
Organization-Based Analysis of Web-Object Sharing and Caching
Alec Wolman,Geoff Voelker, Nitin Sharma,NealCardwell,Molly Brown,

TashanaLandray, DenisePinnel,AnnaKarlin, HenryLevy

Department of Computer Science and Engineering
University of Washington

Abstract

Performance-enhancingmechanismsin theWorld Wide
Web primarily exploit repeatedrequeststo Web docu-
mentsby multipleclients.However, little is known about
patternsof shareddocumentaccess,particularlyfrom di-
verseclient populations.The principal goal of this pa-
peris to examinethesharingof Webdocumentsfrom an
organizational point of view. An organizationalanaly-
sisof sharingis important,becausecachingis oftenper-
formedon anorganizationalbasis;i.e., proxiesaretypi-
cally placedin front of largeandsmall companies,uni-
versities,departments,andsoon. Unfortunately, simul-
taneousmulti-organizationaltracesdonotcurrentlyexist
andaredifficult to obtainin practice.

Thegoalof this paperis to explore theextentof doc-
umentsharing(1) amongclientswithin singleorganiza-
tions, and (2) amongclients acrossdifferent organiza-
tions. To performthestudy, we usea largeuniversityas
a modelof a diversecollectionof organizations.Within
our university, we have tracedall externalWebrequests
andresponses,anonymizing the databut preservingor-
ganizationalmembershipinformation. This permitsus
to analyzeboth inter- and intra-organizationdocument
sharingandto testwhetherorganizationmembershipis
significant.As well, wecharacterizeanumberof param-
etersof our data,including basicobjectcharacteristics,
objectcacheability, andserverdistributions.

1 Introduction

The needto understandWeb behavior andperformance
has led to a large numberof studies,aimed in partic-
ular at classifying Web documentcharacteristics [11,
12, 13, 16, 21]. In contrast,the principal goal of this
study is to evaluatedocumentsharing behavior on the
Web, both within organizationsand between organiza-
tions.By documentsharing,wemeanaccessto thesame
Web documentsby different clients. Sharingbehavior
hasobvious implications for performance,particularly
with respectto the effectivenessof proxy caching(e.g.,
[9, 14, 17, 20, 27]). Proxycachesareoftenlocatedator-
ganizationalboundariesand improve performanceonly
if many documentsaresharedby many clients. There-
fore, anunderstandingof sharinggivesusaddedinsight

into potential performance-enhancingmechanismsand
alternativecachingstructures.

An analysisof documentsharingwithin an organiza-
tion is straightforwardandcanhelp predictthe benefits
of an organizationalproxy cache[13]. Studyingshar-
ing acrossmultiple organizationsis much more diffi-
cult, however. Tracing of the entire Web is obviously
not achievable, but even simultaneoustracesof multi-
ple organizationsdo not currentlyexist. In addition,the
requirementof mostorganizationsfor anonymizationof
URLsandIP addresses,alongwith thedifferentdatesof
datacapture,makescorrelationof separatetraceschal-
lenging,if not impossible.

In this study, we use The University of Washing-
ton (UW) as a basis for modeling intra- and inter-
organizationalWeb-object sharing. The UW is the
largestuniversityin thenorthwestpartof theU.S.,with a
populationof over 50,000people,including35,000stu-
dents,10,000full-time staff, and5,000faculty. Theuni-
versity hasa large communicationsinfrastructure,con-
sisting of thousandsof computersconnectedvia both
high-speednetworks andmodems.Together, this com-
munitygeneratesaworkloadof about17,400university-
externalWebrequestsperminuteatpeakperiods.

As with otheruniversities,UW is organizedinto many
colleges,departments,andprograms,eachwith its own
disparateadministrative, academic,or researchfocus.
For example,theUW includesmuseumsof artandnatu-
ral history, medicalanddentalschools,libraries,admin-
istrative organizations,and of courseacademicdepart-
ments,suchasmusic,Scandinavianlanguages,andcom-
puterscience.Whatdo suchdiverseorganizationshave
in commonwith respectto their Web accessrequests?
To answerthis question,we have tracedall UW-external
Webrequests;weanonymizethedatain suchawayasto
identify requests(andassociatedresponses)with the170
orsoindependentorganizationsfrom whichthey wereis-
sued.Thispermitsusto studyorganization-specificdoc-
umentaccessandsharingbehavior. We have collected
a numberof tracesduringtheperiodfrom October1998
throughthe present. In general,all of our tracesshow
the samebasicpatterns. The resultsin this paperare
basedon a representative one-weektracetaken in mid-
May 1999,andthereforeshow thevery latestcharacter-



isticsof modernWebtraffic.
The paperis organizedas follows. The next section

providesabrief descriptionof relatedwork. In Section3
we describeour trace-capturemethodology. Section4
containsa high-level descriptionof the workload we
traced. Section5 focuseson organization-basedstatis-
tics andalsoprovidesinter- andintra-organizationshar-
ing analysis.In Section6 wediscusscacheabilityof doc-
uments,andreasonswhy documentsarenot cacheable.
Finally, Section7 summarizesourstudyandits results.

2 Previous Work

Numerousrecentstudiesof Web traffic have beenper-
formed. Thesestudiesincludeanalysesof Web access
tracesfrom the perspective of browsers[11, 21], prox-
ies[2, 4, 6, 10, 12, 15, 18, 19, 24], andservers[1, 3, 23].
Theearliertracingstudieswereratherlimited in request
rate, numberof requests,and diversity of population.
Themostrecenttracingstudieshavebeenlargerandgen-
erally morediverse.In additionto staticanalysis,some
studieshave alsousedtrace-driven cachesimulationto
characterizethe locality andsharingpropertiesof these
verylargetraces[2, 5,13, 15, 16, 19], andto studytheef-
fectsof cookies,abortedconnections,andpersistentcon-
nectionson theperformanceof proxycaching[5, 15].

In thispaper, weexpandonthesepreviousresearchef-
forts. Our focusis on sharingandcacheability;however
wecanalsocompareour currentHTTPtraffic character-
istics to earlierstudies,showing how theWebworkload
haschanged.Our work is basedon themostrecentdata
from alargediversepopulation.Moreimportant,wepre-
serveenoughinformationsothatwecananalyzerequests
with respectto inter-organizationandintra-organization
documentsharing.

3 Measurement Methodology

We usepassive network monitoring to collectour traces
of Webtraffic travelingbetweentheUniversityof Wash-
ington andthe restof the Internet. UW connectsto its
InternetServiceProviders via two border routers;one
router handlesprimarily outboundtraffic and the other
inboundtraffic. Thesetwo routersare fully connected
to four 100-megabitEthernetswitchesdistributedacross
the campus. Eachswitch hasa monitoringport that is
usedto sendcopiesof the incomingandoutgoingpack-
ets to our monitoringhost,which analyzesthe packets
andproducesa trace.

We designedand implementedthe tracing software
usedto producethat datain this study. Our user-level
tracingsoftwarerunsona500MHz Digital Alpha21164
workstationrunningDigital Unix V4.0. Thissoftwarein-
stallsa kernelpacket filter [22] to deliver all TCPpack-

ets from the network interfacesto the user-level moni-
toring process,which analyzesthepacketsandproduces
a trace. The user-level processconsistsof threelayers:
TCP segment analysis,HTTP headerprocessing,and
logging.TheTCPsegmentanalysislayerclassifiesindi-
vidual TCPpacketsinto TCPconnectionsandidentifies
thefirst datasegmentsin eachconnection.Thefirst data
segmentis usedto decidewhetheror not theconnection
is anHTTP connection.This techniqueallows usto see
all HTTPtraffic (not justport80). Onceaconnectionhas
beenclassifiedasanHTTP connection,we monitor fur-
thersegmentsonthatconnectionsothatwecanlocateall
the relevantHTTP headerswhenpersistentconnections
arein use.TheHTTPheaderprocessinglayeris respon-
sible for parsingtheHTTP headersextractedfrom TCP
datasegmentsin theHTTPconnection.Oncetheheaders
have beenparsed,we extract the fields to be saved and
anonymize thosefields that containsensitive informa-
tion. We alsoanonymizetheIP addresseshere,andthen
passthat informationto the logging layer. The logging
layer takesthe informationfrom the HTTP parser, con-
verts it to a compactbinary representation,compresses
it, andwrites it to disk. We maintainpacket losscoun-
terson the monitoringhostat the device driver level, at
thepacket filter level, andat userlevel. During theMay
trace,we measuredthepacket lossat .0007%.It is also
possiblefor theswitchesto droppackets,andwe cannot
detectpacket lossat thetheseswitches,but theUW net-
work administratorswhomanagetheswitchestell usthat
they havesignificantexcesscapacity.

We usean anonymizationapproachthat protectspri-
vacy but preserves someaddresslocality information.
For internaladdresses,we classifythe IP addressbased
on its “organization”membership. An organizationis
asetof universityIP addressesthatformsanadministra-
tiveentity;anorganizationmayincludemultiplesubnets.
For instance,all machinesin theComputerScienceDe-
partmentare in a single organization,machinesin the
Departmentof Dentistry are in another, and machines
connectedto thecampusMuseumof NaturalHistoryare
in yetanother. Weconstructedthemappingfrom subnets
to organizationidentifiersbasedoninformationobtained
from thecampusnetwork administrators.Oncetheorga-
nizationidentifiersareassigned,boththeIP addressand
theorganizationidentifierareanonymized.Furthermore,
somebits of informationin theIP addressaredestroyed
beforeanonymizationto make the anonymizationmore
secure.If the hashfunction or key is compromised,no
transactioncanbe associatedwith a client addresswith
absolutecertainty.

For external addresses,we anonymize eachoctet of
the server IP addressseparately. For our purposes,two
serversareneareachotherif they sharemostor all of the
Internetpathbetweenthemandtheuniversity. We con-
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Figure 1: Histogram of the top 15 content types by count and size.

sidertwo serversto beon thesamesubnetwhenthefirst
threeoctetsof their IP addressesmatch. Given the use
of classlessrouting in the Internet,this schemewill not
provide 100% accuracy, but for large organizationswe
expect that this assumptionwill be overly conservative
ratherthanoverly aggressive.

Although our tracing software recordsall HTTP re-
questsand responsesflowing both in and out of UW,
the datapresentedin this paperis filtered to only look
at HTTP requestsgeneratedby clients insideUW, and
thecorrespondingHTTP responsesgeneratedby servers
outsideof UW. All of our resultsarebasedon theentire
tracecollectedfrom FridayMay 7th throughFridayMay
14th,1999,exceptfor theorganization-basedsharingre-
sultsin Section5, whicharefrom asingleday(Tuesday)
of our trace(thelimitation is dueto thememoryrequire-
mentsof thesharinganalysis).

4 High-Level Data Characteristics

Table1 showsthebasicdatacharacteristics.As thetable
shows, our tracesoftwaresaw the transferof 677 giga-
bytesof datain responsepackets,requestedfrom about
23,000 client addresses,and returned from 244,000
servers.It is interestingthat,comparedto thecommonly-
used1996DECtrace(analyzed,e.g.,in [13]), whichhad
a similar client population,we saw four timesasmany
requestsin oneweekasDEC saw in 3 weeks.Thesere-
questsandcorrespondingresponseandcloseeventsfol-
low the typical diurnal cycle, with a minimum of 460

requestsperminute(at 5 AM) anda peakof 17,400re-
questsperminute(at 3 PM).

Figures1aand1b presenta histogramof thetop con-
tenttypesby objectcountandbytestransmitted,respec-
tively. By count, the top four are image/gif, text/html,
No ContentType, and image/jpeg, with all the rest of
the contenttypesat significantly lower numbers. The
No ContentTypetraffic, which accountsfor 18%of the
responses,consistsprimarily of shortcontrol messages.
The largestpercentageof bytestransferredis accounted
for by text/html with 25%, thoughthe sum of the im-
age/gif(19%) andimage/jpeg (21%) typesaccountsfor
40% of the bytes transferred. The remainingcontent
types accountfor decreasingnumbersof byteswith a
heavy-taileddistribution.

Another type that accountsfor significant traffic,
which is not readilyapparentfrom thetable,is multime-
diacontent(audioandvideo).Thesumof all 59different
audioandvideo contenttypesthat we observed during
theMay traceaddsup to 14%of all bytestransferred.In

HTTP Transactions(Requests) 82.8million
Objects 18.4million
Clients 22,984
Servers 244,211
Total Bytes 677GB
Averagerequests/minute 8,200
Peakrequests/minute 17,400

Table1: Overall statisticsfor theone-weektrace.
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Figure 2: Requests broken down into initial, duplicate, and cacheable duplicate requests over time.

addition,thereis a significantamountof streamingmul-
timediacontentthat is deliveredthroughanout-of-band
channelbetweentheaudio/videoplayerandtheserver.

In a preliminaryattemptto view someof this out-of-
bandmultimediatraffic, we extendedour tracing soft-
wareto analyzeconnectionsmadeby theRealNetworks
audio/videoplayer, examiningport 7070traffic. Newer
versionsof theRealNetworksplayerusetheRTSPpro-
tocol, which we do not handle. The Real Networks
playersetsup a TCP control connectionon port 7070,
andthentransfersthedataon UDP port 7070.Our trace
softwareonly collectsTCPsegments,sowe analyzethe
controlconnectionto determinehow muchdatais being
transferred.Whenthe control connectionis shutdown,
a “statistics”packet is transmittedthatcontainstheaver-
agebandwidthdelivered(in bitspersecond)asmeasured
by theclient for thecompletedconnection.We take that
that bit-rate andmultiply it by the connectionduration
timeto estimatethesizeof thecontenttransferred.Some
of the control connectionsdo not transmitthe statistics
packet, in whichcasewe cannotmakeanestimate.

Duringtheweekof theMay trace,weobserved55000
connections,of which approximately40% had statis-
tics packets. For those 40%, we calculatedthat 28
GB of Real-AudioandReal-Videodataweretransferred
(which would scaleto 10%of theamountof HTTP data
transferredif theother60%of connectionshave similar
characteristics).Furthermore,theReal-AudioandReal-
Videoobjectsthemselvesarequitelarge,with anaverage
sizeof just undera megabyte.Whenwe sumup all the
differentkinds of multimediacontent,we seethat from
18%to 24%of Webrelatedtraffic comingin to theUni-
versity is multimediacontent,andthis is a lower bound
sinceweknow thatwe’remissingRTSPtraffic atthevery

least. We believe that the large quantity of audio and
videois signalinga new trend;e.g.,in thedatacollected
for studiesreportedin [12] and[16], audiotraffic does
not appear.

We were also curiousaboutthe HTTP protocol ver-
sionscurrently in use. The majority of requestsin our
trace(53%) are madeusing HTTP 1.0, but the major-
ity of responsesuseHTTP 1.1 (69%). In termsof bytes
transferred,the majority of bytes (75%) are returned
from HTTP1.1servers.

Thesestatisticssimply serve to provide someback-
groundaboutthegeneralnatureof thetracedata,in order
to setthecontext for theanalysisin thenext two sections.

5 Analysis of Document Sharing

This sectionpresentsandanalyzesour tracedata,focus-
ing on documentsharing. As previously stated,our in-
tentionis to usetheuniversityorganizationsasa simple
modelof independentorganizationsin theInternet.Our
goal is to answerseveral key questionswith respectto
Web-documentsharing,for example:

1. How muchobjectsharingoccursbetweendifferent
organizations?

2. Whattypesof objectsareshared?
3. How areobjectssharedin time?
4. Is membershipin an organizationa predictor of

sharingbehavior?
5. Are membersof organizationsmoresimilar to each

other than to membersof different organizations,
or do all clientsbehave more-or-lessidentically in
their requestbehavior?

Figure2 plots total Webrequestsper5 minuteperiod
overtheone-weektraceperiod.Theshadingof thegraph



divides the curve into threeareas: the darkest portion
shows the fraction of requeststhat are initial (first) re-
queststo objects,while themediumgrey portionshows
the subsetthat areduplicate(repeated)requeststo doc-
uments.A requestis considereda duplicateif it is to a
documentpreviouslyrequestedin thetraceby any client.
Thelightestgrey colorshowsthoserequeststhatareboth
duplicateandcacheable,aswe will discusslater.

Overall, thedatashowsthatabout75%of requestsare
to objectspreviouslyrequestedin thetrace.Thismatches
fairly closelytheresultsof Duskaet al. on several large
organizationaltraces[13]. Thepercentageof sharedre-
questsrisesvery slowly over time, asonemight expect.
From our one-weektrace,we cannotyet seethe peak;
however, this analysisdoesnot considerdocumenttime-
outsor replacements,thereforethe 75% is optimistic if
usedas a basisfor predictionof cachebehavior. Fur-
thermore,we cannottell from the figure how many of
the requeststo a sharedobject wereduplicaterequests
from the sameclient; overall, we found thatabout60%
of therequeststo shareddocumentswerefirst requestsby
aclient to thosedocuments;40%wererepeatedrequests
by thesameclient.

A key componentof our datais the encodingof the
organizationnumber, which allows us to identify each
clientasbelongingto oneof the170activeuniversityor-
ganizations.Theseorganizationsincludeacademicand
administrative departmentsand programs,dormitories,
andtheuniversity-widemodempool. Figures3aand3b
show the organizationsize, the requestrate, and num-
berof objectsaccessedby eachorganization.Thereare
several very large organizations,with most somewhat
smaller. Thelargestorganizationhas919“anonymized”
clients, the secondlargest organizationis the modem
pool with 759clients,andthe third largestorganization
has626clients.1 Thetop 20 organizationsall havemore
than100clients,asshown by thelabelsin Figure5. Be-
causeof thewaythatclientIP addressesareanonymized,
we cannotuniquely identify an individual client, i.e.,
eachanonymizedclient addresscould correspondto up
to 4 separateclients. For this tracethe ratio of “real”
clientsto “anonymized”clientsmeasuredby thelow lev-
els of our tracesoftware is 1.67; therefore,our 13,701
anonymizedclientsrepresent22,984trueclients.

Using the organization data, we can analyze the
amountof objectsharingthatoccursbothwithin andbe-
tweenorganizations.

Figure 4a shows intra-organization (local) sharing
from the perspective of both objectsandrequests.The
black line shows the percentageof all objectsaccessed
by eachorganizationthatarelocally-shared objects,i.e.,
accessedby more than oneorganizationmember. The

1Themodempool is somewhatspecial,becausemultipleclientscan
login throughasingleIP addressin thepool.

light grey line shows the percentageof all organization
requests that are to theselocally-sharedobjects. The
organizationsare orderedby decreasinglocally-shared
objectpercentage.From our dataon intra-organization
sharingwe canmakethefollowing observations:

� Only a small percentage(4.8% on average) of
the objects accessedwithin an organization are
sharedby multiplemembersof theorganization(the
smoothblackline).

� However, a much larger percentageof requests
(16.4% on average)are to locally-sharedobjects
(thelight grey line).

� The averagenumberof requestsper locally-shared
object is 4.0 – higher than the minimal 2 requests
requiredfor anobjectto beconsideredshared.

� Each locally-sharedobject is requestedby two
clientsonaveragein eachorganization.

Figure4b shows the inter-organization(global) shar-
ing activity. Heretheblackline shows thepercentageof
all objectsaccessedby eachorganizationthatwerealso
accessedby at leastoneother organization;we call such
objectsglobally-shared objects.Similarly, thelight grey
line shows the percentageof all requests by an organi-
zationto globally-sharedobjects.Theorganizationsare
orderedby decreasingglobally-sharedobjectpercentage.
Fromourdataoninter-organizationsharingwecanmake
thefollowing observations:

� Thereis moresharingwith otherorganizationsthan
within the organization; the fraction of globally-
sharedobjectsand requestsin Figure 4b is much
higherthanthe locally-sharedobjectsandrequests
in Figure 4a. This is not surprising,becausethe
combinedclient populationof all of the organiza-
tions is significantly larger thanany oneorganiza-
tion alone. As a result,thereis a muchgreaterop-
portunityfor theclientsin oneorganizationto share
with clientsfrom any of theotherorganizations.

� For 65%of theorganizations,morethanhalf of the
objectsreferencedareglobally-sharedobjects(the
smoothblackline).

� For 94% of the organizations,more than half of
the requestsareto globally-sharedobjects,andfor
10%of theorganizations75%of therequestsareto
globally-sharedobjects(thelight grey line).

� However, globally-sharedobjectsarenot requested
frequently by each organization. On average,
eachorganizationmakes1.5 requeststo a globally-
sharedobject.
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Figure 5: Breakdown of objects (a) and requests (b) into the different categories of sharing, for the 20 largest organi-
zations. The labels on the x-axis show the number of clients in each organization shown.

� Onaverage,a globally-sharedobjectis accessedby
only oneclient in eachorganization.

A key questionraisedby thesefiguresis whetherthe
objectssharedwithin anorganizationarethesame setof
objectsthat aresharedacrossorganizations.Figure 5a
shows, for the 20 largestorganizations,a breakdown of
organization-accessedobjectsinto varioussharingcate-
gories: local only, globalonly, local andglobal,andnot
shared.Figure5bshowsthesamebreakdownby request.
The graphsareorderedin decreasingorganizationsize,
with theorganizationsizeshown on thex-axis.

From Figure5b, we seethat the fraction of requests
to sharedobjects is fairly flat acrosstheseorganiza-
tion sizes. As we would expect, the fraction that
aresharedglobally-only risessomewhatwith decreased
organizationsize, while the fraction that are locally-
shareddecreaseswith decreasingorganizationsize.That
is, in general, the smaller the organization, the less
organization-internalsharing,andthemoreglobal shar-
ing. Looking at thewhite sectionof thebarsin bothfig-
ures,we seethat thesmallpercentageof objectsthatac-
countfor bothlocal andglobalsharingarevery hot,and
accountfor a muchgreaterfraction of the requeststhan
theobjectsthey represent.In contrast,thepercentageof
requeststo objectssharedlocally-only is very small for
theseorganizations.

To aid in the understandingof the degreeof object
sharing,Figure6 plots the numberof objects(on they-
axis) thatweresharedby exactly � organizations.Most
objectsareaccessedby only oneorganization,asshown
by the steepnessof the curve at ���! . We alsofound
that thereweremorethan1000objectsaccessedby 20
organizationsandmorethan100objectsaccessedby 45
organizations.
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Figure 6: The number of objects accessed by a given
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A key questionwith respectto our sharingdata is
whetherorganizationmembershipis significant. To an-
swerthisquestion,werandomlyassignedclientsto orga-
nizations,andcomparedtheinter- andintra-organization
sharingin therandomassignmentswith thesharingseen
in our traceanalysispresentedabove. (Therandomorga-
nizationshadthesamesizesastheactualorganizations.)
Figure7aplotsthefractionof requeststo locally-shared
objectsof the traceorganizationsand threerandomly-
assignedorganizations. From the figure, we seethat
sharingis higher in the real organizationsthan in the
randomly-assignedorganizations.In otherwords,there
is locality of referencesin organizationmembership.
Figure7bplotsthefractionof requeststo globally-shared
objectsfor the traceandfor the threerandomorganiza-
tions. As expected,thereis no significantdifferencein
theamountof globalsharingbetweenthereal traceand
therandomizedorganizationassignment.
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one other organization (b), compared with three random client-to-organization assignments.

The organization-orienteddatashow that thereis, in
fact,significanceto organizationmembership.Members
of an organizationare more likely to requestthe same
documentsthanasetof clientsof thesamesizechosenat
random.However, thevastmajorityof therequestsmade
areto objectsthat areglobally shared.In addition,ob-
jectsthataresharedboth locally within an organization
andglobally with otherorganizationsaremorelikely to
berequestedby anorganizationmember. This suggests
thatthemostrequestedobjectsareuniversallypopular.

Object and Server Popularity

For anotheraspectof sharingpatternswe examinethe
serversthatarebeingaccessedandserverproximity (i.e.,
which serversarecloseto eachotherin thenetwork).

Figure8 shows the cumulative distribution functions
of both server popularity and server subnetpopularity,
wherepopularityis measuredby therequest-count.The
byte-countcurvesfor serverpopularityandserversubnet
popularityareeffectively identical to the request-count
curvesshown in thegraph.Thedataindicatesthat50%
of theobjectsaccessedandbytestransferredcomefrom
roughly the top 850 servers (out of a total of 244,211
serversaccessed).A serversubnetis asetof serversthat
sharethe samefirst 24 bits of their IP addresses.Such
groupsof serversaretypically mirrors of eachother, or
at leastsit in asingleserverfarmownedby asinglecom-
pany. We seethat 50% of the objectscomefrom about
the top 200 server subnets;18% comefrom the top 20
subnets.

6 Document Cacheability
Thissectionexaminescacheabilityof documents,giving
usinsightinto thepotentialeffectivenessof proxycaches
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Figure 8: The cumulative distributions of server and
server subnet popularity.

in our environment. Web proxy cachesare a key per-
formancecomponentof the WWW infrastructure;their
objective is to improve performancethroughcachingof
documentsrequestedmorethanonce. Proxiestypically
live at theboundariesof anorganization,cachingdocu-
mentsfor all clientswithin thatorganization.

In Figure2 wesaw atime-seriesgraphof thepercent-
ageof duplicaterequests(i.e., requeststo a previously-
accesseddocument)andcacheablerequestsin our trace.
The cacheablerequestsare thosemadeto documents
that would be cachedby a standardproxy cache,such
asSquid [25]. We found that, in steadystate,approxi-
mately45%of therequestsareduplicateandcacheable,
placinganupperboundon thehit rate.Thewide differ-
encebetweenthe duplicateline and the cacheableline
indicatesthat only abouthalf of the duplicaterequests
(which could benefit from caching)are to objectsthat
arecacheable.
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Figure 9: Reasons for uncacheability of HTTP transac-
tions.

Our cacheabilityanalysisis basedon theimplementa-
tion of theSquidproxycache.We examinedthepolicies
implementedby bothSquidversion1 andSquidversion
2. Thereareseveralreasonswhy aSquidproxymaycon-
sidera documentuncacheable.

� CGI – Thedocumentwascreatedby aCGI scriptor
programandis not cached,becauseit is produced
dynamically.
� Cookie – Theresponsecontainsaset-cookieheader.

Squidversion1 doesnotallow theseresponsesto be
cached,but Squidversion2 doesallow themto be
cached.
� Query – Therequestis aquery, i.e.,theobjectname

includesaquestionmark(“?”).
� Pragma – The responseis explicitly marked un-

cacheablewith a “Pragma:no-cache”header.
� Cache-Control – Theresponseis explicitly marked

uncacheablewith the HTTP 1.1 Cache-Control
header.
� Method – The requestmethod is not “GET” or

“HEAD”.
� Response-Status – The server responsecodedoes

not allow the proxy to cachethe response. For
example,responsecode302 (Moved Temporarily)
cannotbe cachedwhenthereis no explicit expira-
tion datespecified.
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Figure 10: Breakdown by content-type of the un-
cacheable HTTP transactions.

� Push-Content – The content type “multipart/x-
mixed-replace”is usedby someserversto specify
dynamiccontent.
� Auth – Requeststhat specify an Authorization

header.
� Vary – Responsesthatspecifya Varyheader.

Figure 9 shows a breakdown of all HTTP requests,
detailing the percentagethat are uncacheablefor each
of the reasonslisted above. As the figure shows in the
bar labeled“Overall Uncache”,40%of therequestsare
uncacheablefor one or more of the itemized reasons.
QueriesandResponseStatusarethe two major reasons
for uncacheability. Adding up the percentagesfor each
reasonsumsto an amountgreaterthan the overall un-
cacheabilityrate,showing thatmany documentsareun-
cacheablefor more than one reason. The figure also
shows,for eachitemizedreason,thepercentageof HTTP
requeststhatareuncacheableonly dueto thatreason.Fi-
nally, thefigureshows that16%of Webrequestsareun-
cacheablefor two or morereasons.Figure10 shows the
mostcommoncontenttypesfor the uncacheabledocu-
ments.

Our intent in analyzingthecacheabilityof documents
is to show which requestsadeployedproxycachewould
be allowed to storeif it were given the requeststream
from our trace.However, oneshouldnot infer from our
analysisthatall of theuncacheablerequestsaretruly dy-
namic content. Web contentproviders may chooseto
markdocumentsuncacheablefor otherreasons,suchas
thedesireto trackthebehavior of individual users.Fig-
ure10 shows thatmorethan12%of all theuncacheable
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Figure 11: The left graph shows the fraction of cacheable objects and cacheable requests accessed by each organiza-
tion. The right graph shows the fraction of objects and requests that are both cacheable and shared by more than one
organization.

documentshave the image/gifcontenttype,andwe sus-
pectthatveryfew of theseimagesaretruly dynamiccon-
tent.

Figure11ashows, for eachorganization,thepercent-
ageof objects(black line) requestedby the organiza-
tion that arepotentially cacheable.The light grey line
shows, for eachorganization,thepercentageof requests
whoseresponsesarecacheable.Thefigureshowsthatthe
percentageof cacheableobjectsis somewhat lower than
thepercentageof cacheablerequests.Thepercentageof
cacheablerequestsgivesan upperboundon the hit rate
eachorganizationcould seewith an organization-local
proxycache.

Figure11bshows, for eachorganization,thepercent-
age of cacheablesharedobjects (the black line), and
the percentageof cacheablesharedrequestsin two cat-
egories.Themediumgrey line showsthosefirst requests
by anorganizationto globally sharedobjects.The light
grey line shows thetotal numberof requestsby anorga-
nization to globally sharedobjects. The differencebe-
tweenthesetwo lines representsthe duplicaterequests
by anorganizationto globallysharedobjects.If eachor-
ganizationhasits own cache,then the local cachecan
handleall duplicaterequestswhetheror not thereis a
global cache. If thereis a global cachein addition to
the local caches,thenthe global cachewill misson the
first requestby any of the organizations,but will hit on
all the first requestsby otherorganizationsthat follow.
Onecanconcludefrom thisgraphthatthereis significant
sharingamongorganizations(asshown by thelight grey
line), but thata largefractionof thatsharingis captured
just with organizationalcaches(asshown by the differ-
encebetweenlight andmediumgrey lines). Therefore,

a global cachein additionto the local cacheswill help,
but not nearlyto the degreeindicatedby the amountof
sharingamongorganizations.Anotherinterestingques-
tion is whetherasingleglobalcachewouldbebetterthan
usinglocal caches.We explorethis questionin a related
paper[26].

A lastfactorthatcanaffecttheperformanceof caching
is object expiration time. We found overall that only
9.2% of requestshadan expiration specified. Most of
theserequestsareto objectsthatexpirequickly; 47%are
to objectsthatexpire in lessthan2 hours. Interestingly,
of thosethatdid haveanexpirationspecified,26%hada
missingor invalid dateand29% hadan expiration time
thathadalreadypassed.

Finally, we have not presenteddetailedcachesimula-
tionshere;our objective is simply to analyzecacheabil-
ity of documentsin the most recentdata. From our
data,it appearsthat thetrendswith respectto cacheabil-
ity of documentsare getting worse. For example,our
measurementthat40%of all documentaccessesareun-
cacheableis significantly higher than the 7% reported
for client tracesat Berkeley in 1997 [16]. Without
widespreaddeployment of specialmechanismsto deal
with caching,suchas cachingsystemsthat handledy-
namiccontent[7, 8], the benefitsof proxy cachingare
not likely to improve.

7 Conclusions

In this paper, we have collectedandanalyzeda largere-
cent tracetaken in a university setting. Our study has
focusedonsharingof Webdocumentswithin andamong
a diversesetof organizationswithin a largeuniversity.



Wecanreachthefollowing conclusionsfrom ourdata:

� Organizationmembershipappearsto besignificant:
membersof an organizationaremore likely to re-
questthe samedocumentsthan a set of clients of
thesamesizechosenat randomfrom all theclients
in thepopulation.However, thevastmajorityof the
requestsmade(andtheobjectsrequested)areto ob-
jectsthataresharedamongmultipleorganizations.

� Objectsthataresimultaneouslysharedlocally by an
organizationandglobally with otherorganizations
aremorelikely to be requestedby an organization
memberthanobjectsthatarejust sharedlocally or
just sharedglobally. This suggeststhat the most-
requestedobjectsby an organizationare globally
anduniversallypopular.

� The traceshows mostly minor differencesrelative
to earliertracesin termsof many of thebasicchar-
acteristics. However, we seetwo important dif-
ferencescomparedto previous traces. The first is
that thepercentageof requeststo uncacheabledoc-
umentsis significantlyhigher. The secondis that
asignificantamountof audio/videocontentappears
in our trace.

Whenanalyzingtheseconclusions,onemustkeepin
mind thatwe donot know how similarour universityor-
ganizationsareto typical commercialorganizationsthat
connectto the Internet,but we hopeto investigatethis
questionin futurework. We have only begunto analyze
thedatawehavecollected.Otherfuturework includesa
moredetailedstatisticalanalysisof variousaspectsof the
dataalreadycollectedaswell asa studyof theevolution
of WWW traffic characteristicsover time. Towardsthis
end,weplanto repeatedlytraceandexamineWebtraffic
at theUniversityof Washington.
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