the client and server proxies could merely compress ev-
ery page (or rely on compression in the modems) with-
out using deltas and have the same benefit. We will
see that in practice, however, deltas are substantially
smaller than simple compression.

Considering first the non-random pages, of a total of
380 pages in the archive, 181 had more than one ver-
sion, with a mean of 4.9 versions/page (� = 10:3).
Figure 2(a) shows a plot of delta size against original
file size. The delta size is usually a small fraction of
the original file size. By comparison, Figure 2(b) plots

3In fact, one can consider a delta of B compared to A as com-
pressing B with the strings of A already in the compressor’s table of
prefices: if B is similar to A then it will compress well, and if not,
it will still compress well if it has internal similarity (as most ASCII
text does).

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 5

10 100 1000 10000 100000
Original File Size (bytes)

10

100

1000

10000

100000

D
if

fe
re

nc
e 

Si
ze

 (
by

te
s)

Break-even

Mean (10%)

(a) Deltas compared to original file sizes.

10 100 1000 10000 100000
Compressed File Size (bytes)

10

100

1000

10000

100000

D
if

fe
re

nc
e 

Si
ze

 (
by

te
s)

Break-even

Mean (19%)

(b) Deltas compared to compressed output sizes.

Figure 2: Comparison of sizes of deltas and original or compressed pages, using vdelta. While deltas have a greater
benefit when simple compression is not taken into account, they help above and beyond the benefits of compression.
In each graph, the dashed line indicates the break-even point and the solid line depicts the mean across all files.

delta size against the size of the newer file once com-
pressed. Figure 2(b) indicates that the delta is consis-
tently much smaller than the compressed file, though
in some cases it is approximately the same; this usually
happens when a file has changed completely from one
version to the next. Even if the file does not compress
well (for instance, it is a GIF file), the worst that vdelta
will do is to reproduce the original file with a few bytes
of overhead. The mean across over 2200 comparisons
of delta/compressed-file ratios was 19% (� = 27:6%).

The outlyingpoints in Figure 2, which are due to one
GIF file that has been archived automatically each day
and a compressed postscript file with two versions in
the archive, might be a concern in practice if the system
were to send stale copies and compute deltas regardless
of file type. Fortunately, file types are identifiable, both
from the Content-type HTTP header and data within
the files, so it is possible to treat images and other non-
textual data specially. One might instead use a distil-
lation technique to send a version of an image that is
more appropriate for a low-bandwidth link [11].

Our study of 1000 random URLs from AltaVista [1]
found that 861 URLs were actually accessible at the
time we started tracking them, and the vast majority
(79%) of those URLs were not modified in the next two
months of daily checks. Figure 3 graphs the distribu-
tion of the number of versions detected for the remain-
ing 21% that were modified. Just 43 of the 861 URLS
(5%) had 40 or more versions over the two months of

10 20 30 40 50
Number of Versions >=

5

10

15

20

C
um

ul
at

iv
e 

F
ra

ct
io

n 
(%

)

Figure 3: Distribution of the number of versions de-
tected by daily checks of 861 randomly selected URLs
over a two-month period, for the 21% of pages that
were modified.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 6

the study; the minor variations in the number of ver-
sions of the frequently-changed pages may be due to
transient errors while contacting those hosts. We also
performed the above analysis of delta sizes for these
pages, and found that the mean delta size was just 3.7%
of the original page size (� = 6:9%), and 10.4% of
the compressed page size (� = 14:0%). The pages
themselves compressed to an average of 12.1% (� =
18:0%) of their original size. A possible explanation
for the small deltas is that the sample was dominated by
pages that changed daily, and those changes may often
have been the inclusion of timestamps or other small,
simple modifications.

Another consideration is what sorts of data can
be compared. Even dynamic pages, which aren’t
cacheable, might have a lot of overlap between ver-
sions of the same page, or pages with the same base
URL but different parameters to a CGI script. (Deter-
mining when to compare one URL against a slightly
different URL for differencing is an open question, but
as long as both the client and server proxies agree on
the versions being compared the system will act cor-
rectly.)

For example, a query to the AltaVista search en-
gine [1] might result in a page containing several links
to content and several more links to other URLs within
AltaVista. The “boilerplate” can dominate the content
that changes from page to page, because each page con-
tains the same form at the top and, at the bottom, a
set of links to each other page generated by the query.
Figure 4 graphs the sizes of deltas from two queries,
compared to the size of the page if it were just com-
pressed. The first, a name lookup, returned 9 pages; the
second, a query with many terms (“storage manage-
ment mobile computing 
ash memory nvram”) that
generated thousands of matches, returned 20 pages, of
which 10 were compared. In each case the deltas from
one page to the next, within a given search result, were
much smaller even than the compressed pages.

3.2 HTTP Latency

To get a sense for the likelihood that a request would
take a long time to start receiving data, we collected
1000 random URLs from AltaVista [1] and timed their
responses. This study differs somewhat from Viles and
French [21], who studied the availability of random
HTTP servers and the time to connect to them; here we
are seeing how long it takes to collect the first data from
a W 3 page. Figure 5 shows the results of this experi-
ment, based on the 722 URLs that returned data within
the first minute. We found that about a third of pages
responded within a second, assuming they responded
at all, and half responded within about 1.6s. However,

2 4 6 8 10
Page Sequence #

0

20

40

60

80

100

D
if

f 
Si

ze
 / 

C
om

pr
es

se
d 

Si
ze

 (
%

)

person
mixture

Figure 4: Example of deltas for two AltaVista queries,
one for a person and one a mixture of computer science
terms. All comparisons were pairwise in sequential or-
der, starting with a delta between the first two pages of
a query result. The URL of each page varied slightly
because it specified the range of responses to return (1-
10, 11-20, etc.).

1 10
Seconds

0

20

40

60

80

100

C
um

ul
at

iv
e 

F
ra

ct
io

n 

Figure 5: Distributionof response times to receive first
data, based on a sampling of 722 URLs. Roughly 1

3

of the sample received data within a second, and 3

4
re-

ceived data within 5 seconds.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 7

it takes 5s to cover 3

4
of the pages and 10% took 10–

30s or more for the first data to arrive. As more pages
on the W 3 are dynamically generated, we expect the
fraction of pages with sluggish response to increase.

4 System Design

4.1 Design Considerations

Once we were confident that sending deltas could often
reduce bandwidth requirements and/or client-observed
latency of Web access, we had to consider two issues.
One was what the architecture of a delta-based sys-
tem would be. We rejected any scheme that would re-
quire changes to HTTP or to existingcontent providers,
though we later learned that HTTP/1.1 will support
a PATCH directive to allow efficient uploading of
changes to shared documents. Instead, we settled on
a proxy-based architecture in which the browser con-
nects to a proxy on the same machine (the client proxy),
and that proxy in turn connects to a server proxy on
a well-connected host. We have control over both of
these proxies; in fact we use a common source code
base for them, though that is not necessary. The design
of the proxies is covered in greater detail in Section 4.2.

The second open issue was how the deltas would
help when the user’s machine does not store an old ver-
sion of the page. If the well-connected proxy has many
clients, or can talk to a nearby proxy that does, it may
have fast access to a cached copy of the requested page.
When that page is current, nothing need be done other
than sending the cached copy over the phone line. If it
is stale, however, there might be an opportunity to use
deltas after sending the stale data.

In fact, one might expect the server proxy to handle
a number of clients and to keep multiple versions of
each document in its cache. Sometimes a client’s re-
quest will specify a version which the caching proxy
has, and then only a delta needs to go back over the
slow link. Other times, the server proxy will not have
the same version cached as advertised by the client in
which case it will try to utilize the Twait time by send-
ing in the stale copy it has and subsequently sending
the delta. Since in the latter scenario the benefit is po-
tentially lower, especially when Twait is not very large,
we may bias the system so that it hits the first scenario
more often than the second. This may be brought about
by auxiliary mechanisms like prefetching during idle
times to keep the client and server proxies’ caches in
sync.

In total, there are numerous ways in which the opti-
mistic delta mechanism can improve the efficiency of
W

3 access:

� The client and server proxies may share an out-of-
date version. Consider the case when the client
proxy sends an If-modi�ed-since request with a
No-cache directive to the proxy, which caches the
same version, and assume that the page has been
modified on the content provider site. In this case,
the proxy obtains the page, computes the delta
and, if it is smaller than the whole page, sends
the delta instead of the whole page to the client.
Thus, the demand for bandwidth of the (slow) link
to the client is decreased. Again, we refer to this
case as a “simple delta,” which is less “optimistic”
than others: it only relies on the delta being small
enough to be beneficial but does not risk transfer-
ring useless data.

� The server proxy may have the current version,
but the client proxy wants to check the validity
of its own cached copy with the content provider.
Assume the client sends an If-modi�ed-since re-
quest with No-cache to the proxy server, which
caches a newer version that is the same as the ver-
sion on the content provider site. In this case,
the proxy immediately sends its copy to the client
(marked as Stale); in parallel, it sends an If-
modi�ed-since request to the content provider,
verifies that its copy is actually current and sends
a null delta to the client. The browser can display
the page as soon as the conditional GET returns
via the server proxy, rather than having the newer
contents of the page transferred starting then.

The same latency reduction applies if the client
has no cached copy but requests the most current
version of a page, since the server proxy can send
a Stale copy and then confirm that the copy is cur-
rent after its own If-modi�ed-since request.

� The server proxy may have a newer version than
the client, as well as the client’s cached version.
Assume the client proxy asks the server proxy for
a page that the client has cached, and the server’s
copy is more recent but is not necessarily the most
current version. The server can respond with a
delta against the client’s version. If the page is
out of date or the client specifies that the cache be
bypassed, the content provider is consulted and a
second delta can be sent if needed.

� The client and server proxies may share a current
version of an “uncacheable” page, one that must
be retrieved directly from the content provider on
each access. Our system permits the client and
server proxies to cache such pages as a basis for
deltas between versions of a page, while ensur-
ing correctness by providing the browser with the

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 8

most current version every time. The server proxy
can determine that the page is unchanged (using
a regular GET over the high-speed network and
comparing the contents with the cached version)
and notify the client proxy to use the cached ver-
sion rather than transferring the page over the low-
speed network. Note that while other systems do
this for cacheable pages, ours does this even for
uncacheable ones as far as the slow link is con-
cerned, while taking advantage of deltas when the
differences are small.

4.2 Architecture

Figure 6 shows the architecture of our system. The
browser connects to a local (client) proxy using the
usual HTTP proxy-caching mechanism, by sending it
requests containing the full URL of a desired page. We
assume that the browser does not cache pages, but in-
stead relies on the client proxy; however, this does not
affect correctness, only storage utilization and caching
effectiveness. The client proxy serves the request out
of its cache if possible, or forwards it to the server
proxy on the other side of the slow connection. The
added overhead of a client proxy on the same machine
is minimal by comparison to network delays and so the
analysis in Section 2.2 still holds.

The server proxy can respond using its cache if the
request is for a cached page, the page is not out of date
with respect to its expiration date (if any), and the client
has not issued the nocache pragma. Otherwise, it for-
wards the request upstream, either directly to the con-
tent provider or to yet another proxy-caching server.
In either case, if the client and server proxies share a
cached version, a delta from that version to the current
version can be sent once the current version is avail-
able. If they do not share a cached version but the
server proxy has some version cached, the server can
send the possibly stale version followed by a delta from
that version to the current version.

The server proxy determines what the client proxy
has cached via some extra headers in the HTTP request.
First, an Accepts: multipart/attdelta field indicates
that the client understands the delta format. This way,
a browser or other unmodified client can talk to our
proxy without getting back something it cannot inter-
pret. Second, a Current-version: [signature] field in-
forms the server which version the client has cached, if
any. The signature can in principle be anything that can
distinguishdifferent versions of a document, such as an
MD5 checksum. We make the simplifying assumption
that any client proxy that requests a new version from
a server proxy will have received the previous version
from the same proxy, and we use a monotonically in-

creasing version number (instead of a checksum) that
the server generates and passes to its clients.

Table 1 summarizes the possible combinations of
client/server proxy states and the procedures that are
followed.

4.3 Detecting Non-cost-effective Trans-
fers

As was mentioned in the introduction, one difference
between our system and the proposal of Dingle and
Partl [5] is the ability to abort the transfer of stale data.
In fact, there are two cases when it is more appropriate
to behave like standard proxies and just send the cur-
rent version of a page to the client without delta pro-
cessing.

In the “simple delta” case, the client and server prox-
ies cache the same stale version of the page, and only
the delta need be sent. If the delta is as large as the cur-
rent page, the current page rather than the delta must be
sent. If the delta is somewhat smaller, one could use
heuristics to decide whether the cost of recreating the
current version from the delta exceeds the benefits due
to bandwidth reduction. We currently transfer the delta
any time it is smaller than the original.

The other case occurs when an optimistic transfer is
in progress and the new version of the page starts to ar-
rive at the server proxy. If most of the stale version has
been sent and the delta is small, it pays to finish send-
ing the stale version; if there is a lot of data yet to be
transferred and/or the delta is large, the transfer should
be aborted and the current version should be sent as it
becomes available.

If the cost of recreating the page from the stale ver-
sion and the delta is negligible, and we assume that the
two versions are the same size, then we should continue
to send the stale version any time the remaining stale
data plus the size of the delta is less than the size of the
current version. (In practice, we will know the size of
the current version if the Content-length header field
is present.) Assume the length is L and the size of the
delta is �L. If we have already transferred �L bytes of
the stale version, then transferring the remainder plus
�L will require no more bytes than sending all L bytes
of the current version.

Since we have no way of knowing how large a par-
ticular delta will be, any scheme that depends on com-
puting the delta only after the whole response has been
received by the server proxy can sometimes perform
badly. However, there is an entire family of increas-
ingly sophisticated abort schemes that one can think of,
which can be integrated into the process of receiving
the current version, producing the delta on the fly, and
aborting if the delta appears large.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 9

Internet

Browser

Client Proxy

Server Proxy

Modem

T1

other
proxiesclient

cache

server
cache

GET (URL, cache state)

Stale Data

Current Version

Delta

Figure 6: System architecture.

Client proxy
has cached

copy?

Server proxy
has cached

copy?

Cached
copy

current?

Content
provider’s copy

Modified?

Server proxy’s action

irrelevant no irrelevant irrelevant
retrieve current version and send to
client proxy

no

yes

yes irrelevant send cached copy

no

no

send cached copy upon request, con-
firm current afterGET If-Modi�ed-
Since to content provider

yes

send cached copy upon request, send
delta or new copy after GET If-
Modi�ed-Since to content provider

yes

yes irrelevant confirm current

no

no
confirm current after GET If-
Modi�ed-Since to content provider

yes
send delta or new copy after GET
If-Modi�ed-Since to content
provider

Table 1: Possible states when requesting a URL. “Cached copy current?” refers to whether the server proxy can respond
using its cached copy without consulting the content provider.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 10

5 Experiments

Ideally, we would like to perform a long-running ex-
periment that would compare end-to-end performance
of our optimistic delta mechanism with existing proxy
caching. One way to perform such measurements
would be to get a set of random URLs, and then re-
quest each URL periodically for an extended time us-
ing the optimistic delta approach and the existing ap-
proach, and compare the average response time. We
plan to perform such experiments in the future.

To date, we have focussed on “microbenchmarks” to
study the two extremes of interest: the case when the
client does not have a page cached, and must obtain a
full copy of the page (possibly a stale copy followed by
a delta or confirmation that it is current); and the case
when the client and server have the same copy cached
and the server can send a delta. We compare each of
these against the response time of an unmodified sys-
tem that connects directly to the server proxy and does
not use deltas.

5.1 Experimental Setup

We performed our tests using a pair of Intel-based sys-
tems running the proxy code and a Sun SparcStation
providingcontent. Specifically, the client system was a
Pentium 133Mhz based machine with 32MB of RAM,
running BSDI’s BSD/OS v2.1. (Our proxy code is
very portable across Unix platforms and currently com-
piles without any change on SunOS, Solaris, Linux,
FreeBSD and BSD/OS. Its main system dependencies
are BSD sockets and vdelta so we expect it should
be easily portable to any system that has BSD sock-
ets and some kind of difference library that supports
binary files.) It was connected using an AT&T Para-
dyne Comsphere 3820Plus modem at 28.8 Kbps to a
dial-in server on the AT&T corporate network. The
server proxy ran on an identical machine in the AT&T
network one hop away from the dial-in server. The
server connected to an HTTP daemon (htd, an inter-
nally developed server) on a uniprocessor SparcSta-
tion 20 on the same Ethernet segment as the server
proxy. This provided relatively fine-grained control
over the latency between the server proxy and the con-
tent provider.

The “browser” was a simple C program that fetched
a series of URLs specified in a control file by communi-
cating with the client proxy, which also ran on the client
machine. The “browser” did not do any caching.

5.2 Test Data

Here we report a performance evaluation using a syn-
thetic workload based on the multi-version archive of

W 3 pages collected by the AT&T Internet Difference
Engine (described above in Section 3.1). This archive
reflected the actual evolution of the pages, although it
did not contain copies of every version of every page:
some pages were archived automatically once per day
when changes were detected, while the majority were
archived upon the explicit instruction of a user of the
system.

Slightly over half of the pages had only one ver-
sion archived; these reflected pages that were regis-
tered with the system but had either never changed or
(more likely) were not archived automatically and had
not been selected for subsequent archival by a user. We
excluded these pages from the benchmark because no
deltas were available. On the other hand, about 10%
of the 380 pages had 10 or more versions archived,
and several had 50 or more versions (the latter were all
pages that were archived automatically).

5.3 Benchmark

The purpose of the benchmark was to examine the ef-
fect of several parameters on end-to-end latency in the
optimistic delta system: delta size, server latency, and
cache contents. We considered delta size by retrieving
many pages with different characteristics. We exam-
ined the effect of server latency by varying the response
time prior to sending data to the server proxy (see be-
low). Finally, we evaluated the difference between
sending deltas to a client with the past version of the
page cached and one without it cached. (In the case of
the unmodified proxy, without deltas, caching was ir-
relevant because each version of the page was retrieved
exactly once.) All requests were made with Pragma:
no-cache, and the pages always differed upon each re-
trieval. Other cases, such as when the page has not
changed or the server proxy can return its cached copy,
are relatively uninteresting: they either favor the opti-
mistic approach or are equivalent between the two sys-
tems.

In each run of the benchmark, the client system re-
trieved each URL repeatedly, once for each version
that existed. A CGI script mapped the URL into a
local filename that is dependent on the next version
for that URL: the first GET on /deltatest/pageN re-
turned /deltatest/pageN/1, the second returned /2,
and so on. Thus to the “browser” (actually the bench-
mark program) and the proxies, the same URL mapped
to new versions of the page upon each request.

In addition, the CGI script read a file to determine
how much of a delay it should insert before respond-
ing, which was used to simulate delay in the Inter-
net and/or on the content provider. Longer delays per-
mit more of an opportunity for optimistic transfers of

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 11

50 100 150
Sorted URL #

1

10

100
A

ve
ra

ge
 U

nc
om

pr
es

se
d 

Si
ze

 (
K

by
te

s)

Figure 7: Average uncompressed data size across all
versions of each page, sorted by size, shown on a log
scale.

large documents but also place a larger lower bound
on end-to-end latency: if a server takes a minute to re-
spond, then it will be at least a minute before the client
proxy knows it has the current version of the page. We
therefore expected that the runs with no added latency
would show a high benefit from cached deltas and suf-
fer delays from ill-placed optimistic transfers of the old
copy that could not fit into the Twait idle period, while
runs with significant added latency would favor the op-
timistic approach but gain less from sending cached
deltas (the amount of time saved as a fraction of total
latency would decrease due to the fixed overhead).

For the current set of experiments, we were forced to
restrict the range of parameters to keep the experiments
tractable in a limited time frame. We did this in two
respects:

� We ran experiments using fixed delays of 0s and
5s, to show extreme cases: what happens when
data is nearly immediately available, and what
happens when old data can be transferred during
idle times.

� We restricted the maximum number of versions
for a given page to 10, under the assumption that
the behavior for the first 10 versions of a page
would be representative of the entire set.

5.4 Results

To make it easier to interpret the results, we sorted
URLs by the average uncompressed file size. Figure 7
graphs the average size (across all versions of a page)
as a function of the sorted URL numbers, which are
used in the other graphs below.

Figure 8 shows our results. Each graph plots the av-
erage ratio of end-to-end latency using the modified
system to latency using the unmodified system4. The
left column shows cases where the client proxy caches
the previous version (simple deltas), while the right
column shows the use of optimistic deltas. The first
row shows no added content provider latency, and the
second row shows 5s of added latency. The URLs are
sorted in the same sequence as in Figure 7. The solid
line in each graph indicates the mean of all the points
in the graph, while the dashed line indicates the break-
even point.

The cost of computing deltas and patching was neg-
ligible (1-2%) compared to the network transfer time
and protocol processing overhead in all our experi-
ments. Moreover, the largest measured value of over-
head from computing a delta and applying the delta on
the client was much less than the typical variation in the
total URL fetch times.

From Figure 8 we draw the following conclusions:

� The pages with the lowest index, which have the
largest original file size, tended to show more im-
provement than the smaller pages, but although
the general trend is upward as one moves right
along the X-axis, there are great variations from
page to page.

� As expected, without added latency, many of the
pages took longer using the optimistic approach
than without it. The measurements in Figure 8(b)
were taken with a simple abort strategy in place.
This strategy aborted only when the server proxy
had finished computing the delta and the amount
of remaining stale data plus the delta was more
than the size of the regular response. We ex-
pect that a smarter abort strategy, such as abort-
ing an ongoingoptimistic transfer of stale data and
“cutting through” new data even as it is being re-
ceived if it appears that it is very different from
the cached stale data, would cap the latency of our
system at close to 100% of the unmodified system.

� With 5s added latency, most pages were received
faster by the client using optimistic deltas, with a
mean improvement of 27%. In fact, the latency
for optimistic deltas with 5s added delay was con-
sistently somewhat less than that for simple deltas
with the same delay. We attribute the better per-
formance of optimistic deltas to TCP’s slow-start
algorithm [14]. In the case of the optimistic deltas
the transfer of the stale data opened up the TCP
congestion window, so the deltas were transferred

4In the unmodified system, there were no proxies involved and
the client talked directly to the content-provider.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 12

50 100 150 200
Sorted URL #

0

50

100

150

D
el

ta
/R

eg
ul

ar
 L

at
en

cy
 (

%
)

Break-even

Mean (67%)

(a) Simple deltas, 0s added latency.

50 100 150 200
Sorted URL #

0

50

100

150

D
el

ta
/R

eg
ul

ar
 L

at
en

cy
 (

%
)

Break-even

Mean (88%)

abort

no abort

(b) Optimistic deltas, 0s added latency. The circles repre-
sent the 23 pages where aborts occurred.

50 100 150 200
Sorted URL #

0

50

100

150

D
el

ta
/R

eg
ul

ar
 L

at
en

cy
 (

%
)

Break-even

Mean (78%)

(c) Simple deltas, 5s added latency.

50 100 150 200
Sorted URL #

0

50

100

150

D
el

ta
/R

eg
ul

ar
 L

at
en

cy
 (

%
)

Break-even

Mean (73%)

abort

no abort

(d) Optimistic deltas, 5s added latency. The circle repre-
sents the one page where aborts occurred.

Figure 8: Experimental results, showing ratios of end-to-end latency for modified versus unmodified system, varying
whether old versions are cached on the client or sent optimistically by the server, and whether the content provider
adds 0s or 5s of latency before returning content. Each data point represents the average across all versions for the
corresponding page. The solid line in each graph indicates the mean of all the points in the graph, while the dashed line
indicates the break-even point. The “simple delta” case never experienced aborts, while the “optimistic delta” case
experienced aborts that are indicated with a different symbol.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 13

faster in this case than in the case of simple deltas,
where the transfer of the delta had to open up the
congestion window itself.

� Nearly all of the simple deltas improved perfor-
mance regardless of added latency, which one
would expect. As predicted, the relative gain
was generally better when the fixed overhead was
lower. In the case of 0s added latency, most of the
points that showed degradation were cases of only
two versions being available (hence a greater like-
lihood of variability due to external factors) and
where the deltas were 40–60% of the original file
size. The overall improvement was 33%, which
was the best of the four configurations.

6 Status and Future Work

At present, all of the functionality described in this
paper has been implemented except for the ability of
the server-side proxy to store multiple versions of the
same URL. We plan to implement these features and
test the system in a multi-user environment, where the
same server proxy handles requests for multiple users.
We believe that in this environment there will be many
more cases where the server proxy has content that
a particular client proxy does not, resulting in more
optimistic transfers than would occur in a single-user
context. One must evaluate policies for determining
how many versions to keep and how many concurrent
clients can be supported by a server proxy.

We plan to expand the URL comparison logic to han-
dle the case of variants on the same URL (including the
part of a GET URL that specifies CGI parameters), as
described above in Section 3.1. In fact, it might be pos-
sible to hash the contents of pages to find other pages
that are substantially similar and would generate small
deltas.

Currently, each communication between the
browser and the client proxy, or between the client
and server proxies, requires a TCP setup. Persistent
HTTP [17] should improve performance further, but
we have not yet implemented a persistent connection
in our proxy.

In the current system, deltas are generated only when
the current version of a document has been received in
its entirety. We intend to add incremental delta genera-
tion so that the delta can be sent over the slower link as
content is received, and so that it is possible to abort op-
timistic transfers early if the delta appears to be large.
It is also possible to use historical data to estimate the
usefulness of sending stale data: if Twait for a partic-
ular host or page is usually very small, then one might
not bother with the optimistic transfer.

Finally, it should be useful to integrate prefetch-
ing into the optimistic delta system. In addition to
prefetching new pages through the server proxy to the
client (similar to the studies mentioned above [18, 22]),
we can prefetch deltas to keep the proxies’ caches bet-
ter synchronized.

7 Conclusion

We have proposed an optimistic deltas approach to re-
duce the latency of accessingW 3 pages. This approach
involves sending the differences between versions of a
page, or deltas, to the client, instead of sending entire
pages. It also permits stale data to be sent during pe-
riods of inactivity. Our approach is optimistic because
it sends data that may not be needed; instead, it opti-
mizes for the common case when pages change incre-
mentally, at the expense of a slight overhead in the rare
cases when a modification drastically changes the con-
tent of the page. In other words, we assume that in most
cases when a copy cached by the proxy is deemed unus-
able, it is either still current, or, if it has been modified,
the size of the modification is considerably smaller than
the page itself.

Our study of an AT&T multi-version archive of W 3

pages confirmed the above assumption. In fact, by ex-
amining the extent to which the results of AltaVista
queries with slightly different parameters differ, we
showed that this assumption may even hold for dynam-
ically generated pages. However, in general we expect
that other sorts of data, such as images, should be han-
dled specially rather than processed as deltas.

A study of the latency to obtainW 3 pages confirmed
that the latency in obtaining data may often be suffi-
cient to send stale data, for the purpose of sending a
small delta once the data is available. However, perfor-
mance may be degraded when latency is low and more
sophisticated techniques for deciding when to abort the
transfer of stale data are required.

We implemented our approach without changing the
browser. Instead, we configure the browser to connect
to a client proxy on the same machine, which in turn
connects to a server proxy. These proxies have been
modified to follow the optimistic deltas approach. We
compared the performance of this configuration with
the original system. This performance study, based on
microbenchmarks, showed a significant latency reduc-
tion achieved by our approach: an average of 12-33%
improvement across all pages in the study, depending
on system parameters, with some transfers improved
by an order of magnitude. One particularly surprising
result was the effect that transferring potentially stale
data had on the TCP slow-start algorithm when a link

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 14

is otherwise idle, consistently improvingend-to-end la-
tency.

While a long-term experiment that would compare
the performance of our approach with existing proxy
caching systems on real-life workloads is needed, the
experiments described in the paper strongly suggest
that the optimistic delta mechanism results in a consid-
erable reduction of W 3 latency.

Acknowledgments

Ankur Jain assisted with the analysis of HTTP laten-
cies. Herman Rao wrote the initial version of the bi-
modal proxy used in these experiments, Dave Korn and
Kiem-Phong Vo wrote vdelta, and Dave Kristol wrote
htd. H. V. Jagadish initially suggested the use of stale
pages in conjunction with deltas. Robin Chen, Tony
DeSimone, Dave Korn, Bala Krishnamurthy, Ankur
Jain, Jeff Mogul, Doug Monroe, Sandeep Sibal, and the
anonymous USENIX referees provided comments on
earlier drafts of this paper.

References
[1] Altavista. http://www.altavista.digital.com. Random

URL selection at http://www.altavista.digital.com/cgi-
bin/query?pg=s&target=0.

[2] Dave Belanger, David Korn, and Herman Rao.
Infrastructure for wide-area software development. In
Proceedings of Sixth International Workshop on
Software Configuration Management, March 1996.

[3] M. Burrows, C. Jerian, B. Lampson, and T. Mann.
On-line data compression in a log-structured file
system. In The Fifth International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 2–9. ACM, October
1992.

[4] World Wide Web Consortium. Hypertext transfer
protocol. http://www.w3.org/pub/WWW/Protocols/.

[5] Adam Dingle and Tomas Partl. Web cache coherence.
In Proceedings of the Fifth International WWW
Conference, May 1996. Available as
http://www5conf.inria.fr/fich html/papers/P2/Overview.html.

[6] Fred Douglis. On the role of compression in
distributed systems. In Proceedings of the Fifth ACM
SIGOPS European Workshop, Mont St.-Michel,
France, September 1992. ACM.

[7] Fred Douglis. The compression cache: Using on-line
compression to extend physical memory. In
Proceedings of 1993 Winter USENIX Conference,
pages 519–529, San Diego, CA, January 1993.

[8] Fred Douglis and Thomas Ball. Tracking and viewing
changes on the web. In Proceedings of 1996 USENIX
Technical Conference, pages 165–176, San Diego,
CA, January 1996.

[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel.
The performance of consistent checkpointing. In
Proceedings of the 11th Symposium on Reliable and
Distributed Systems, pages 39–47, October 1992.

[10] Glenn S. Fowler, David G. Korn, Steven C. North,
Herman Rao, and K. Phong Vo. Libraries and file
system architecture. In B. Krishnamurthy, editor,
Practical Reusable UNIX Software, chapter 2. John
Wiley & Sons, New York, January 1995.

[11] Armando Fox and Eric A. Brewer. Reducing www
latency and bandwidth requirements by real-time
distillation. In Proceedings of the Fifth International
WWW Conference, May 1996.

[12] James Gwertzman and Margo Seltzer. World-wide
web cache consistency. In Proceedings of 1996
USENIX Technical Conference, pages 141–151, San
Diego, CA, January 1996. Also available as
http://www.eecs.harvard.edu/˜vino/web/usenix.196/.

[13] Barron C. Housel and David B. Lindquist.
WebExpress: A system for optimizing web browsing
in a wireless environment. In Proceedings of the
Second Annual International Conference on Mobile
Computing and Networking, pages 108–116, Rye,
New York, November 1996. ACM.

[14] Van Jacobson. Congestion avoidance and control. In
Proceedings of the ACM SIGCOMM Conference,
Stanford, CA, August 1988.

[15] Christopher A. Kantarjiev, Alan Demers, Ron
Frederick, Robert T. Krivacic, and Mark Weiser.
Experiences with X in a wireless environment. In
Proceedings USENIX Symposium on Mobile &
Location-Independent Computing, pages 117–128.
USENIX, August 1993.

[16] P. Keleher, S. Dwarkadas, A.L. Cox, , and
W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating
systems. In Proceedings of 1994 Winter USENIX
Conference, pages 115–131, San Francisco, CA,
January 1994.

[17] Venkata N. Padmanabhan and Jeffrey C. Mogul.
Improving http latency. Computer Networks and ISDN
Systems, 28(1–2):25–35, December 1995.

[18] Venkata N. Padmanabhan and Jeffrey C. Mogul.
Using predictive prefetching to improve world wide
web latency. Computer Communication Review,
26(3):22–36, 1996.

[19] James S. Plank, Jian Xu, and Rob Netzer. Compressed
differences: An algorithm for fast incremental
checkpointing. Technical Report CS-95-302,
University of Tennessee, August 1995.

[20] Bill N. Schilit, Fred Douglis, David M. Kristol, Paul
Krzyzanowski, James Sienicki, and John A. Trotter.
Teleweb: Loosely connected access to the world wide
web. In Proceedings of the Fifth International World
Wide Web Conference, Paris, France, May 1996.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference



Optimistic Deltas for WWW Latency Reduction 15

[21] Charles L. Viles and James C. French. Availability
and latency of world wide web information servers.
Computing Systems, 8(1):61–91, Winter 1995.

[22] Stuart Wachsberg, Thomas Kunz, and Johnny Wong.
Fast world-wide web browsing over low-bandwidth
links. Available as
http://ccnga.uwaterloo.ca/˜sbwachsb/paper.html, June
1996.

Banga, Douglis, Rabinovich 1997 USENIX Technical Conference


