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Abstract

Performance-enhancimgechanismén the World Wide
Web primarily exploit repeatedrequestso Web docu-
mentsby multiple clients.However, little is known about
patternof shareddocumenticcessparticularlyfrom di-

verseclient populations. The principal goal of this pa-
peris to examinethe sharingof Web documentdrom an
organizational point of view. An organizationalanaly-
sisof sharingis important,because&achingis oftenper

formedon an organizationabasis;i.e., proxiesaretypi-

cally placedin front of large and small companiesuni-

versities,departmentsandso on. Unfortunately simul-
taneousnulti-organizationatracesdo not currentlyexist
andaredifficult to obtainin practice.

The goal of this paperis to explore the extent of doc-
umentsharing(1) amongclientswithin singleorganiza-
tions, and (2) amongclients acrossdifferent organiza-
tions. To performthe study we usea large universityas
amodelof a diversecollectionof organizations Within
our university, we have tracedall externalWebrequests
andresponsesanorymizing the databut preservingor-
ganizationaimembershignformation. This permitsus
to analyzeboth inter- and intra-organizationdocument
sharingandto testwhetherorganizationmemberships
significant.As well, we characterize humberof param-
etersof our data,including basicobjectcharacteristics,
objectcacheabilityandsener distributions.

1 Introduction

The needto understandVeb behaior and performance
hasled to a large numberof studies,aimedin partic-
ular at classifying Web documentcharacteristics [11,
12, 13, 16, 21]. In contrast,the principal goal of this
studyis to evaluatedocumentsharing behavior on the
Web, both within organizationsand between organiza-
tions. By documensharingwe meanaccesso thesame
Web documentsby different clients. Sharingbehaior
has obvious implicationsfor performance particularly
with respecto the effectivenessof proxy caching(e.g.,
[9, 14, 17, 20, 27]). Proxycachesareoftenlocatedat or-
ganizationaboundariesand improve performanceonly
if mary documentsare sharedby mary clients. There-
fore, anunderstandingf sharinggivesus addedinsight

into potential performance-enhancingnechanismsand
alternative cachingstructures.

An analysisof documentsharingwithin an organiza-
tion is straightforward and can help predictthe benefits
of an organizationalproxy cache[13]. Studyingshar
ing acrossmultiple organizationsis much more diffi-
cult, however. Tracing of the entire Web is obviously
not achievable, but even simultaneoudracesof multi-
ple organizationglo not currentlyexist. In addition,the
requiremenbf mostorganizationdor anorymizationof
URLs andIP addressealongwith thedifferentdatesof
datacapture,makescorrelationof separatdraceschal-
lenging,if notimpossible.

In this study we use The University of Washing-
ton (UW) as a basis for modeling intra- and inter-
organizationalWeb-object sharing. The UW is the
largestuniversityin thenorthwesfpartof theU.S.,with a
populationof over 50,000people,including 35,000stu-
dents,10,000full-time staf, and5,000faculty. Theuni-
versity hasa large communicationsnfrastructure con-
sisting of thousandsof computersconnectedvia both
high-speechetworks and modems. Togethey this com-
munity generatea workloadof about17,400university-
externalWebrequestperminuteat peakperiods.

As with otheruniversities UW is organizednto mary
colleges,departmentsand programs eachwith its own
disparateadministratve, academic,or researchfocus.
For example,the UW includesmuseum®f artandnatu-
ral history, medicalanddentalschools|ibraries,admin-
istrative organizations,and of courseacademicdepart-
ments suchasmusic,Scandingianlanguagesandcom-
puterscience.Whatdo suchdiverseorganizationshave
in commonwith respectto their Web accesgequests?
To answetthis questionwe have tracedall UW-external
Webrequestsye anorymizethedatain suchaway asto
identify requestgandassociatedesponsesyith the 170
orsoindependentrganizationgrom whichthey wereis-
sued.This permitsusto studyorganization-specifidoc-
umentaccessand sharingbehavior. We have collected
a numberof tracesduringthe periodfrom October1998
throughthe present. In general,all of our tracesshow
the samebasic patterns. The resultsin this paperare
basedon a representatie one-weekiracetakenin mid-
May 1999,andthereforeshaw the very latestcharacter



isticsof modernWeb traffic.

The paperis organizedasfollows. The next section
providesa brief descriptionof relatedwork. In Section3
we describeour trace-capturanethodology Section4
containsa high-level descriptionof the workload we
traced. Section5 focuseson organization-basedtatis-
tics andalsoprovidesinter- andintra-omganizationshar
ing analysis.In Section6 we discussacheabilityof doc-
uments,andreasonsvhy documentsare not cacheable.
Finally, Section7 summarize®ur studyandits results.

2 Previous Work

Numerousrecentstudiesof Web traffic have beenper
formed. Thesestudiesinclude analysesof Web access
tracesfrom the perspectie of browsers[11, 21], prox-
ies[2, 4,6,10,12, 15, 18, 19, 24], andseners[1, 3, 23].
Theearliertracingstudieswereratherlimited in request
rate, numberof requests,and diversity of population.
Themostrecentracingstudieshave beenargerandgen-
erally morediverse. In additionto staticanalysis,some
studieshave also usedtrace-driven cachesimulationto
characterizéhe locality and sharingpropertiesof these
verylargetraceq2, 5,13, 15, 16, 19], andto studytheef-
fectsof cookiesabortedconnectionsandpersistenton-
nectionson the performancef proxy caching[5, 15].

In this paperwe expandonthesepreviousresearclef-
forts. Ourfocusis on sharingandcacheability;however
we canalsocompareour currentHTTP traffic character
isticsto earlierstudies shaving how the Web workload
haschanged Ourwork is basedon the mostrecentdata
from alargediversepopulation.Moreimportant,we pre-
seneenoughinformationsothatwe cananalyzerequests
with respecto inter-organizationandintra-organization
documensharing.

3 Measurement Methodology

We usepassive network monitoring to collectour traces
of Webtraffic traveling betweerthe University of Wash-
ington andthe restof the Internet. UW connectdo its
Internet Service Providers via two borderrouters; one
router handlesprimarily outboundtraffic and the other
inboundtraffic. Thesetwo routersare fully connected
to four 100-meyabitEthernetswitchesdistributedacross
the campus. Eachswitch hasa monitoring port that is
usedto sendcopiesof the incomingandoutgoingpack-
etsto our monitoring host, which analyzesthe paclets
andproducestrace.

We designedand implementedthe tracing software
usedto producethat datain this study Our userlevel
tracingsoftwarerunsona500MHz Digital Alpha21164
workstatiorrunningDigital Unix V4.0. Thissoftwarein-
stallsa kernelpaclet filter [22] to deliver all TCP pack-

etsfrom the network interfacesto the userlevel moni-
toring processwhich analyzeghe pacletsandproduces
atrace. The userlevel processconsistsof threelayers:
TCP sggment analysis,HTTP headerprocessing,and
logging. The TCP seggmentanalysidayer classifiesndi-
vidual TCP pacletsinto TCP connectionsandidentifies
thefirst datasegmentsin eachconnection.Thefirst data
segmentis usedto decidewhetheror not the connection
is anHTTP connection.This techniqueallows usto see
all HTTPtraffic (notjustport80). Onceaconnectiorhas
beenclassifiedasan HTTP connectionwe monitor fur-
thersegmentsonthatconnectiorsothatwe canlocateall
therelevantHTTP headersvhenpersistentonnections
arein use.TheHTTP headeprocessindayeris respon-
sible for parsingthe HTTP headersxtractedfrom TCP
datasegmentsn theHTTP connectionOncetheheaders
have beenparsed,we extract the fields to be saved and
anorymize thosefields that contain sensitve informa-
tion. We alsoanorymizethe IP addressekere,andthen
passthatinformationto the logging layer. The logging
layertakesthe informationfrom the HTTP parser con-
vertsit to a compactbinary representationcompresses
it, andwritesit to disk. We maintainpacket losscoun-
terson the monitoringhostat the device driver level, at
the pacletfilter level, andat userlevel. During the May
trace,we measuredhe pacletlossat .0007%.1t is also
possiblefor the switchesto drop paclets,andwe cannot
detectpacletlossat thetheseswitches put the UW net-
work administratorsvho manageheswitchegell usthat
they have significantexcesscapacity

We usean anorymizationapproachthat protectspri-
vagy but preseres someaddresslocality information.
For internaladdressesye classifythe IP addressased
on its “organization”membership. An organizationis
asetof universityIP addressethatformsanadministra-
tive entity; anorganizatiormayincludemultiple subnets.
For instance all machinedn the ComputerScienceDe-
partmentare in a single organization,machinesin the
Departmentof Dentistry are in another and machines
connectedo thecampusMuseumof NaturalHistory are
in yetanother We constructedhe mappingfrom subnets
to organizationdentifiersbasedn informationobtained
from thecampumetwork administratorsOncetheorga-
nizationidentifiersareassignedboththe P addressand
theorganizatioridentifierareanorymized.Furthermore,
somebits of informationin the IP addressaredestryed
beforeanorymizationto make the anorymizationmore
secure.If the hashfunction or key is compromisedno
transactioncanbe associatedvith a client addresswith
absolutecertainty

For external addresseswe anorymize eachoctet of
the sener IP addressseparately For our purposestwo
senersareneareachotherif they sharemostor all of the
Internetpathbetweenthemandthe university. We con-
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Figure 1. Histogram of the top 15 content types by count and size.

sidertwo senersto be onthe samesubnetwhenthefirst
threeoctetsof their IP addressematch. Giventhe use
of classlessoutingin the Internet,this schemewill not
provide 100% accuragy, but for large organizationsve
expectthat this assumptiorwill be overly conserative
ratherthanoverly aggresasie.

Although our tracing software recordsall HTTP re-
guestsand responseglowing both in and out of UW,
the datapresentedn this paperis filtered to only look
at HTTP requestggeneratedy clientsinside UW, and
thecorrespondingdTTP responsegeneratedby seners
outsideof UW. All of our resultsarebasedon the entire
tracecollectedfrom FridayMay 7ththroughFriday May
14th,1999,exceptfor the organization-basesharingre-
sultsin Section5, which arefrom asingleday (Tuesday)
of ourtrace(thelimitation is dueto thememoryrequire-
mentsof the sharinganalysis).

4 High-Level Data Characteristics

Tablel shavsthebasicdatacharacteristicsAs thetable
shaws, our tracesoftware sav the transferof 677 giga-
bytesof datain responseaclets,requestedrom about
23,000 client addressesand returned from 244,000
seners.lt is interestinghat,comparedo thecommonly-
usedl996DEC trace(analyzede.g.,in [13]), whichhad
a similar client population,we sav four timesas mary

requestsn oneweekasDEC saw in 3 weeks.Thesere-
guestsandcorrespondingesponsendcloseeventsfol-

low the typical diurnal cycle, with a minimum of 460

requestper minute (at5 AM) anda peakof 17,400re-
questgperminute(at3 PM).

Figureslaandlb present histogramof the top con-
tenttypesby objectcountandbytestransmittedrespec-
tively. By count,the top four are image/gif, text/html,
No ContentType, and image/jpg, with all the rest of
the contenttypesat significantly lower numbers. The
No ContentType traffic, which accountdor 18% of the
responses;onsistsprimarily of shortcontrolmessages.
The largestpercentagef bytestransferreds accounted
for by text/html with 25%, thoughthe sum of the im-
age/qif(19%) andimage/jpg (21%) typesaccountsor
40% of the bytestransferred. The remaining content
types accountfor decreasinghumbersof byteswith a
heary-taileddistribution.

Another type that accountsfor significant traffic,
whichis notreadilyapparenfrom thetable,is multime-
diacontent(audioandvideo). Thesumof all 59 different
audio andvideo contenttypesthat we obsened during
the May traceaddsup to 14%of all bytestransferredin

HTTP TransactiongRequests)| 82.8million
Objects 18.4million
Clients 22,984
Seners 244,211
Total Bytes 677GB
Averagerequests/minute 8,200
Peakrequests/minute 17,400

Tablel: Overall statisticsfor the one-weeklrace.
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Figure 2: Requests broken down into initial, duplicate, and cacheable duplicate requests over time.

addition,thereis a significantamountof streamingmul-
timediacontentthatis deliveredthroughan out-of-band
channebetweerthe audio/videplayerandthe sener.

In a preliminaryattemptto view someof this out-of-
band multimediatraffic, we extendedour tracing soft-
wareto analyzeconnectionsnadeby the RealNetworks
audio/videoplayer, examiningport 7070traffic. Newer
versionsof the RealNetworks playerusethe RTSP pro-
tocol, which we do not handle. The Real Networks
playersetsup a TCP control connectionon port 7070,
andthentransferghe dataon UDP port 7070. Our trace
softwareonly collectsTCP sggments sowe analyzethe
controlconnectiorto determinehow muchdatais being
transferred.Whenthe control connectionis shutdown,
a‘“statistics” pacletis transmitted¢hatcontainshe aver-
agebandwidthdelivered(in bits persecondpsmeasured
by the clientfor the completedconnection We take that
that bit-rate and multiply it by the connectionduration
time to estimatehesizeof thecontentiransferredSome
of the control connectionslo not transmitthe statistics
paclet,in which casewe cannotmake anestimate.

Duringtheweekof the May trace we obsened55000
connections,of which approximately40% had statis-
tics paclets. For those 40%, we calculatedthat 28
GB of Real-AudioandReal-Videodataweretransferred
(which would scaleto 10% of the amountof HTTP data
transferredf the other60% of connectionshave similar
characteristics)Furthermorethe Real-AudioandReal-
Videoobjectsthemselesarequitelarge,with anaverage
sizeof just undera megabyte. Whenwe sumup all the
differentkinds of multimediacontent,we seethatfrom
18%to 24% of Webrelatedtraffic comingin to the Uni-
versity is multimediacontent,andthis is a lower bound
sincewe know thatwe’re missingRT SPtraffic atthevery

least. We believe that the large quantity of audio and
videois signalinga new trend;e.g.,in thedatacollected
for studiesreportedin [12] and[16], audiotraffic does
notappear

We were also curiousaboutthe HTTP protocol ver-
sionscurrentlyin use. The majority of requestsn our
trace (53%) are madeusing HTTP 1.0, but the major
ity of responsesiseHTTP 1.1(69%). In termsof bytes
transferred,the majority of bytes (75%) are returned
fromHTTP 1.1seners.

Thesestatisticssimply sene to provide someback-
groundaboutthegenerahatureof thetracedata,in order
to setthecontext for theanalysisgn thenext two sections.

5 Analysisof Document Sharing

This sectionpresentandanalyzesour tracedata,focus-
ing on documentsharing. As previously stated,our in-
tentionis to usethe university organizationsasa simple
modelof independenbrganizationsn the Internet. Our
goal is to answerseveral key questionswith respectto
Web-documensharing for example:

1. How muchobjectsharingoccursbetweendifferent
organizations?

2. Whattypesof objectsareshared?

3. How areobjectssharedn time?

4. Is membershipin an organizationa predictor of
sharingbehavior?

5. Are memberof organizationsmoresimilarto each
otherthan to membersof different organizations,
or do all clientsbehae more-orlessidentically in
theirrequesbehaior?

Figure?2 plotstotal Webrequestgper5 minute period
overtheone-weekraceperiod. Theshadingf thegraph



divides the curwve into three areas: the darkest portion
shaws the fraction of requestshat areinitial (first) re-
guestgo objects,while the mediumgrey portion shavs
the subsethat are duplicate(repeatedyequestgo doc-
uments. A requestis considereda duplicateif it isto a
documenpreviously requestedh thetraceby ary client.
Thelightestgrey colorshovsthoserequestshatareboth
duplicateandcacheableaswe will discusdater.

Overall,the datashavsthatabout75%of requestare
to objectspreviouslyrequestedh thetrace. Thismatches
fairly closelytheresultsof Duskaetal. on severallarge
organizationatraceg[13]. The percentag®f sharedre-
guestgisesvery slowly overtime, asonemight expect.
From our one-weektrace,we cannotyet seethe peak;
however, this analysisdoesnot considerdocumentime-
outsor replacementsthereforethe 75% is optimistic if
usedas a basisfor predictionof cachebehaior. Fur
thermore,we cannottell from the figure how mary of
the requestdo a sharedobject were duplicaterequests
from the sameclient; overall, we found that about60%
of therequest$o sharedlocumentsverefirst requestdy
aclientto thosedocuments40%wererepeatedequests
by the sameclient.

A key componeniof our datais the encodingof the
organizationnumber which allows us to identify each
clientasbelongingto oneof the 170active universityor-
ganizations.Theseorganizationdnclude academicand
administratve departmentsaind programs,dormitories,
andthe university-widemodempool. Figures3aand3b
shav the organizationsize, the requestrate, and num-
ber of objectsaccessedy eachorganization.Thereare
several very large organizations,with most somevhat
smaller Thelargestorganizationhas919“anornymized”
clients, the secondlargest organizationis the modem
pool with 759 clients,andthe third largestorganization
has626clients! Thetop 20 organizationsall have more
than100clients,asshovn by thelabelsin Figure5. Be-
causeof thewaythatclientIP addresseareanorymized,
we cannotuniquely identify an individual client, i.e.,
eachanorymizedclient addresscould correspondo up
to 4 separateclients. For this tracethe ratio of “real”
clientsto “anornymized” clientsmeasuredby thelow lev-
els of our tracesoftwareis 1.67; therefore,our 13,701
anorymizedclientsrepresen22,984trueclients.

Using the organization data, we can analyze the
amountof objectsharingthatoccursbothwithin andbe-
tweenorganizations.

Figure 4a shaws intra-oganization (local) sharing
from the perspeciie of both objectsandrequests.The
black line shaws the percentagef all objectsaccessed
by eachorganizatiorthatarelocally-shared objects,.e.,
accessedy more than one organizationmember The

1Themodempoolis somavhatspecial becausenultiple clientscan
login througha singlelP addressn the pool.

light grey line shows the percentagef all organization
requests that are to theselocally-sharedobjects. The
organizationsare orderedby decreasindocally-shared
objectpercentage From our dataon intra-omganization
sharingwe canmalke the following obsenations:

e Only a small percentage(4.8% on average) of
the objects accessedwithin an organizationare
sharedy multiple member®f theorganizatior(the
smoothblackline).

e However, a much larger percentageof reguests
(16.4% on average)are to locally-sharedobjects
(thelight grey line).

e Theaveragenumberof requestperlocally-shared
objectis 4.0 — higherthanthe minimal 2 requests
requiredfor anobjectto beconsideredhared.

e Each locally-sharedobject is requestedby two
clientson averagein eachorganization.

Figure 4b shaws the inter-organization(global) shar
ing actwity. Herethe blackline shavs the percentagef
all objectsaccessetby eachorganizationthatwerealso
accessety atleastoneother organizationwe call such
objectsglobally-shared objects.Similarly, the light grey
line shows the percentagef all requests by an organi-
zationto globally-sharedbjects. The organizationsare
orderedby decreasinglobally-shareabjectpercentage.
Fromourdataoninter-organizatiorsharingwe canmake
thefollowing obsenations:

e Thereis moresharingwith otherorganizationghan
within the organization;the fraction of globally-
sharedobjectsand requestdan Figure 4b is much
higherthanthe locally-sharedbjectsandrequests
in Figure 4a. This is not surprising,becausehe
combinedclient populationof all of the organiza-
tions is significantly largerthanary one organiza-
tion alone. As a result,thereis a muchgreaterop-
portunityfor the clientsin oneorganizatiorto share
with clientsfrom ary of the otherorganizations.

e For 65%of the organizationsmorethanhalf of the
objectsreferencedare globally-sharedbjects(the
smoothblackline).

e For 94% of the organizations,more than half of
therequestsreto globally-sharedbjects,andfor
10%of the organizationg 5% of therequestareto
globally-sharedbjects(thelight grey line).

e However, globally-sharedbjectsarenot requested
frequently by each organization. On average,
eachorganizationmakes1.5requestgo a globally-
sharedbject.
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e Onaverageaglobally-sharedbjectis accessetly
only oneclientin eachorganization.

A key questionraisedby thesefiguresis whetherthe
objectssharedwithin anorganizatiorarethe same setof
objectsthat are sharedacrossorganizations. Figure 5a
shaws, for the 20 largestorganizationsa breakdaevn of
organization-accesseibjectsinto varioussharingcate-
gories:local only, globalonly, local andglobal,andnot
shared Figure5b shavsthe samebreakdaevn by request.
The graphsareorderedin decreasingrganizationsize,
with the organizatiorsizeshavn on the x-axis.

From Figure 5b, we seethat the fraction of requests
to sharedobjectsis fairly flat acrosstheseorganiza-
tion sizes. As we would expect, the fraction that
aresharedglobally-only risessomavhatwith decreased
organizationsize, while the fraction that are locally-
shareddecreasewith decreasingrganizatiorsize. That
is, in general,the smaller the organization, the less
organization-internasharing,andthe more global shar
ing. Looking at the white sectionof the barsin bothfig-
ures,we seethatthe smallpercentagef objectsthatac-
countfor bothlocal andglobal sharingarevery hot, and
accountfor a muchgreaterfraction of the requestghan
the objectsthey representin contrastthe percentagef
requestgo objectssharedocally-only is very small for
theseorganizations.

To aid in the understandingf the degree of object
sharing,Figure 6 plots the numberof objects(on the y-
axis) thatweresharedby exactly x organizations.Most
objectsareaccessethy only oneorganizationasshovn
by the steepnessf thecurveatz = 1. We alsofound
that therewere more than 1000 objectsaccessedby 20
organizationsandmorethan 100 objectsaccessetly 45
organizations.
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Figure 6: The number of objects accessed by a given
number of organizations. Note that the y-axis uses a log
scale.

A key questionwith respectto our sharingdata is
whetherorganizationmembershigs significant. To an-
swerthis questionwe randomlyassignealientsto orga-
nizations,andcomparedheinter- andintra-organization
sharingin therandomassignmentwith the sharingseen
in ourtraceanalysigpresente@bove. (Therandomorga-
nizationshadthe samesizesasthe actualorganizations.)
Figure 7aplotsthefraction of requestdo locally-shared
objectsof the trace organizationsand three randomly-
assignedorganizations. From the figure, we seethat
sharingis higherin the real organizationsthan in the
randomly-assignedrganizations.In otherwords,there
is locality of referencesin organizationmembership.
Figure7b plotsthefractionof requestso globally-shared
objectsfor the traceandfor the threerandomorganiza-
tions. As expected,thereis no significantdifferencein
the amountof global sharingbetweenthe realtraceand
therandomizedrganizationassignment.
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Figure 7: Fraction of requestsin the organization that are shared within this organization (a) and shared with at least
one other organization (b), compared with three random client-to-organization assignments.

The organization-orientediatashow that thereis, in
fact, significanceto organizatiormembershipMembers
of an organizationare more likely to requestthe same
documentshanasetof clientsof thesamesizechoserat
random.However, thevastmajority of therequestsnade
areto objectsthatare globally shared.In addition, ob-
jectsthatare sharedboth locally within an organization
andglobally with otherorganizationsaremorelikely to
be requestedy an organizationmember This suggests
thatthe mostrequesteabjectsareuniversallypopular

Object and Server Popularity

For anotheraspectof sharingpatternswe examinethe
senersthatarebeingaccessedndsenerproximity (i.e.,
which senersarecloseto eachotherin the network).

Figure 8 shavs the cumulative distribution functions
of both sener popularity and sener subnetpopularity
wherepopularityis measuredy the request-countThe
byte-counturvesfor senerpopularityandsenersubnet
popularity are effectively identical to the request-count
curvesshown in the graph. The dataindicatesthat 50%
of the objectsaccessedndbytestransferreccomefrom
roughly the top 850 seners (out of a total of 244,211
senersaccessed)A senersubnets a setof senersthat
sharethe samefirst 24 bits of their IP addressesSuch
groupsof senersaretypically mirrors of eachother, or
atleastsitin asinglesenerfarmownedby asinglecom-
pary. We seethat 50% of the objectscomefrom about
the top 200 sener subnets;18% comefrom the top 20
subnets.

6 Document Cacheability

This sectionexaminescacheabilityof documentsgiving
usinsightinto thepotentialeffectivenes®f proxy caches
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Figure 8: The cumulative distributions of server and
server subnet popularity.

in our ervironment. Web proxy cachesare a key per
formancecomponenf the WWW infrastructure their
objective is to improve performancehroughcachingof
documentgequestednorethanonce. Proxiestypically
live at the boundarieof an organization cachingdocu-
mentsfor all clientswithin thatorganization.

In Figure2 we sav atime-seriegraphof the percent-
ageof duplicaterequestdi.e., requestdo a previously-
accessedocumentiandcacheableequestsn ourtrace.
The cacheablerequestsare those madeto documents
that would be cachedby a standardproxy cache,such
asSquid[25]. We foundthat, in steadystate,approxi-
mately45% of therequestsareduplicateandcacheable,
placingan upperboundon the hit rate. The wide differ-
encebetweenthe duplicateline andthe cacheabldine
indicatesthat only abouthalf of the duplicaterequests
(which could benefitfrom caching)areto objectsthat
arecacheable.
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Figure 9: Reasons for uncacheability of HTTP transac-
tions.

Our cacheabilityanalysiss basecon theimplementa-
tion of the Squidproxy cache We examinedthe policies
implementedy both Squidversionl andSquidversion
2. Thereareseveralreasonsvhy a Squidproxy maycon-
sideradocumentuncacheable.

e CGI —Thedocumentvascreatediy a CGl scriptor
programandis not cached becauset is produced
dynamically

e Cookie—Theresponseontainsaset-cookieheader
Squidversionl doesnotallow theseresponseto be
cachedput Squidversion2 doesallow themto be
cached.

e Query—Therequesis aqueryi.e.,theobjectname
includesa questiormark (“?").

e Pragma — The responses explicitly marked un-
cacheablevith a“Pragma:no-cache’header

e Cache-Control — Theresponsas explicitly marked
uncacheablewith the HTTP 1.1 Cache-Control
header

e Method — The requestmethodis not “GET” or
“HEAD".

e Response-Satus — The sener responsecode does
not allow the proxy to cachethe response. For
example,responseode 302 (Moved Temporarily)
cannotbe cachedwhenthereis no explicit expira-
tion datespecified.

Content Types of
Uncacheable Objects

No Content Type 44 4

text/html 37.4
image/gif
application/x-javascript
text/plain

image/jpeg
application/octet-stream

application/vnd.rn-realplayer
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Figure 10: Breakdown by content-type of the un-
cacheable HTTP transactions.

e Push-Content — The content type “multipart/x-
mixed-replace’is usedby somesenersto specify
dynamiccontent.

e Auth — Requeststhat specify an Authorization
header

¢ Vary — Responsethatspecifya Vary header

Figure 9 shawvs a breakdevn of all HTTP requests,
detailing the percentagehat are uncacheabldor each
of the reasondisted above. As the figure shavs in the
barlabeled“Overall_Uncache”,40% of therequestsare
uncacheabldor one or more of the itemizedreasons.
Queriesand Responseétatusare the two major reasons
for uncacheability Adding up the percentagefor each
reasonsumsto an amountgreaterthan the overall un-
cacheabilityrate, shaving that mary documentsareun-
cacheablefor more than one reason. The figure also
shaws, for eachitemizedreasonthepercentagef HTTP
requestshatareuncacheablenly dueto thatreason Fi-
nally, the figure shavs that 16% of Webrequestareun-
cacheabldor two or morereasonsFigure10 showvs the
most commoncontenttypesfor the uncacheabl@&ocu-
ments.

Ourintentin analyzingthe cacheabilityof documents
is to shav which requests deployedproxy cachewould
be allowed to storeif it were given the requeststream
from our trace. However, oneshouldnot infer from our
analysighatall of theuncacheableequestsaretruly dy-
namic content. Web contentproviders may chooseto
mark documentsincacheabléor otherreasonssuchas
the desireto trackthe behaior of individual users.Fig-
ure 10 shaws thatmorethan12% of all theuncacheable
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Figure 11: Theleft graph shows the fraction of cacheable objects and cacheable requests accessed by each organiza-
tion. The right graph shows the fraction of objects and requests that are both cacheable and shared by more than one

organization.

documentdave theimage/gifcontenttype,andwe sus-
pectthatveryfew of theseémagesaretruly dynamiccon-
tent.

Figure 11ashaws, for eachorganizationthe percent-
age of objects(black line) requestedcby the organiza-
tion that are potentially cacheable.The light grey line
shaws, for eachorganizationthe percentagef requests
whoseresponsearecacheableThefigureshownsthatthe
percentag®f cacheabl®bjectsis somavhatlower than
the percentag®f cacheableequestsThe percentagef
cacheableequestgyivesan upperboundon the hit rate
eachorganizationcould seewith an organization-local
proxy cache.

Figure 11bshaows, for eachorganization the percent-
age of cacheablesharedobjects (the black line), and
the percentagef cacheablesharedrequestsn two cat-
egories.Themediumgrey line shavs thosefirst requests
by anorganizationto globally sharedobjects. The light
grey line shaws the total numberof requestdy anorga-
nizationto globally sharedobjects. The differencebe-
tweenthesetwo lines representshe duplicaterequests
by anorganizatiorto globally sharecbjects.If eachor-
ganizationhasits own cache,thenthe local cachecan
handleall duplicaterequestsvhetheror not thereis a
global cache. If thereis a global cachein additionto
the local cachesthenthe global cachewill misson the
first requestby ary of the organizationsput will hit on
all the first requestdy other organizationghat follow.
Onecanconcludgrom thisgraphthatthereis significant
sharingamongorganizationgasshavn by thelight grey
line), but thata large fraction of thatsharingis captured
just with organizationakcacheqasshowvn by the differ-
encebetweenlight andmediumgrey lines). Therefore,

a global cachein additionto the local cacheswill help,
but not nearlyto the degreeindicatedby the amountof
sharingamongorganizations.Anotherinterestingques-
tion iswhetherasingleglobalcachenould bebetterthan
usinglocal cachesWe explorethis questionin arelated
paper26].

A lastfactorthatcanaffecttheperformancef caching
is object expiration time. We found overall that only
9.2% of requestshad an expiration specified. Most of
theserequestareto objectsthatexpire quickly; 47%are
to objectsthatexpire in lessthan2 hours. Interestingly
of thosethatdid have anexpirationspecified 26% hada
missingor invalid dateand29% hadan expirationtime
thathadalreadypassed.

Finally, we have not presentedletailedcachesimula-
tions here;our objectie is simply to analyzecacheabil-
ity of documentsin the most recentdata. From our
data,it appearghatthetrendswith respecto cacheabil-
ity of documentsare gettingworse. For example,our
measuremerthat40% of all documentaccesseareun-
cacheablas significantly higher than the 7% reported
for client tracesat Berkeley in 1997 [16]. Without
widespreaddeployment of specialmechanismgo deal
with caching,suchas cachingsystemsthat handledy-
namic content[7, 8], the benefitsof proxy cachingare
notlikely to improve.

7 Conclusions

In this paper we have collectedandanalyzeda largere-
centtracetaken in a university setting. Our study has
focusedon sharingof Web documentsvithin andamong
adiversesetof organizationsvithin alarge university.



We canreachthefollowing conclusiongrom our data:

¢ Organizatiormembershi@appeardo be significant:
membersof an organizationare morelikely to re-
guestthe samedocumentghan a setof clients of
the samesizechoserat randomfrom all the clients
in the population.However, thevastmajority of the
requestsnade(andtheobjectsrequestedareto ob-
jectsthataresharecamongmultiple organizations.

¢ Objectsthataresimultaneouslgharedocally by an
organizationand globally with otherorganizations
aremorelikely to be requestedy an organization
memberthanobjectsthatarejust sharedocally or
just sharedglobally. This suggestghat the most-
requestedbjectsby an organizationare globally
anduniversallypopular

e The traceshavs mostly minor differenceselative
to earliertracesin termsof mary of the basicchar
acteristics. However, we seetwo important dif-
ferencescomparedo previous traces. The first is
thatthe percentagef requestgo uncacheableoc-
umentsis significantly higher The secondis that
asignificantamountof audio/videacontentappears
in ourtrace.

Whenanalyzingtheseconclusionspne mustkeepin
mind thatwe do not know how similar our universityor-
ganizationsareto typical commercialorganizationghat
connectto the Internet,but we hopeto investigatethis
guestionin futurework. We have only begunto analyze
the datawe have collected.Otherfuturework includesa
moredetailedstatisticalanalysisof variousaspect®f the
dataalreadycollectedaswell asa studyof the evolution
of WWW traffic characteristicever time. Towardsthis
end,we planto repeatedlyraceandexamineWebtraffic
atthe University of Washington.
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