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Abstract

Caching is currently the primary mecha-
nism for reducing the latency as well as band-
width requirements for delivering Web con-
tent. Numerous techniques and tools have
been proposed, evaluated and successfully
used for caching static content. Recent stud-
ies show that requests for dynamic web con-
tent also contain substantial locality for iden-
tical requests. In this paper, we classify local-
ity in dynamic web content into three kinds:
identical requests, equivalent requests, and
partially equivalent requests. Equivalent re-
quests are not identical to previous requests
but result in generation of identical dynamic
content. The documents generated for par-
tially equivalent requests are not identical
but can be used as temporary place hold-
ers for each other while the real document
is being generated. We present a new pro-
tocol, which we refer to as Dynamic Content
Caching Protocol (DCCP), to allow individ-
ual content generating applications to exploit
query semantics and specify how their results
should be cached and/or delivered. We illus-
trate the usefulness of DCCP for several ap-
plications and evaluate its effectiveness using
traces from the Alexandria Digital Library
and NASA Kennedy Center as case studies.

1 Introduction

As many Web sites evolve to provide so-
phisticated e-commerce and personalized ser-
vices, dynamic content generation becomes
more popular. Using multi-processor or
cluster-based servers can speedup resource-
intensive dynamic content generation [6, 12,
24]. If successful, caching can provide sig-

nificant additional benefit by reducing server
load, end-to-end latency and bandwidth re-
quirement. Numerous techniques and tools
have been proposed, evaluated and deployed
for caching static content. There has been
recent interest in caching dynamic Web con-
tent as well [5, 7, 10, 14, 16]. Dynamic content
has three forms of locality: identical requests,
equivalent requests, and partially equivalent
requests.

e Identical requests: These requests
have identical URLs which result in the
generation of the same content. Recent
studies [14, 16] have shown that this lo-
cality can be successfully exploited for
caching.

e Equivalent requests: The URLs of
these requests are syntactically differ-
ent but result in generation of identi-
cal content. For example, map servers
(e.g. [13, 23]) frequently impose a grid on
the coordinate space and return the same
map when presented with any location
within a given region in the grid. As an-
other example, news servers may wish to
return different front-pages for requests
from users from different regions or dif-
ferent sites. In this case, requests from
all clients in a group are equivalent.

e Partially equivalent requests: These
requests are syntactically different but
result in generation of content which
can be used as a temporary place-holder
for each other. For example, docu-
ments which are conditionally distilled
to a lower-resolution version by a service
(e.g., TranSend [12]) can be used as a
place-holder for the originals. As another
example, maps(e.g., MapQuest [13]) and
aerial images (e.g., the TerraServer [17])



with more than a given degree of overlap
could be used as placeholders for each
other.

Exploiting similarity between dynamic
documents has been shown to be beneficial
for fast Web page delivery based on delta-
encoding [4, 15, 18]. In this paper, we present
a new protocol, which we refer to as the Dy-
namic Content Caching Protocol (DCCP), to
allow individual content generating applica-
tions (e.g. CGI applications, Java servlets
etc) to specify equivalence between different
GET-based requests they serve. This infor-
mation can be used by web caches to ex-
ploit these additional forms of locality. Iden-
tical requests and equivalent requests can di-
rectly fulfilled using previously cached re-
sults. For partially equivalent requests, pre-
viously cached content can be immediately
delivered as an approximate solution to the
client while actual content is generated and
delivered. This allows clients to browse par-
tial or related or similar results promptly
while waiting for more accurate information.

We have designed DCCP using the exten-
sion mechanism provided in HTTP 1.1 cache
control directives [11]. This has several ad-
vantages. First, specifying result equivalence
information as an extension of the HTTP
header allows DCCP to be deployed incre-
mentally — servers, proxies and individual
content generating applications can be up-
graded individually. In many cases, exist-
ing CGI scripts can be upgraded to gener-
ate these headers simply by using a short
Perl or shell script as a wrapper. Second,
since HTTP 1.1 specifies that headers must
be propagated by compliant caches, DCCP
directives can be expected to reach most
caches. Finally, a declarative header-based
specification of caching requirements allows
value-added proxies such as TranSend [12] to
compose server-provided directives and hints
with their own. For example, the TranSend
proxy provides a distillation service for het-
erogeneous clients. A distilled version of a
web document is a lower-resolution (or a sum-
mary) version of the original and can be re-
turned in response to a request for the origi-
nal document. Since this functionality is pro-
vided by an intermediate node, the ability to
augment and compose cache control specifi-

cations allows the results of such processing
to be effectively cached by web caches closer
to the client.

This paper is organized as follows. We
first summarize the related work and then
present a description of DCCP. We illus-
trate its utility for a variety of applica-
tions including a customizable news service, a
location-dependent weather information ser-
vice, server-side image maps, and a geograph-
ically indexed digital library. Finally, we
discuss our current cache design and imple-
mentation for DCCP and evaluate the ef-
fectiveness of DCCP using real traces from
the Alexandria Digital Library and NASA
Kennedy Center and a synthetic trace for a
weather forecast application.

2 Related Work

Exploiting similarities between dynamic
documents generated by multiple invocations
of the same web application was first pro-
posed in [4, 15] for delta-encoding. This idea
was explored further by Mogul et al. [18] as
query clustering. They analyzed web proxy
and packet-level traces to evaluate the ex-
tent of similarity between dynamic docu-
ments with the same “URL prefix” (usually
identifying the generating application) but
different suffixes (usually arguments to the
generating application). They found that
there is substantial locality in “URL prefixes”
— the 100780 distinct dynamic content re-
quests in their proxy trace were based on just
12004 prefixes. They also found that exploit-
ing such similarities in delta-encoding can of-
fer significant performance advantages. The
DRP protocol [21] uses a checksum algorithm
(e.g. MD5) to identify file equivalence and
avoid unnecessary file download if checksum
values do not change. These proposals place
the respounsibility of creating equivalence (or
partial equivalence) classes on a caching agent
and a server, with little or no support from
the applications. DCCP, on the other hand,
allows individual web applications to explic-
itly specify equivalence between different doc-
uments they generate, which can help delta-
encoding in identifying similar documents.

The idea of partial result delivery has been



considered by Dingle et al. [9]. They propose
that a caching agent could send previously
cached data to a client so she/he could browse
an old version while current data is being
fetched. Optimistically transferring poten-
tially out-of-date data to reduce end-to-end
latency is also considered by Banga et al. [4]
in delta-encoding. In this work, they pro-
pose sending the cached version of a dynamic
document to the requesting agent (client or
the next level proxy) while a delta is be-
ing fetched. DCCP lets application users
ezxplicitly define partial equivalence between
the cached results and a new query and we
can utilize the infrastructure of [9] or [4] to
achieve partial result delivery in the imple-
mentation of a DCCP-aware caching agent.

Cao et al. [5] propose that a piece of Java
code (a cache-applet) be attached to each dy-
namic document. This code is run whenever
a request is received for a cached document.
Cache applets can rewrite the cached docu-
ment, return the cached document or direct
the cache to refetch or regenerate the docu-
ment. This approach, referred to as Active
Cache, is extremely flexible and can be used
to maintain consistency in an application-
specific manner as well as dynamically modify
existing documents. However, the flexibility
of Active Cache comes with a price. It re-
quires starting up a new Java process (vir-
tual machine or compiled code) for every re-
quest. Keeping track of result equivalence re-
quires creation and maintenance of a pattern-
matching network. Since the cache-applet
for each document is independent (for secu-
rity reasons), cache-applets used to imple-
ment result-equivalence-based caching would
need to save and restore its pattern-matching
network to persistent storage. Depending on
the access pattern, this can be a significant
performance limitation. In contrast with the
generality of Active Cache, DCCP is more
restrictive. The trade-off is that this de-
sign simplifies implementation and provides
opportunities for optimization. The limited
scope and the declarative nature of the DCCP
directives alleviates security concerns. Us-
ing a single global pattern-matching network
allows processing for related patterns to be
shared. Finally, since the structure and the
function of the pattern-matching network is
known to the cache, it can maintain portions

of the network in memory.

Iyengar et al. [16, 7] propose that cache
servers export an API that allows individ-
ual applications to explicitly cache and in-
validate application-specific content. These
techniques are developed for caching iden-
tical requests at original content providers
and may not be feasible for proxy or client
caches. These techniques can be integrated
with DCCP when DCCP is deployed at

server-sites.

In previous research, we have considered
cooperative caching for dynamic web content
on a cluster of servers [14]. The research focus
is to study how clustered nodes collaborate
with each other in terms of caching and the
Time-To-Live method is used for maintain-
ing result consistency. However, this work
uses complete URLs as names for documents
and has no notion of equivalent or partially
equivalent requests.

Douglis et al. [10] propose that servers
should make the structure of a dynamic doc-
ument available to caches and that caches
should construct the desired document on de-
mand. The idea is that a dynamic document
be specified as a static part, one or more dy-
namic parts and a macro-based template that
combines them. The static parts and the
template can be cached whereas the dynamic
parts are fetched anew for every request.

3 The Dynamic Content
Caching Protocol (DCCP)

The goal of DCCP is to let web applications
exploit query semantics and specify equiva-
lence or partial-equivalence between the dy-
namic documents they generate. DCCP has
been defined using the extension mechanism
provided in HTTP 1.1 cache control direc-
tives [11]. Figure 1 presents the proposed di-
rectives (see Section 4 for examples). Each
document can contain one or more equiva-
lence directives. Each equivalence directive
specifies the set of requests that this docu-
ment can be used to fulfill. The set of re-
quests is specified using a pattern over the
set of arguments embedded in the URL, client
cookies, and the domain name and IP address



directive = eq_result | sim_result

eq_result := equivalent_result =condition

stm_result := partial_result= condition

condition = arg = pattern | (arg = pattern) op condition

arg := __domain | __IP_address | field_name | cookie_name
cookie_name := cookie: field_name

op = &’ | “11”

pattern = range | regezp

range := [number, number]

regexp = “Perl syntaz”

Figure 1: DCCP syntax for specifying equivalence directives. Field names are those argument

names in a GET-based query.

of the machine from which the query is orig-
inated. There is no authentication require-
ment implied in these arguments — caches im-
plementing DCCP are expected to provide
best-effort values for these arguments.

The language used to specify the equiva-
lence patterns provides equality for all argu-
ments and range operators for numeric ar-
guments. For example, “[0.0,100.0]” speci-
fies any real number between and including
0 and 100. Patterns can be composed us-
ing logical operators (“&&” stands for “and”
and “||” stands for “or”). The current ver-
sion of DCCP also includes regular expres-
sions over alphanumeric and special charac-
ters for string arguments as an experimental
feature. We use Perl syntax [22] for regu-
lar expressions. Note that a directive need
not specify values for all arguments. When a
cache agent (e.g. a proxy server) receives a re-
quest, it extracts the application arguments
from the URL, and the identity arguments
from request header as well as the identity
of the requesting machine. Note that DCCP
has been designed for handling GET-based
queries.

Since dynamic documents are generated
on demand, they usually have greater con-
sistency requirements than static documents.
HTTP 1.1 provides several cache control di-
rectives to manage consistency. The cur-
rent version of DCCP does not propose ad-
ditional directives for this purpose. We be-
lieve more experience with dynamic docu-
ments is needed to determine the set of com-
monly used consistency requirements. If nec-
essary, we could add directives to specify op-
tions such as polling periodically. The main

problem with detailed consistency directives
is that a proxy may not implement the di-
rectives which can result in incorrect results
being delivered to clients. Thus our current
focus is to support the class of applications
which can benefit from DCCP with the exist-
ing HTTP 1.1 consistency mechanisms.

4 Applications

In this section, we illustrate how DCCP can
be used to specify result equivalence for a va-
riety of content generating applications.

Alexandria Digital Library: The Alexan-
dria Digital Library (ADL) [3, 20] provides
geo-spatially-referenced access to large
classes of distributed library holdings.
Current ADL collections contain more
than 7 million entries of maps, satellite
images, aerial photographs, text docu-
ments, and scientific data sets. Each entry
has geographical extent represented as
a minimum bounding rectangle in longi-
tude and latitude and is spatially indexed.
Queries used in the current version of ADL
look like this: GET /cgi-bin/draw_map?
1at=36.81818181&1lon=-115.45454545&
ht=75.0&wd=180.0 HTTP/1.1.

Consider the scenario where the ADL
server knows that the maps it is serving have
a limited resolution. In that case, it can use
the DCCP equivalence directives to define re-
gions contained in the same map as equiva-
lent. For example, for the above query, it
could reply:

HTTP/1.1 200 OK



Swala/1.8a
text/html

Server:
Content-type:
Cache-control:
equivalent_result=‘‘lat=[36,37]&&lon=
[-115,-116]1&&ht=[74,76]1&&wd=[179,181] >’

The caching agent would associate this pat-
tern with the map. If a subsequent request
is received with arguments that match this
pattern, the caching agent can return that
result instead of calling the application and
re-executing the request. We evaluate the im-
pact of using DCCP for ADL dynamic con-
tent requests in Section 6.1.

Server-side image maps: Image maps [19]
are used to provide intuitive and attractive
labels for web links. Server-side image maps
consist of images that is embedded in a web
page. When a user clicks on a portion of
the image, the browser submits a GET re-
quest to the server and which includes the
screen coordinates as parameters. Client-
side image maps can also be used to trans-
late coordinates within simple image regions
into appropriate HTML links. A client-site
browser does such a translation and thus
client-site image maps are preferable in terms
of performance. However, server-side image
maps are useful in cases where the image
map is too complicated for a client-side im-
age map or a server needs to process clicked
screen coordinates. There are a number
of high volume sites including latimes.com,
and washingtonpost.com use the server-site
image maps.

The typical number of regions on an im-
age map is fairly small (e.g., from five to fif-
teen) while the possible number of coordi-
nates is usually at least two orders of mag-
nitude greater. Specifying result equivalence
for all coordinates using DCCP can signifi-
cantly improve the performance of server-side
image maps. A cache without equivalence
matching would be required to store all com-
binations of coordinates to generate a signif-
icant number of cache hits. With DCCP, the
equivalent result already present in a cache
can be identified without involving the server.
We evaluate the impact of using DCCP for
image maps in Section 6.2.

Weather Service: Weather servers use dy-
namically generated content to provide up-

to-date weather information for the requested
location. Typically location information, zip
code or city name, is encoded in the re-
quest URL. Such requests, however, can be
overly precise. Twenty zip codes might
have the same weather information, but since
their URLs are different, a cache with no
support for result equivalence would require
twenty cache entries to provide complete cov-
erage. With DCCP, a weather server can
specify that the same page should be re-
turned for all requests in the same region.
Figure 2 provides an illustration for zip-
codes in and around the University of Cal-
ifornia, Santa Barbara. The request is GET
/cgi-bin/weather.cgi?zip=93101 HTTP/1.1.

HTTP/1.1 200 OK

Swala/1.8a

text/html
Cache-control: equivalent_result=
¢ ‘zip=93111| |zip=93106| | zip=93117""

Server:
Content-type:

Figure 2: DCCP directives for a weather ap-
plication

Customized news services: There are sev-
eral forms of customized news services. The
simplest of these customize the content based
on the location of the requesting clients. This
is similar to the different editions that news-
papers publish targeting specific regions. For
such a scenario, all requests for a news page
from the same geographical region (or Inter-
net domain) would be equivalent. For exam-
ple, all clients from .uk machines would be
presented with United Kingdom specific news
stories. The first time the page is accessed,
the server must run the application to gener-
ate the customized web page; subsequent re-
quests for the same page from machines with
a .uk domain name can be serviced from the
cache. The DCCP directive for this case is
presented in Figure 3.

News services with greater degree of cus-

HTTP/1.1 200 OK

Swala/1.8a

text/html
equivalent_result=

Server:
Content-type:
Cache-control:

¢¢__domain=x*.uk’’

Figure 3: DCCP headers for a UK-specific
web page



HTTP/1.1 200 OK
Swala/1.8a

Content-type: text/html
Cache-control:

Server:

Cache-control:
Cache-control:
Cache-control:

equivalent_result="‘sports=yes&&clinton=yes&&movies=yes’’
partial result=‘‘sports=yes&&clinton=yes’’
partial_result=‘‘sports=yes&&movies=yes’’
partial result=‘‘clinton=yes&&movies=yes’’

Figure 4: DCCP directives for a user-profile-specific web page

tomization could use previously stored pro-
files to customize the news contents for in-
dividual users. Such a service can facilitate
caching of its documents by marking docu-
ments generated for users with identical pro-
files as equivalent and documents generated
for users with substantially overlapping pro-
files as partially-equivalent. Figure 4 provides
an illustration.

5 Design of a DCCP-aware
cache prototype

The primary challenge for the design and
implementation of a DCCP-aware caching
agent is to be able to efficiently main-
tain and use information about equivalence
and partial equivalence of cached documents.
We have developed a multi-stage pattern-
matching network for this purpose based on
the Swala cooperative web cache [14]. In this
section, we describe the structure of this net-
work and how the insertion and search oper-
ations are implemented.

In the DCCP model, each application spec-
ifies its result equivalence independently. As
a result, a dynamic document generated by
an application can be specified to be equiv-
alent only to other documents generated by
the same application. Accordingly, our proto-
type maintains a separate pattern-matching
network for every application. Each applica-
tion is identified by its net-path-name. The
net-path-name for a URL consists of the
longest prefix that contains no arguments.
Our prototype uses a hash table (with net-
path-names as keys) to quickly retrieve the
pattern-matching network corresponding to a
URL.

We discuss how we can build an effi-
cient pattern matching network for each

application with the same net-path-name
as follows. In general a pattern matching
rule can be transformed into a sequence
of conjunctive pattern phrases connected
by logical OR. For example, pattern
"map=USA&&lat=[34,37]1&&lon=[-119,-117]
||map=USA&&city=foo" contains two conjunc-
tive phrases. Given a set of conjunctive
phrases derived from the same rule or from
different rules, we partition them into a set
of clusters and each cluster has conjunctive
phrases with the same argument names
used in their exact match and range match
patterns (discussed below). For example,
two pattern phrases ¢ ‘map=USA&&zip=93111’’
and ‘‘map=USA&&zip=93016’’ are in the same
pattern phrase cluster.

We discuss how each pattern cluster ar-
ranges its data structure for result matching.
Given conjunctive pattern phrases within
each cluster, we classify patterns into three
parts in increasing degrees of complexity and
searching within each cluster contains three
stages:

e Exact match. All patterns are of form
argument=val. These patterns can be
hashed together. Searching within this
cluster can start from the correspond-
ing hash table so that only results sat-
isfy those exact match patterns are can-
didates for further searching.

e Range match. All patterns are of form
argument=[vall, val2]. Searching for
a result under these conditions is sim-
ilar to the problem of point intersec-
tion searching [2]: given a set of ob-
jects specified with multi-dimensional in-
tervals, find an object that contains a
query point. In our current implementa-
tion, we have used the R*tree data struc-
ture to group all such range match pat-
terns together.



e Complicated string match. All
patterns are of form argument=
regular _expression pattern. These
patterns contain complicated string
matching and so far we have not found
a good way to organize a set of such
patterns for efficient searching. Our
current solution is to linearly scan such
rules to find one result that matches
these string matching patterns.

Thus the first stage of searching within each
cluster is to use a hash table to narrow the
searching space, i.e. find potential results
which satisfy all exact match conditions. The
second stage of searching is to use a point
intersection data structure to further narrow
the searching scope. The last stage of search-
ing linearly scans all candidate results after
the above two-stage filtering.

Each pattern network for an application
with the same net-path-name consists of a
layered graph with a single designated root
node. Each child of this root node is a sub-
graph corresponding to each pattern cluster.
Each cluster subgraph contains a hash table
for exact match patterns and data structures
for range match patterns. The cached dy-
namic documents constitute the leaves of this
graph. A dynamic document is attached to a
node in the graph if and only if the sequence
of tests occurring on the path from the root to
this node successfully satisfies all conditions
specified by the DCCP rule of this document.
Note that since each document can have mul-
tiple DCCP directives and since each direc-
tive can have multiple conjunctive-phrases, a
cached document can be associated with mul-
tiple interior nodes in the pattern-matching
network.

When a new DCCP-annotated dynamic
document is inserted into the cache, the
caching agent extracts the DCCP directives
and the URL of the request that generated
the document. It parses the URL to ex-
tract the net-path-name for the request and
uses it to find the root of the associated
pattern-matching network. It parses the
DCCP directives and transforms them into
a set of conjunctive-phrases and inserts each
conjunctive-phrase into the network. Since
cached dynamic documents may become stale
and the rule for the same URL may change,

the pattern network needs to be updated pe-
riodically.

When a new URL query arrives from a
client, the prototype parses the URL to ex-
tract net-path-name for the request and uses
it to find the root of the associated pattern-
matching network. It then extracts the ar-
guments from the URL and the cookies from
the header. It also extracts the IP address
of the requesting machine by querying the
socket structure and does a reverse lookup to
determine the domain name of the request-
ing machine. It then uses these values to per-
form tests against the pattern-matching net-
work. Notice only some of query parameters
required by the network are extracted for the
matching purpose. If the match is success-
ful, that is, the match operation reaches the
node corresponding to a valid cached docu-
ment, the corresponding document is deemed
equivalent to the one requested by the client
and is returned in response to the query. No-
tice that there may be multiple cache entries
matching a new query and the system returns
the first matchable cache entry it finds.

Our above optimization is targeted at rules
that mainly use exact match or range pat-
terns. It is possible that for complex patterns
(particularly those making liberal use of reg-
ular expressions), trying to determine result
equivalence could take an inordinately long
time. To handle this case, we suggest that
the system should limit the amount of time
spent searching for a single request. Since re-
sult equivalence is only a hint, terminating
the search early and fetching a new copy of
the document from the server is safe.

For implementing progressive delivery of
partially-equivalent results, we can use the
multipart/x-mixed-replace MIME type, a
mechanism available in the Netscape browser
for providing continuously updatable web
pages. The previous work has used that for
delivering stale data [9].

6 Evaluation

To measure the space and time efficiency
of equivalence matching, we performed tests
for the following three applications: map de-
livery with boundary error tolerance, infor-



mation retrieval based on server-side image
maps, and providing weather forecast based
on zip code. We use real traces for the first
two applications and a synthetic trace for
weather forecast.

The goal of our evaluation was to esti-
mate the performance improvement, if any,
for DCCP-aware caching agents. For this, we
mainly used two metrics: cache hit ratio and
the volume of communication between the
caching agent and the content provider (if this
information is available). These metrics allow
us to run repeatable experiments and to focus
on the inherent performance improvements —
independent of the network characteristics.
In the ADL experiment, we also measured
the end-to-end performance to demonstrate
benefits in terms of response time reduction.

In these experiments, we ran a DCCP-
aware proxy on a 248MHz, 128 MB Sun Ultra-
30 with Solaris 2.6. All the code was compiled
with gcc -0.

6.1 Alexandria
web trace

Digital Library

In this experiment, we tried to estimate
the performance improvement that can be
achieved by using DCCP for spatial im-
age searching and retrieval requests in the
ADL system [3]. We have used an ADL
user access trace for September and Octo-
ber 1997. This trace contains 69,337 re-
quests and there are 28663 requests involving
CGI. Of those dynamic requests, 21,545 were
cgi-bin requests invoking one of two scripts:
drawmap and map-gif. These scripts re-
turn portions of maps, based on the param-
eters which include central-latitude, central-
longitude, height and width. Of those 21545
map requests, 7026 requests use an identical
URL to access an ADL startup image with
zero latitude and longitude and the remain-
ing 14529 requests access maps with different
parameter values. We used DCCP equiva-
lence directives for those 14529 map requests
to improve the cache hit ratio. We specified
two map areas to be equivalent if the differ-
ence of above four parameters between two
maps is within a specified error tolerance ra-
tio (for example, 5% or 10%). Two requests
are identical if the tolerance ratio is 0.

In this experiment, we set up a server at
Rutgers University in New Jersey and ran
both clients and the DCCP-enabled proxy at
UCSB. The clients launch requests sequen-
tially based on the trace to the proxy and the
proxy can respond quickly if it has cached
data since they are linked with a local net-
work, or it fetches data from Rutgers. The
round-trip latency between UCSB and Rut-
gers was around 82 milliseconds, measured
by using “ping”. The server at Rutgers does
not have the ADL data installed, and it em-
ulates the real ADL server at UCSB by exe-
cuting each CGI request with processing time
and result size same as what the UCSB ADL
server would have. This experiment assumes
that the server is fast enough to handle con-
current requests and it does not consider load
impact among simultaneous requests. The
experiment was conducted at midnight when
Internet traffic is relatively stable and the av-
erage results are reported by running this ex-
periment multiple times. There are minor
variations among different runs; however, the
deviation is fairly small.

The server processing time for each request
was measured in 1997 [14]. At that time,
we replayed the log against the ADL server
to measure the response time and response
size of each request. Considering today’s ma-
chines can be 3-fold faster than the ADL
server machine used in 1997, we have scaled
down the request processing time accordingly
in this experiment. The average processing
time for all 28663 dynamic requests is about
0.5 seconds. The average processing time for
all map requests (21545) is 169 ms while it
is 162 ms for those 14529 requests whose re-
sults include the DCCP headers. The reason
for the large difference in the average time
between all dynamic requests and all map re-
quests is that there are a certain number of
ADL requests involving time-consuming spa-
tial database searching.

Table 1 shows the benefits of equivalence
caching for processing all dynamic ADL re-
quests in this trace. The table shows that for
exact matches, a 38.6% cache hit is achiev-
able and this is because there are a large num-
ber of repeated requests with identical URLs.
If the application can tolerate a 5% or 10%
relative error, the hit percentage increases to
57.1% and 64.5% respectively. The total size



Error tolerance

| % | 5% | 10% |

Number of cache hits 11074 16370 18482
Cache hit percentage 386% | 57.1% | 64.5%
Saved communication 48MB | 65.2MB | 75MB
Percent reduction in communication | 41.5% 56.3% 64.8%
Ave. response time for a cache hit 48 ms | 4.5ms | 4.4 ms
Ave. response time for a cache miss | 773 ms | 852 ms | 958 ms
Ave. response time per request 476 ms | 368 ms | 340 ms

Table 1: Impact of result equivalence on cache performance when all dynamic requests are

considered.

of data shipped in this trace is 115.6MB and
the forth and fifth rows show the server-proxy
communication volume saved due to the de-
ployment of DCCP. The sixth row is the av-
erage request response time (from a client
launches a request until it receives a result)
for those requests whose results are fetched
from the proxy cache at UCSB. The sev-
enth row is the average request response time
for those requests whose results are fetched
from the Rutgers server due to cache misses.
The eighth row is the average request re-
sponse time for all dynamic requests. The re-
sults show that DCCP with tolerance 10% is
40% faster than only caching results of identi-
cal requests in terms of the average response
time. If tolerance 5% is used instead, then it
is 29.3% faster.

Now we focus on those map requests whose
return results use the DCCP directives and
there are 14529 such requests. Table 2 shows
the benefits of equivalence caching and cost
incurred due to the use of DCCP in process-
ing those map requests. The table shows that
for exact matches, only a 13.6% cache hit is
achievable. If the application can tolerate a
5% or 10% relative error, the hit percent-
age increases to 49% and 62% respectively.
The total size of data shipped for these re-
quests is 61.3MB and the forth and fifth rows
show the server-proxy communication volume
saved due to the deployment of DCCP. The
sixth row is the average request response time
for all those map requests. The average cost
for pattern matching network management
and equivalence searching varies from 4.4 to
4.8 milliseconds per request while the mem-
ory usage for the entire pattern-matching net-
work varies from 330KB to 900K B.

The performance improvement achieved by
DCCP-aware caching agents comes, however,
at the cost of additional memory to store
the pattern-matching network. Even though
the cost may not be large for many ap-
plications (e.g., see Table 2), it is conceiv-
able that the memory requirement can grow
rapidly if sufficient locality is not present in
the request stream. This situation can be
taken care of by imposing a bound on the
amount of space used for the network. When
the caching agent runs out of space for the
pattern-matching network, it purged old en-
tries using an LRU discipline. To understand
the impact of such a restriction, we conducted
additional experiments in which we limited
the amount of memory that could be used for
holding the pattern-matching network. Ta-
ble 3 presents the results. The second row in
Table 3 indicates percentage of space avail-
able compared to the situation when there
is sufficient space. The third row shows the
cache hit ratio under different space avail-
ability and error tolerance ratios. The result
shows that this trace still has very good tem-
poral locality and a high hit percentage can
be maintained even when only half of the re-
quired space is available.

6.2 NASA Kennedy Space Center
web trace

In this experiment, we tried to estimate
the performance improvement that can be
achieved by using DCCP for server-side im-
age maps. For these experiments, we used a
trace from the NASA Kennedy Space Cen-
ter WWW server in Florida [1] to quantify
the benefit of equivalence matching for im-
age map type workloads. The trace contains



| Error tolerance | 0% | 5% | 10% |

Number of cache hits 1975 7146 8959

Cache hit percentage 13.6% 49% 62%

Saved communication 7.9MB | 26.MB | 37TMB
Percent reduction in communication | 12.8% | 46.6% | 60.3%
Ave. response time per request 346 ms | 217 ms | 156 ms
Ave. cache search/insert overhead 4.8ms | 4.5ms | 4.4ms
Memory usage 900K 450K 330K

Table 2: Impact of result equivalence on cache performance for those DCCP-deployed requests.

| Error tolerance | 0%

| 5% | 10% |

Percent space available

100% | 80% 50%

100% | 80% | 50% | 100% | 80% | 50%

Cache hit ratio 13.6% | 12.8%

12.3%

49% 46% | 45% | 62% 58% | 56%

Table 3: Impact of limited memory for the pattern-matching network.

1,569,898 requests, of which 20,925 are for the
image map countdown69. We removed in-
valid requests, for a total of 20,774 requests.
Image maps transmit the coordinates where
the client clicked back to the server script,
which translates the coordinates to a URL
or returns a result. We have plotted the hit
pattern in Figure 5. For each point that was
clicked a hollow circle was plotted. The re-
gions that have solid black areas are where
multiple clicks occurred and correspond to
buttons on the image map. FEach button
maps to the same URL, while points that do
not fall into a button area result in an er-
ror message from the script. The image map
countdown69 has eleven buttons, as can be
seen from the heavy concentration of dots in
eleven regions. The scattering of dots out-
side of the buttons are clicks which do not
correspond to buttons and result in an error
message. We define each button as an equiva-
lent region, as well as the error message as an
equivalent region, resulting in twelve distinct
regions on the image map.

Using standard URL matching results in a
cache hit of 15,592 hits, and a 75.1% hit ra-
tio. Using result equivalence for all points
in the same region, the hit ratio increases to
99.9% or twelve cache misses, one for each
region. The searching time and space cost is
insignificant for this case because there are
only twelve unique results and there are only
twelve unique rules one per dynamic docu-
ment.

It should be noted that for this trace, using
client-site imagemaps can achieve the same
goal as DCCP; nevertheless, this experiment
demonstrates the effectiveness of DCCP if
server-site images are deployed.

6.3 Weather forecast based on zip
code

For this experiment, we generated a syn-
thetic trace. We assume that the total num-
ber of zip codes is 99999 and this number
is chosen based on the fact that a zip code
in the U.S. has five digits. There are about
3143 counties in USA and for this test we as-
sume that zip codes are randomly distributed
among counties and each county in USA has
the same weather condition within the same
time period. In terms of access patterns of
our synthetic trace, we assume a Zipf distri-
bution [25, 8]. While we do not have evidence
to support this assumption, we believe it is
more realistic than a uniform distribution.

For a randomly generated trace with
500,000 requests, the average searching and
network management cost is 0.12 millisec-
onds with a hit ratio of 99%. The reason
for small time overhead is that there is a
single application with one argument name
(zip code). Hashing effectively indexes all zip
codes, which allows for fast searching. The
space usage is 1.6MB for indexing all 99999
zip codes in the pattern matching network be-
cause each rule enumerates all equivalent zip
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Figure 5: Hit pattern for /cgi-bin/imagemap/countdown69 from the NASA trace. The hol-
low points correspond to coordinates where users clicked on the original image map. Boxes

correspond to buttons on the original image.

codes for the corresponding result. Imposing
a limit on space consumption does not de-
grade the cache hit ratio much because there
are actually only 3143 unique results.

7 Concluding remarks

The primary contribution of this work is
the DCCP protocol which allows a web appli-
cation to specify result equivalence between
the different documents (and groups of doc-
uments) it generates. This information can
be used by proxies and other caching agents
to speedup delivery of dynamic web content.
We have illustrated the utility of this proto-
col for several applications and preliminary
experiments indicate that the protocol is ca-
pable for achieving high cache hit ratios with
fairly small space and time overhead.

DCCP can be extended to express more
complicated patterns (e.g. inequality) and a
few directives can be further added to the cur-
rent DCCP for supporting basic features such
as banner rotation and access logs, which are
necessary for commercial Web sites [5]. Still,

compared to Active Cache, the functionality
of such a declarative protocol is more restric-
tive. The trade-off is that the declarative and
lightweight nature of this caching protocol al-
lows simplified security control and better ef-
ficiency.

We have not evaluated benefits of using our
protocol for sending partially equivalent re-
sults and this issue needs to be addressed
in the future. Under our current protocol
implementation, searching equivalent results
with complicated string matching rules can
be time-consuming and caching may be less
effective if imposing a searching time limit.
One possibility is to restrict the use of string
matching. Our current DCCP design is tar-
geted at GET-based queries and there are a
large number of dynamic requests which use
POST-based queries. We plan to study the
above issues after we gain more application
experience with DCCP.
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