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Abstract 

Tree-based reliable multicast protocols provide scalability by distributing error-recovery tasks among 

several repair nodes.  These repair nodes integrate the status information of several receiver nodes and 

perform local error recovery for these nodes using the data stored in their buffers.  We propose a buffer 

management scheme that uses both positive and negative acknowledgments to manage these buffers in an 

efficient manner.  Under our scheme, receiver nodes send negative acknowledgments to repair nodes to 

request packet retransmissions.  At infrequent intervals, they also send positive acknowledgments to indi-

cate which packets can be safely discarded from the buffer of their repair node.  Our scheme reduces 

delay in error recovery, because the packets requested from the repair nodes are always available in their 

buffers.  It achieves this goal without increasing the server workload because (a) each receiver node only 

sends infrequent positive acknowledgments and (b) their sending times are randomized among all the 

receiver nodes.  We also show how our scheme can be extended to provide full flow control and eliminate 

buffer overflows. 

 

I. Introduction 

     One of the most difficult issues in end-to-end multicasting is that of providing an error-free transmis-

sion mechanism. The standard method for providing reliable unicast is positive acknowledgements 

(ACKs).  It requires the receiver to send an ACK for each packet that it has received.  The sender keeps 

track of these ACKs and retransmits all packets that have not been properly acknowledged within a given 

time window.  TCP [13] is a well-known protocol using positive ACKs to provide reliable unicast. 
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     The same approach fails when applied to reliable multicasts because of the ACK implosion [1, 17, 21] 

it creates. Since each receiver has to acknowledge each packet it has correctly received, the sender’s abil-

ity to handle these ACKs limits the number of nodes participating in a reliable multicast. 

     This situation has led to numerous proposals aiming at providing scalable reliable schemes.  The IETF 

Reliable Multicast Transport (RMT) Working Group has standardized three RMT protocols based on 

these proposals: Asynchronous Layered Coding (ALC) [5], a NAK-based protocol [4], and a tree-based 

protocol [1, 9, 17]. 

     Among these three protocols, the tree-based protocol is known to provide high scalability as well as 

reliability.  It constructs a logical tree at the transport layer for error recovery.  This tree comprises three 

types of nodes: a sender node, repair nodes, and receiver nodes.  The sender node is the root of the logical 

multicast tree.  It controls the overall tree construction and is responsible for retransmission of lost pack-

ets within the whole multicast group.  Each repair node acts as a local server for a subset of the receiver 

nodes in the tree.  It integrates the status information of its receiver nodes and performs local error recov-

ery for these nodes using the data cached in its buffer.  Hence, tree-based protocol achieves scalability by 

distributing the server retransmission workload among the repair nodes. 

     There are still two open issues in tree-based protocols.  The first is how to construct a logical tree in an 

efficient manner.  One of the authors has recently proposed an efficient hybrid scheme for constructing a 

well-organized logical tree [1].  His hybrid scheme combines the advantages of previous schemes by 

constructing a logical tree in a semi-concurrent manner while minimizing the number of control mes-

sages. 

     The second open issue is when to discard packets from the buffers of repair nodes. Discarding packets 

that might still be needed is unacceptable, because it would force the receiver nodes to contact the sender 

node whenever they need a retransmission of a discarded packet. Discarding packets too late would result 

in an inefficient use of the available buffer space on the repair nodes. Schemes addressing this issue can 

be broadly divided into ACK-based [6, 7, 17] and NAK-based schemes [2-4, 14].  As we will see, both 

approaches have their own limitations. 

     In the ACK-based schemes, receiver nodes send an ACK to their repair node every time they have 

correctly received packet.  This allows each repair node to discard from its buffer all packets that have 

been acknowledged by all receiver nodes.  However, the ACK-based approach does not scale up well due 
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to the ACK implosion occurring at the repair nodes.  NAK-based schemes solve this ACK implosion 

problem by shifting the error detection load from the repair to each receiver node.  Receiver nodes reply 

with NAKs whenever they detect a packet loss.  However, they provide no efficient mechanism to safely 

discard packets from the repair node buffers.  

     We propose an efficient buffer management scheme combining NAKs and infrequent ACKs to over-

come these limitations.  Under our scheme, receiver nodes send NAKs to repair nodes to request packet 

retransmissions.  At fixed infrequent intervals, they also send ACKs to indicate which packets can be 

safely discarded from the repair node buffers.  We avoid any risk of ACK implosion because each 

receiver node only sends infrequent positive acknowledgments and their sending times are randomized 

among all the receiver nodes.  

     Our proposal has two major advantages over other schemes.  First, the amount of feedback from 

receiver nodes is significantly reduced owing to randomized ACK.  This feature provides scalability, 

since each repair node will be able to handle more receiver nodes.  Second, it guarantees fast recovery of 

transmission errors, since the packets requested from receiver nodes are always available in the buffers of 

the repair nodes.  In addition, the scheme can be extended to provide flow control and eliminate any risk 

of buffer overflow. 

     The remainder of this paper is organized as follows.  Section II summarizes the existing buffer man-

agement schemes for providing buffer refreshment functionality in reliable multicast.  Section III 

introduces our new buffer management scheme.  In section IV, we show the performance of the proposed 

scheme.  Finally, section V contains our conclusions. 

 

II. Related Works 

     This section describes the buffer management protocols of existing reliable multicast protocols.  These 

protocols essentially differ in the strategies they use for deciding which participants buffer packets for 

retransmission and how long these packets should be retained. 

     Scalable Reliable Multicast (SRM) [4] is a well-known receiver-initiated multicast protocol that guar-

antees out-of-order reliable delivery using NAKs from receivers.  Whenever a receiver detects a lost 

packet, it multicasts NAKs to all participants in the multicast session.  This allows the nearest receiver to 

retransmit the packet by multicasting. As a result, the protocol distributes the error recovery load from 
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one sender to all receivers of the multicast session.  The sole drawback of the SRM protocol is that all 

receivers have to keep all packets in their buffer for retransmission. Hence, SRM protocol cannot provide 

an efficient buffer management mechanism at the transport layer.  

     The first tree-based reliable multicast protocol was the Reliable Multicast Transport Protocol (RMTP) 

[17].  RMTP provides reliable multicast by constructing a physical tree of the network layer.  It allocates 

a designated receiver (DR) in each local region and makes this receiver responsible for error recovery for 

all the other receivers in that region.  To reduce ACK implosion, each receiver periodically unicasts an 

ACK to its designated receiver instead of sending an ACK for every received packet.  This ACK contains 

the maximum packet number that each receiver has successfully received.  Unfortunately, this periodic 

feedback policy significantly delays error recovery.  Hence, RMTP is not suitable for applications that 

transmit time-sensitive multimedia data.  In addition, RMTP stores the whole multicast session data in the 

secondary memory of the DR for retransmission, which makes it poorly suited for transfers of large 

amounts of data. Some of these problems were addressed in RMTP-II by the addition of NAKs. 

     Guo [6] proposed a stability detection algorithm partitioning receivers into groups and having all 

receivers in a group participate in error recovery.  This is achieved by letting receivers periodically 

exchange history information about the set of messages they have received.  Eventually one receiver in 

the group becomes aware that all the receivers in the group have successfully received the packet and 

announces this to all the members in the group.  Then all members can safely discard the packet from 

buffer.  This feature causes high message traffic overhead because the algorithm requires frequent 

exchange of messages.  

     Ozkasap [14] proposed an efficient buffering policy where only a small set of receivers buffer the 

packet to reduce the amount of total buffer requirement.  Receivers that have lost packets use a hash 

function to select the set of members that have the packet in the buffer and request a retransmission of the 

packet from one of them.  However, their selection method does not consider geographic locations 

between different receivers.  Hence, its scalability is constrained because the latency for error recovery 

increases with the number of participants. 

     Randomized Reliable Multicast Protocol (RRMP) [18] is an extended version of Bimodal Multicast 

Protocol (BMP) [2].  BMP uses a simple buffer management policy in which each member buffers 

packets for a fixed amount of time.  RRMP uses instead a two-phase buffering policy: feedback-based 
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short-term buffering and randomized long-term buffering.  In the first phase, every member that receives 

a packet buffers it for a short period of time in order to facilitate retransmission of lost packets in its local 

region.  After that, only small random subset of members in each region continues to buffer the packet.  

The drawback of this protocol is that it takes a long time for the receiver to search and find the correct 

repair nodes as the number of participants increase.   

     Finally, the Search Party protocol [3] uses a timer to discard the packet from the buffer: each member 

in the group simply discards packets after a fixed amount of time.  The protocol remains vague on the 

problem of selecting the proper time interval for discarding packets. 

     Most of the NAK-based multicast protocols remain equally vague on that issue because the absence of 

a NAK from a given receiver for a given packet is not a definitive indication that the receiver has received 

the packet. Yamamoto et al. [20, 21] have proposed an interesting flow-control scheme for NAK-based 

multicast protocols.  Their scheme requires the sender to reduce its transmission rate whenever it receives 

NAKs for too many of its packets.  To prevent excessive decreases of the transmission rate, the sender 

keeps also a log of its past transmission rate.  While the scheme was found to be efficient we need to point 

out that it minimizes occurrences of buffer overflow rather than eliminating them as a sliding window 

protocol would do. 

 

III. Proposed Buffer Management Scheme 

     Our scheme applies to tree-based protocols where each repair node provides local recovery in its 

region on the logical tree.  We further assume a receiver-initiated error recovery process and require 

receiver nodes to send a NAK to their repair node every time they detect a packet loss.  In addition, we 

make the following assumptions: 

• There are N receiver nodes for each repair node. This repair node is responsible for re-transmit-

ting the packets requested with NAKs from its N receiver nodes. 

• Each receiver node has an independent link loss probability. Let LPi for i = 1, 2, …, N be the 

loss probability of receiver node i. 

• The sender node has m data packets to transmit to the members of the multicast group. 

• Each packet contains its sequence number ns. 
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Figure 1. Example of randomized ACK scheme (with Nmax = 5) 

 
 

III.1. Basic Scheme 

     When a receiver node i joins a multicast session, it receives a packet from its repair node specifying 

the maximum number Nmax of sent packets the repair node is normally willing to keep in its buffer.  The 

node generates then a random number Nrand
i between 1 and Nmax that identifies the first packet after which 

it will send an ACK packet to its repair node.  This packet will act as an implicit acknowledgment for 

packets 1 to Nrand
i.   After that, receiver node i will send a similar ACK packet after each packet RCi such 

that  

 RCi = Nrand
i + k Nmax for k = 0, 1, 2, 3,… (1) 

     In addition, the receiver nodes always acknowledge the last packet of the transmission.  Since these 

transmissions start at random offsets 

 Nrand
i = random(1, Nmax) for 1 ≤ i ≤ N,  (2) 

they will be more or less equally distributed over time.  Therefore, we eliminate the risk of a sudden ava-

lanche of ACKs sent for the same packet.  Figure 1 shows an example of our randomized ACK scheme 

when Nmax is equal to 5.   

     Let Li be the last ACK packet sent by receiver node i.  Assuming that there is no pending packet 

retransmission, the repair node now can safely discard up to packet D such that 

  D � min{ Li  | 1 � i � N }  (3) 
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     Receiver nodes that leave the multicast session without any notice can disrupt the multicast session for 

all receiver nodes.  The repair node will use a timeout mechanism to detect them and cut them off. 

     Let us turn now our attention to the way our scheme handles lost packets and corrupted packets.  When 

a receiver node i detects such a packet, it sends a NAK to the repair node.  This NAK will contain the 

sequence number of the last packet such that itself and all its predecessors were correctly received by 

receiver node i.   

     Here, two options are possible.  First, the receiver node i can continue the same sequence of ACKs.  

The sole disadvantage of this option is that we will not take advantage of the implicit ACK contained in 

the NAK.  Assume, for instance, that Nmax=10 and the first message acknowledged by i was 5.  Node i is 

then supposed to acknowledge packet 5, 15, 25, and so on.  Assume now that receiver node i did not 

receive packet number 14.  It will send a NAK mentioning that packet number 14 was not correctly 

received and that the packet number 13 is the last packet such that itself and all its predecessors were 

correctly received by node i.  Hence, the next ACK sent by the node will only acknowledge the correct 

reception of packets 14 and 15. 

     A better solution is to delay the next ACK by receiver node i up to packet 13+10=23.  After that, 

receiver i will acknowledge packet 33, 43, and so on and will remain in that schedule until it sends 

another NAK.  This would still ensure that the repair node receives at least one ACK from receiver node i 

every Nmax packets.  This second option has one major drawback.  If most of the receivers do not receive a 

specific packet, they will reschedule all their ACKs for the same packets, thus creating unacceptable peek 

in the server workload.  We decided therefore on another solution relying again on randomization.  

Assume that node i sends a NAK for packet j and that NAK includes an ACK for packet k.  Node i will 

select a new random number N’rand
i between 1 and Nmax.  The next packet to be acknowledged by receiver 

node i will then be given by  

 max( j + N’rand
i, Li + Nmax),  for 1 � i � N, (4) 

where Li  is the last ACK sent by receiver node i. 

     The first main advantage of our scheme is that it significantly reduces the number of feedbacks from 

receiver nodes, required to safely discard the packets from repair node’s buffer.  This feature increases the 

whole Internet performance by reducing unnecessary traffic. 



 8 

     A second advantage of our scheme is that it guarantees that the repair node will always have in its 

buffer all the packets that can be requested by any of its receiver nodes.  We achieve this reliability using 

cumulative ACK mechanism.  Our ACK(n) means the receiver has correctly received up to packet n.  

Assume, for instance, that a receiver node i has not received packet k.  It will send a NAK(k) to the repair 

node.  The repair node basically buffers at least up to Li packet such that Li > k.  Hence, the packet k is 

always available in repair node’s buffer and can be retransmitted.  In our scheme, the arrival time of 

ACK(Li) is always larger than that of NAK(k) because the receiver node i cannot send an ACK(Li) until it 

receives up to packet Li.  It means the receiver node i does not send an ACK(Li) until it receive a packet k.  

This property can be described as 

 Arrival_Time(ACK(Li)) > Arrival_Time(NAK(k)), (5) 

because Li  > k.  As a result, our scheme reduces the packet error recovery delay because no packet will 

ever have to be retransmitted either by an upper repair node or the original sender node.  Our error recov-

ery delay is dependent on the round-trip time between the repair node and the receiver node requesting 

the retransmission of the packet. 

     The sole disadvantage of our scheme is that each repair node will use more buffer space than a repair 

node receiving ACKs from all its receiver nodes for all packets sent by the sender node.  The total buffer 

space used by all repair nodes will however remain almost constant because repair nodes receiving less 

ACKs will be able to manage more receiver nodes.  As a result, we will have fewer repair nodes with 

larger buffers. 

     To show that let us assume that a repair node can receive up to nACK acknowledgments for each packet 

sent by the sender node.  This means that a repair node receiving ACKs for all packets sent by the sender 

node will be able to handle up to nACK receiver nodes and will need a buffer capable of storing one single 

packet.  Under our scheme, each packet is acknowledged by 1/Nmax of the receiver nodes.  This means that 

each repair node will be able to handle up to nACK×Nmax receiver nodes.  The buffer space requirements of 

each repair node will be multiplied by Nmax but the total buffer space requirements of all repair nodes will 

remain unchanged because we will need Nmax less of them. 

III.2 Flow Control 

     Our buffer management scheme provides reliable transmission in a multicast session, because the 

packets requested from receiver nodes by NAKs are always available in repair node’s buffer, as long as 
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there is no overflow. In this section, we show that buffer overflow will occur without flow control, and 

we describe our flow control scheme to avoid this buffer overflow. 

 

III.2.1 Buffer Overflow Issues 

     The most straightforward method to avoid buffer overflow is removing some old packets to make 

space for the newly arrived packets.  In our case, we might have to remove some old packets from the 

buffer of a repair node before that repair node has received the proper randomized ACKs from its receiver 

nodes.  As a result, the repair may not be able to honor all retransmission requests from its receiver nodes.  

This will increase the workload of the sender node and result in additional error recovery delay. 

     Unfortunately, no buffer management scheme can avoid overflowing a finite buffer without flow 

control.  This property can be easily proved using M/M/1/K queuing system [8]. Let us assume the 

packets arrive at repair node with a Poisson process with arrival rate λ. Packets are discarded from the 

buffer by refreshment policy.  Let us call this discard rate µ.  In our case, the discard rate is exponentially 

distributed with mean 1/µ, because it depends on the round trip time between the repair node and receiver 

nodes.  If the buffer size is limited to K and an infinite number of packets arrive, we can apply the 

M/M/1/K queuing system [8]. 

P(buffer is full) = [(1 - (λ/µ))·(λ/µ)K]/[1 - (λ/µ)K+1]      for λ < µ. 

The condition for the absence of the buffer overflow is then given by 

[(1 - (λ/µ))·(λ/µ)K]/[1 - (λ/µ)K+1] = 0, 

which simplifies into  

[(1 - (λ/µ))·(λ/µ)K] = 0, 

which can only be satisfied when either λ = 0 or K goes to infinity. 

 

III.2.2 Proposed Flow Control Scheme 

     Our scheme can also perform flow control using a sliding-window mechanism.  It will then allow the 

sender node to transmit up to a fixed number Ssender of packets without waiting for their ACKs.  This win-

dow is said to be sliding because each ACK arrival at the sender allows the sender to send one more 

packet. 
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Algorithm: 
   Join multicast group 
   Set Dj = 0 for all 1 � j � NRP 
   Send packets 1 to B* 
   Set C = B* 
   Begin loop 
      Switch (event) 
             event :  ACK for packet Dj from repair node j arrives 
                          Select Cmin = min{ Dj |1 � j � NRP}  
                          Send packets from C + 1 to C + Cmin 
                          Set C = C + Cmin 
                          Break 
      End switch 
   End loop 
   Leave multicast group 
 

Figure 2. Sender node algorithm 

 

    A first way to accommodate this sliding window is to add Ssender extra slots in the buffers of each repair 

node. Define Dj as the highest numbered packet that repair node j can safely discard based on the 

randomized ACKs sent by its receiver nodes.  One simple mechanism to advance the sliding window 

would be to have all repair nodes sending to the sender node an ACK for each packet Dj they have 

discarded from their buffer.  As we observed at the end of the previous subsection, our scheme requires 

Nmax less repair nodes than a scheme where all repair nodes receive ACKs from all their receiver nodes for 

all packets sent by the sender node.  Hence the sender node is not likely to be flooded by an inordinate 

number of ACK packets for a wide range of small to medium multicast group sizes. 

     Let us now extend our scheme to the case where different repair nodes may have different buffer sizes.  

Let B* denote the minimum buffer size of all repair nodes.  Then, the sender node can initially send up to 

packet B*.  Let Dj be the last packet acknowledged by repair node j.  The highest-numbered packet Cmin 

that was acknowledged all repair nodes is then given by 

  Cmin = min{ Dj |1 � j� NRP} , (6) 

where NRP is the number of repair nodes. 

     When all repair nodes have acknowledged packet Cmin, the sender can now safely sends packets up to 

Cmin + B*.  
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Algorithm: 
   Join multicast group 
   Set Li = 0 for all 1 � i � Nj 

   Set Rrand
j = random(1, Ns) 

   Set count = 0 
   Begin loop 
      Switch (event) 
               event :  Data from sender node arrives 
                            Store packet in buffer 
                            Increment count 
                            Break 
               event :  ACK from a receiver node arrives 
                            Set D = min{ Li | 1 � i � Nj}  
                            Remove up to packet D from its buffer 
                            If count = Rrand

j mod Ns then 
                                   Send ACK for D to sender node 
                            Endif 
                            Break 
               event :  NAK from a receiver node arrives 
                            Retransmits missing packet 
                            Set D = min{ Li | 1 � i � Nj }  
                            Remove up to packet D from its buffer 
                            If count = Rrand

j mod Ns then 
                                   Send ACK for D to sender node 
                            Endif 
                            Break  
       End switch 
   End loop 
   Leave multicast group 

Figure 3. Algorithm for repair node j (1 � j � NRP) 

 

     As we mentioned earlier, this scheme will work well as long as there are not too many repair node.  

When this is not the case, we can randomize ACKs at the repair node level to allow the sender node to 

handle more repair nodes. Our fully randomized scheme assumes every repair node has a large enough, 

but finite, buffer.  Define a slot as the transmission time of a packet.  Recall that, under our scheme, repair 

node j receives an average of Nj/Nmax ACKs from its Nj receiver nodes during every slot. 

     At the beginning of each multicast, the sender node will send to all repair nodes a packet containing an 

integer Ns specifying the factor by which all repair nodes must divide the number of ACKs they will send 

to the sender node. Each repair node j will then select a random number Rrand
j between 1 and Ns 

 Rrand
j = random (1, Ns), (7) 
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Algorithm: 
   Join multicast group 
   Select Nrand

i = random(1, Nmax)  
   Set count = 0 
   Set k = 0 
   Begin loop 
      Switch (event) 
               event :  Data from sender node arrives 
                            Store packet in buffer 
                            Increment count 
                            Note packet as successfully received 
                            If count = Nrand

i mod Nmax then 
                                   Send ACK for count to sender node 
                                   Increment k 
                            Endif 
                            Break 
               event :  Missing packet detected 
                            Send NAK to repair node 
                            Find last packet that was correctly received 
                            as well as all its predecessors 
                            Piggyback ACK for that packet 
                            Select N’ rand

i = random(1, Nmax)  
                            If count + N’ rand

i > Nrand
i + kNmax then 

                                    Set Nrand
i = (count + N’ rand

i) mod Nmax 

                            Endif 
                            Break 
      End switch 
   End loop 
   Leave multicast group 

Figure 4. Algorithm for receiver node i (1 � i � N) 

 

     Rather than sending an ACK to the sender node for each packet it discards from it buffer, repair node 

will send its first ACK for the packet it will discard during slot Rrand
j.  After that, it will only send ACKs 

to the sender every Ns slots. Hence it will only send during slots RPj such that  

 RPj = Rrand
i + kNs,  for k = 0, 1, 2, 3,… (8) 

The total number MRAND of ACKs sent by repair nodes during a multicast session of duration M packets is 

thus given by 

  MRAND = M/N (9) 

     We now show the minimum buffer size required to implement a given sliding window of duration 

Ssender  under our fully randomized scheme: 
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     Each receiver node will wait for up to Nmax – 1 slots to notify the repair node it has successfully 

received a given packet.  Each repair node will wait for up to Ns – 1 slots to notify the repair node it has 

discarded a given packet from its buffer.  As a result, the minimum buffer size required for achieving a 

sliding window of duration Ssender is given by 

 Ssender + Nmax  + Ns – 2 (10) 

     Our flow control scheme has two advantages.  First, it provides scalability, because it reduces the 

number of ACKs sent by repair nodes.  This feature reduces not only the sender’s workload, but also 

network traffic in a multicast session.  Second, it guarantees reliability, as we never loose any packet 

anywhere and the buffers of the repair nodes never experience any overflow.  The summarized algorithm 

for each type of nodes is given in Figure 2 to Figure 4. 

IV. Performance Analysis 

     In this section, we show the performance of the proposed buffer management scheme by computer 

simulation.  All the simulation experiments are performed for up to 100 receiver nodes per repair node. 

IV.1 Feedback Implosion 

     The first main advantage of our scheme is that it significantly reduces the number of feedbacks from 

receiver nodes, required to safely discard the packets from repair node’s buffer.  Over a session involving 

the transmission of m packets, the maximum number of feedbacks from receiver node i is given by 

�m/Nmax�  + 1 + m·LPi , 

where �m/Nmax�  +1 is the number of ACKs sent by node i, including the ACK for the last packet of the 

transmission and m·LPi is the number of NAKs sent by the same node.  

     Hence the total number FRAND of feedbacks received by the repair node from its N receiver nodes will 

obey the inequality 

 FRAND � �
=

N

i 1
( �m/Nmax�  + 1 + m·LPi) (11) 

     When all link failure probabilities are equal, that is, LP1 = LP2= …= LPN = LP, equation (11) simpli-

fies into 

  FRAND � N (�m/Nmax�  + 1 + m·LP) (12) 
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Figure 5. Minimum ∆∆∆∆min                                                           Figure 6. Minimum ∆∆∆∆min′′′′ 

 

     Under the same assumptions, the number of feedbacks FACK for an ACK-based scheme, where all 

receiver nodes acknowledge all the packets they receive, is given by  

mNFACK =  

     The minimum difference ∆min between the numbers of feedbacks of the two schemes will obey the 

inequality 

         ∆min  ≥ N (m - �m/Nmax�  – 1 – m·LP) (13) 

     This means our scheme guarantees at least a ∆min reduction of the number of feedbacks.  We also com-

pare the number of feedbacks sent by repair nodes for sender node’s flow control.  The minimum 

difference ∆min′ between the numbers of feedbacks for the two schemes can be given by 

                                                                 ∆min′ ≥ Nrp(m - �m/Ns� ) (14) 

where Nrp is the number of repair nodes in multicast session and Ns is the maximum random number given 

by sender node. 

     Figure 5 shows how the minimum difference increases as N increases for two Nmax values.  Also, 

figure 6 shows that for performing flow control for two Ns values.  We assumed that m was equal to 

10,000, which roughly represents a transfer of 10 megabytes when the packet size is 1 kilobyte.  We also 

assumed that the individual loss probabilities LPi would be uniformly distributed between 0.01 and 0.2.  

When there are 100 receiver nodes, the minimum difference is about one million feedbacks.  This result 

indicates that our scheme provides efficient buffer management functionality for repair node by reducing 

the number of feedbacks sent by receiver nodes.  This feature provides scalability, since each repair node 

will be able to handle more receiver nodes. 
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Table I. Configuration Parameters 
 

Sending rate S 128packets/second  

Avg_RTT 40ms 

Avg_OTT 15ms 

N 100 receiver nodes 

NAK_TIMERi, 1 � i � N 30ms 

m 10,000 packets (≅10Mbyte) 
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     Figure 7. Simulated round trip time                                     Figure 8. Simulated loss probability 
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Figure 9. Simulated one-way transit time                                    Figure 10. Packet loss probability 
 
 
IV.2 Additional Retransmissions 

     The proposed scheme does not require any additional retransmission either from its upper-stream 

repair nodes or sender node, because it always has in its buffer all packets that can be requested by any of 

its receiver nodes. This feature provides fast error recovery for receiver nodes and reduces network 

traffics between the repair nodes. 

     In NAK-based schemes, the repair node batches NAKs for a packet and retransmits the packet periodi-

cally as long as there is a pending NAK for that packet.  Let us call the period δ and assume that the 
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   avg  = 40ms 
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   max = 26ms 
   min  = 7ms 
   avg  = 15ms 
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packets arrive at repair node with a Poisson process with mean arrival rate λ.  If the repair node has B 

buffers, we can define the random variable NA (δ) to represent the number of packet arrivals at the repair 

node within a time interval of length δ.  In order to perform at least one retransmission successfully, the 

following condition should be satisfied.  
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λδλδ , equation (15) can only be satisfied when B goes to infinity.     

     Hence, a NAK-based scheme must require the repair nodes to buffer all packets for an infinitely long 

amount of time to achieve full coverage of all retransmission requests by the repair node. 

      In NAK-based schemes using a timer mechanism, repair nodes discard some packets from its buffer 

after a time interval I without considering whether these packets were received by all its receiver nodes.  

As a result, some packets might be removed from the repair node buffer while their retransmission could 

still be requested by one of the receiver nodes.  In this case, the missing packets will have to be resent 

from either an upper repair nodes or the sender node.  In most cases, the packets will have to be resent by 

the sender node, especially when all repair nodes apply the same buffer management policy and discard 

the same packets at the same time.  This generates unnecessary traffics decreasing the whole Internet 

performance. 

     To evaluate the number of these additional retransmissions, we define MNAK
 as a missing probability of 

repair node. The miss occurs when some receiver nodes request retransmission for the packets that have 

already been discarded from the buffer.  Hence, MNAK means the probability that the repair node cannot 

retransmit the packet for any other receiver because it was already removed from buffer. 
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     In NAK-based scheme, some packets are available if the NAKs arrive before the timer is expired.  Let 

us call this probability A. The probability might be very close to 1 if the repair node has large enough 

timer value.  If we assume that A is equal to 0.9, the repair node will only be unable to deal with 10% of 

the retransmission requests sent by other nodes, because the requested packet will be removed before any 

NAK arrives.  We also need to take into account the impact of lost NAKs.  If the NAKs of all the receiver 

nodes that did not receive the packet fail to reach the repair node, then the repair node will discard the 

packet before it receives a second request for that packet from one of the receiver nodes.  Hence, a realis-

tic estimate of the probability MNAK is given by 

                MNAK  = (1−A)× P(some other nodes did not receive the packet)                                              (16) 

                             + A × P(all other nodes that did not receive the packet failed to notify the repair node) 

                          = (1−A)× (1−P(all other nodes have received the packet)) 

                             + A × P(all other nodes that did not receive the packet failed to notify the repair node) 
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     If A is equal to 1, the minimum probability of MNAK is given by 
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     Given the difficulty of finding a closed-form expression for the parameter A, we decided to simulate 

the behavior of a system with 100 receiver nodes per repair node. The parameters of this model are sum-

marized in table I.  To generate the loss probability of each receiver node, we applied the formula S = 

1.22/( iis LPRTT , ) (from [11]), where S is the packet sending rate in packets/sec, RTTs,i is the round trip 

time from the sender node to receiver node i and LPi is the loss probability between the sender node and 

receiver node i.  This assumes that the sender node transmits packets in TCP-friendly manner and each 

node in the multicast session uses the UDP protocol. 

     We simulated the round-trip times RTTs,i as Poisson random variables each having mean Avg_RTT.  

Similarly, the one-way transit times OTTi,rp between a receiver node i and its repair node rp were also 

simulated by Poisson random variables with mean Avg_OTT.  Figure 7, 8 and 9 respectively show our 

measurements for roundtrip time, loss probability and one-way transit time for 100 receiver nodes.  
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Figure 11.  Difference between the error recovery delays of our scheme and a NAK-based scheme 

 

     Using the configuration parameters in Table I, we evaluate the probability that a requested packet will 

not be present in the repair node.  In particular, we compared the performance of our scheme with that of 

a NAK-based scheme keeping all packets in the repair node buffer for 60 ms.  Figure 10 shows how the 

probability of not finding a requested packet in the repair node buffer is affected by the number of 

receiving nodes per repair node.  As proved in previous section, the missing probability of our scheme is 

zero, because the requested packets from receiver nodes are always available in the repair node’s buffer.   

     We also see that the NAK-based scheme performs significantly worse than our scheme despite having 

a timer delay equal to the sum of two one-trip time in one NAK_TIMER delay.  We should also mention 

that the conditions under which the comparison is performed are very favorable to NAK-based scheme as 

we assumed that all requests from receiver nodes arrive before timer is expired (A=1).  The performance 

of NAK-based scheme will improve whenever the repair nodes have very large buffers as well as a long 

enough timer values.  However, this would result in an inefficient use of the available buffer space, 

because too many packets will remain in buffer for a long time.  In addition, the absence of an efficient 

buffer management scheme is likely to cause sooner or later buffer overflow. 

 

IV.3 Error Recovery Delay 

     The additional retransmissions, evaluated in previous subsection, increase the error recovery delay, 

because the repair node cannot retransmit the requested packet immediately.  The packets should be 

retransmitted from its original sender node or upper stream repair node.  This might double or triple the 
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error recovery delay. Also, these additional retransmissions cause unnecessary traffics between the repair 

nodes.   

     To evaluate the minimum delay difference between both schemes, we assume that the additional 

retransmission is always correctly transmitted from the upper stream repair node.  Otherwise, the differ-

ence would be much more prominent.  Under these assumptions, each receiver node measures the average 

recovery delay over all packet loss it experienced.  These results are shown in Figure 11.  Even under 

simulated parameter values, the proposed scheme performs slightly better than the NAK-based scheme. 

Also, the result indicates that the most reasonable number of receiver nodes per repair node is 

equal to 40.       

     Note that the difference becomes progressively close to 0 when the number of receiver nodes per 

repair node increases above 20.  This is because the packet missing probability of the NAK-based scheme 

is decreased with group size. However, we should consider that the repair node has to retransmit the 

requested packets to more receiver nodes to maintain this performance, which generates unacceptable 

traffics between the repair node and its receiver nodes.      

V. Conclusion 

     We have proposed a buffer management scheme combining NAKs and infrequent ACKs to provide 

scalability and reliability in a multicast session.  Under our scheme, receiver nodes send negative 

acknowledgments to repair nodes to request packet retransmissions.  At infrequent intervals, they also 

send ACKs to their repair nodes to indicate which packets they can safely discard.  Our scheme reduces 

delay in error recovery, because the packets requested from the repair nodes are always available in their 

buffers.  It achieves this goal without increasing the server workload because (a) each receiver node only 

sends infrequent positive acknowledgments and (b) their sending times are randomized among all the 

receiver nodes.  In addition, it greatly reduces the number of repair nodes required to handle a given num-

ber of receiver nodes.  We have also shown how our scheme can provide full flow control and eliminate 

buffer overflows by having repair nodes sending ACKs at infrequent intervals to the sender node.  Hence 

it provides an acceptable trade-off between ACK-based and NAK-based schemes, using both positive and 

negative acknowledgments to achieve reliability and scalability. 
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     More work is still needed to ascertain the optimal randomization intervals for both receiver nodes and 

repair nodes. 
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