
 1

A Buffer Management Scheme for Tree-Based
Reliable Multicast Using Infrequent

Acknowledgments
Jinsuk Baek Jehan-François Pâris

Department of Computer Science
University of Houston

Houston, TX 77204-3010
{ jsbaek, paris} @cs.uh.edu

Abstract

Tree-based reliable multicast protocols provide scalability by distributing error-recovery tasks among

several repair nodes. These repair nodes integrate the status information of several receiver nodes and

perform local error recovery for these nodes using the data stored in their buffers. We propose a buffer

management scheme that uses both positive and negative acknowledgments to manage these buffers in an

efficient manner. Under our scheme, receiver nodes send negative acknowledgments to repair nodes to

request packet retransmissions. At infrequent intervals, they also send positive acknowledgments to indi-

cate which packets can be safely discarded from the buffer of their repair node. Our scheme reduces

delay in error recovery, because the packets requested from the repair nodes are always available in their

buffers. It achieves this goal without increasing the server workload because (a) each receiver node only

sends infrequent positive acknowledgments and (b) their sending times are randomized among all the

receiver nodes. We also show how our scheme can be extended to provide full flow control and eliminate

buffer overflows.

I. Introduction

 One of the most difficult issues in end-to-end multicasting is that of providing an error-free transmis-

sion mechanism. The standard method for providing reliable unicast is positive acknowledgements

(ACKs). It requires the receiver to send an ACK for each packet that it has received. The sender keeps

track of these ACKs and retransmits all packets that have not been properly acknowledged within a given

time window. TCP [13] is a well-known protocol using positive ACKs to provide reliable unicast.

 2

 The same approach fails when applied to reliable multicasts because of the ACK implosion [1, 17, 21]

it creates. Since each receiver has to acknowledge each packet it has correctly received, the sender’s abil-

ity to handle these ACKs limits the number of nodes participating in a reliable multicast.

 This situation has led to numerous proposals aiming at providing scalable reliable schemes. The IETF

Reliable Multicast Transport (RMT) Working Group has standardized three RMT protocols based on

these proposals: Asynchronous Layered Coding (ALC) [5], a NAK-based protocol [4], and a tree-based

protocol [1, 9, 17].

 Among these three protocols, the tree-based protocol is known to provide high scalability as well as

reliability. It constructs a logical tree at the transport layer for error recovery. This tree comprises three

types of nodes: a sender node, repair nodes, and receiver nodes. The sender node is the root of the logical

multicast tree. It controls the overall tree construction and is responsible for retransmission of lost pack-

ets within the whole multicast group. Each repair node acts as a local server for a subset of the receiver

nodes in the tree. It integrates the status information of its receiver nodes and performs local error recov-

ery for these nodes using the data cached in its buffer. Hence, tree-based protocol achieves scalability by

distributing the server retransmission workload among the repair nodes.

 There are still two open issues in tree-based protocols. The first is how to construct a logical tree in an

efficient manner. One of the authors has recently proposed an efficient hybrid scheme for constructing a

well-organized logical tree [1]. His hybrid scheme combines the advantages of previous schemes by

constructing a logical tree in a semi-concurrent manner while minimizing the number of control mes-

sages.

 The second open issue is when to discard packets from the buffers of repair nodes. Discarding packets

that might still be needed is unacceptable, because it would force the receiver nodes to contact the sender

node whenever they need a retransmission of a discarded packet. Discarding packets too late would result

in an inefficient use of the available buffer space on the repair nodes. Schemes addressing this issue can

be broadly divided into ACK-based [6, 7, 17] and NAK-based schemes [2-4, 14]. As we will see, both

approaches have their own limitations.

 In the ACK-based schemes, receiver nodes send an ACK to their repair node every time they have

correctly received packet. This allows each repair node to discard from its buffer all packets that have

been acknowledged by all receiver nodes. However, the ACK-based approach does not scale up well due

 3

to the ACK implosion occurring at the repair nodes. NAK-based schemes solve this ACK implosion

problem by shifting the error detection load from the repair to each receiver node. Receiver nodes reply

with NAKs whenever they detect a packet loss. However, they provide no efficient mechanism to safely

discard packets from the repair node buffers.

 We propose an efficient buffer management scheme combining NAKs and infrequent ACKs to over-

come these limitations. Under our scheme, receiver nodes send NAKs to repair nodes to request packet

retransmissions. At fixed infrequent intervals, they also send ACKs to indicate which packets can be

safely discarded from the repair node buffers. We avoid any risk of ACK implosion because each

receiver node only sends infrequent positive acknowledgments and their sending times are randomized

among all the receiver nodes.

 Our proposal has two major advantages over other schemes. First, the amount of feedback from

receiver nodes is significantly reduced owing to randomized ACK. This feature provides scalability,

since each repair node will be able to handle more receiver nodes. Second, it guarantees fast recovery of

transmission errors, since the packets requested from receiver nodes are always available in the buffers of

the repair nodes. In addition, the scheme can be extended to provide flow control and eliminate any risk

of buffer overflow.

 The remainder of this paper is organized as follows. Section II summarizes the existing buffer man-

agement schemes for providing buffer refreshment functionality in reliable multicast. Section III

introduces our new buffer management scheme. In section IV, we show the performance of the proposed

scheme. Finally, section V contains our conclusions.

II. Related Works

 This section describes the buffer management protocols of existing reliable multicast protocols. These

protocols essentially differ in the strategies they use for deciding which participants buffer packets for

retransmission and how long these packets should be retained.

 Scalable Reliable Multicast (SRM) [4] is a well-known receiver-initiated multicast protocol that guar-

antees out-of-order reliable delivery using NAKs from receivers. Whenever a receiver detects a lost

packet, it multicasts NAKs to all participants in the multicast session. This allows the nearest receiver to

retransmit the packet by multicasting. As a result, the protocol distributes the error recovery load from

 4

one sender to all receivers of the multicast session. The sole drawback of the SRM protocol is that all

receivers have to keep all packets in their buffer for retransmission. Hence, SRM protocol cannot provide

an efficient buffer management mechanism at the transport layer.

 The first tree-based reliable multicast protocol was the Reliable Multicast Transport Protocol (RMTP)

[17]. RMTP provides reliable multicast by constructing a physical tree of the network layer. It allocates

a designated receiver (DR) in each local region and makes this receiver responsible for error recovery for

all the other receivers in that region. To reduce ACK implosion, each receiver periodically unicasts an

ACK to its designated receiver instead of sending an ACK for every received packet. This ACK contains

the maximum packet number that each receiver has successfully received. Unfortunately, this periodic

feedback policy significantly delays error recovery. Hence, RMTP is not suitable for applications that

transmit time-sensitive multimedia data. In addition, RMTP stores the whole multicast session data in the

secondary memory of the DR for retransmission, which makes it poorly suited for transfers of large

amounts of data. Some of these problems were addressed in RMTP-II by the addition of NAKs.

 Guo [6] proposed a stability detection algorithm partitioning receivers into groups and having all

receivers in a group participate in error recovery. This is achieved by letting receivers periodically

exchange history information about the set of messages they have received. Eventually one receiver in

the group becomes aware that all the receivers in the group have successfully received the packet and

announces this to all the members in the group. Then all members can safely discard the packet from

buffer. This feature causes high message traffic overhead because the algorithm requires frequent

exchange of messages.

 Ozkasap [14] proposed an efficient buffering policy where only a small set of receivers buffer the

packet to reduce the amount of total buffer requirement. Receivers that have lost packets use a hash

function to select the set of members that have the packet in the buffer and request a retransmission of the

packet from one of them. However, their selection method does not consider geographic locations

between different receivers. Hence, its scalability is constrained because the latency for error recovery

increases with the number of participants.

 Randomized Reliable Multicast Protocol (RRMP) [18] is an extended version of Bimodal Multicast

Protocol (BMP) [2]. BMP uses a simple buffer management policy in which each member buffers

packets for a fixed amount of time. RRMP uses instead a two-phase buffering policy: feedback-based

 5

short-term buffering and randomized long-term buffering. In the first phase, every member that receives

a packet buffers it for a short period of time in order to facilitate retransmission of lost packets in its local

region. After that, only small random subset of members in each region continues to buffer the packet.

The drawback of this protocol is that it takes a long time for the receiver to search and find the correct

repair nodes as the number of participants increase.

 Finally, the Search Party protocol [3] uses a timer to discard the packet from the buffer: each member

in the group simply discards packets after a fixed amount of time. The protocol remains vague on the

problem of selecting the proper time interval for discarding packets.

 Most of the NAK-based multicast protocols remain equally vague on that issue because the absence of

a NAK from a given receiver for a given packet is not a definitive indication that the receiver has received

the packet. Yamamoto et al. [20, 21] have proposed an interesting flow-control scheme for NAK-based

multicast protocols. Their scheme requires the sender to reduce its transmission rate whenever it receives

NAKs for too many of its packets. To prevent excessive decreases of the transmission rate, the sender

keeps also a log of its past transmission rate. While the scheme was found to be efficient we need to point

out that it minimizes occurrences of buffer overflow rather than eliminating them as a sliding window

protocol would do.

III. Proposed Buffer Management Scheme

 Our scheme applies to tree-based protocols where each repair node provides local recovery in its

region on the logical tree. We further assume a receiver-initiated error recovery process and require

receiver nodes to send a NAK to their repair node every time they detect a packet loss. In addition, we

make the following assumptions:

• There are N receiver nodes for each repair node. This repair node is responsible for re-transmit-

ting the packets requested with NAKs from its N receiver nodes.

• Each receiver node has an independent link loss probability. Let LPi for i = 1, 2, …, N be the

loss probability of receiver node i.

• The sender node has m data packets to transmit to the members of the multicast group.

• Each packet contains its sequence number ns.

 6

Receiver 1

Receiver 2

Receiver 3

Receiver 4

2 7 12 17 22

4 9 14 19 24

3 8 13 18 23

Nrand Nrand
Nrand

ACK(2) ACK(7)

ACK(4) ACK(9)

ACK(3) ACK(8)

. . .

. . .

. . .

Nrand
1 = 2, Nrand

2 = 4, Nrand
3 = 3

Figure 1. Example of randomized ACK scheme (with Nmax = 5)

III.1. Basic Scheme

 When a receiver node i joins a multicast session, it receives a packet from its repair node specifying

the maximum number Nmax of sent packets the repair node is normally willing to keep in its buffer. The

node generates then a random number Nrand
i between 1 and Nmax that identifies the first packet after which

it will send an ACK packet to its repair node. This packet will act as an implicit acknowledgment for

packets 1 to Nrand
i. After that, receiver node i will send a similar ACK packet after each packet RCi such

that

 RCi = Nrand
i + k Nmax for k = 0, 1, 2, 3,… (1)

 In addition, the receiver nodes always acknowledge the last packet of the transmission. Since these

transmissions start at random offsets

 Nrand
i = random(1, Nmax) for 1 ≤ i ≤ N, (2)

they will be more or less equally distributed over time. Therefore, we eliminate the risk of a sudden ava-

lanche of ACKs sent for the same packet. Figure 1 shows an example of our randomized ACK scheme

when Nmax is equal to 5.

 Let Li be the last ACK packet sent by receiver node i. Assuming that there is no pending packet

retransmission, the repair node now can safely discard up to packet D such that

 D � min{ Li | 1 � i � N } (3)

 7

 Receiver nodes that leave the multicast session without any notice can disrupt the multicast session for

all receiver nodes. The repair node will use a timeout mechanism to detect them and cut them off.

 Let us turn now our attention to the way our scheme handles lost packets and corrupted packets. When

a receiver node i detects such a packet, it sends a NAK to the repair node. This NAK will contain the

sequence number of the last packet such that itself and all its predecessors were correctly received by

receiver node i.

 Here, two options are possible. First, the receiver node i can continue the same sequence of ACKs.

The sole disadvantage of this option is that we will not take advantage of the implicit ACK contained in

the NAK. Assume, for instance, that Nmax=10 and the first message acknowledged by i was 5. Node i is

then supposed to acknowledge packet 5, 15, 25, and so on. Assume now that receiver node i did not

receive packet number 14. It will send a NAK mentioning that packet number 14 was not correctly

received and that the packet number 13 is the last packet such that itself and all its predecessors were

correctly received by node i. Hence, the next ACK sent by the node will only acknowledge the correct

reception of packets 14 and 15.

 A better solution is to delay the next ACK by receiver node i up to packet 13+10=23. After that,

receiver i will acknowledge packet 33, 43, and so on and will remain in that schedule until it sends

another NAK. This would still ensure that the repair node receives at least one ACK from receiver node i

every Nmax packets. This second option has one major drawback. If most of the receivers do not receive a

specific packet, they will reschedule all their ACKs for the same packets, thus creating unacceptable peek

in the server workload. We decided therefore on another solution relying again on randomization.

Assume that node i sends a NAK for packet j and that NAK includes an ACK for packet k. Node i will

select a new random number N’rand
i between 1 and Nmax. The next packet to be acknowledged by receiver

node i will then be given by

 max(j + N’rand
i, Li + Nmax), for 1 � i � N, (4)

where Li is the last ACK sent by receiver node i.

 The first main advantage of our scheme is that it significantly reduces the number of feedbacks from

receiver nodes, required to safely discard the packets from repair node’s buffer. This feature increases the

whole Internet performance by reducing unnecessary traffic.

 8

 A second advantage of our scheme is that it guarantees that the repair node will always have in its

buffer all the packets that can be requested by any of its receiver nodes. We achieve this reliability using

cumulative ACK mechanism. Our ACK(n) means the receiver has correctly received up to packet n.

Assume, for instance, that a receiver node i has not received packet k. It will send a NAK(k) to the repair

node. The repair node basically buffers at least up to Li packet such that Li > k. Hence, the packet k is

always available in repair node’s buffer and can be retransmitted. In our scheme, the arrival time of

ACK(Li) is always larger than that of NAK(k) because the receiver node i cannot send an ACK(Li) until it

receives up to packet Li. It means the receiver node i does not send an ACK(Li) until it receive a packet k.

This property can be described as

 Arrival_Time(ACK(Li)) > Arrival_Time(NAK(k)), (5)

because Li > k. As a result, our scheme reduces the packet error recovery delay because no packet will

ever have to be retransmitted either by an upper repair node or the original sender node. Our error recov-

ery delay is dependent on the round-trip time between the repair node and the receiver node requesting

the retransmission of the packet.

 The sole disadvantage of our scheme is that each repair node will use more buffer space than a repair

node receiving ACKs from all its receiver nodes for all packets sent by the sender node. The total buffer

space used by all repair nodes will however remain almost constant because repair nodes receiving less

ACKs will be able to manage more receiver nodes. As a result, we will have fewer repair nodes with

larger buffers.

 To show that let us assume that a repair node can receive up to nACK acknowledgments for each packet

sent by the sender node. This means that a repair node receiving ACKs for all packets sent by the sender

node will be able to handle up to nACK receiver nodes and will need a buffer capable of storing one single

packet. Under our scheme, each packet is acknowledged by 1/Nmax of the receiver nodes. This means that

each repair node will be able to handle up to nACK×Nmax receiver nodes. The buffer space requirements of

each repair node will be multiplied by Nmax but the total buffer space requirements of all repair nodes will

remain unchanged because we will need Nmax less of them.

III.2 Flow Control

 Our buffer management scheme provides reliable transmission in a multicast session, because the

packets requested from receiver nodes by NAKs are always available in repair node’s buffer, as long as

 9

there is no overflow. In this section, we show that buffer overflow will occur without flow control, and

we describe our flow control scheme to avoid this buffer overflow.

III.2.1 Buffer Overflow Issues

 The most straightforward method to avoid buffer overflow is removing some old packets to make

space for the newly arrived packets. In our case, we might have to remove some old packets from the

buffer of a repair node before that repair node has received the proper randomized ACKs from its receiver

nodes. As a result, the repair may not be able to honor all retransmission requests from its receiver nodes.

This will increase the workload of the sender node and result in additional error recovery delay.

 Unfortunately, no buffer management scheme can avoid overflowing a finite buffer without flow

control. This property can be easily proved using M/M/1/K queuing system [8]. Let us assume the

packets arrive at repair node with a Poisson process with arrival rate λ. Packets are discarded from the

buffer by refreshment policy. Let us call this discard rate µ. In our case, the discard rate is exponentially

distributed with mean 1/µ, because it depends on the round trip time between the repair node and receiver

nodes. If the buffer size is limited to K and an infinite number of packets arrive, we can apply the

M/M/1/K queuing system [8].

P(buffer is full) = [(1 - (λ/µ))·(λ/µ)K]/[1 - (λ/µ)K+1] for λ < µ.

The condition for the absence of the buffer overflow is then given by

[(1 - (λ/µ))·(λ/µ)K]/[1 - (λ/µ)K+1] = 0,

which simplifies into

[(1 - (λ/µ))·(λ/µ)K] = 0,

which can only be satisfied when either λ = 0 or K goes to infinity.

III.2.2 Proposed Flow Control Scheme

 Our scheme can also perform flow control using a sliding-window mechanism. It will then allow the

sender node to transmit up to a fixed number Ssender of packets without waiting for their ACKs. This win-

dow is said to be sliding because each ACK arrival at the sender allows the sender to send one more

packet.

 10

Algorithm:
 Join multicast group
 Set Dj = 0 for all 1 � j � NRP
 Send packets 1 to B*
 Set C = B*
 Begin loop
 Switch (event)
 event : ACK for packet Dj from repair node j arrives
 Select Cmin = min{ Dj |1 � j � NRP}
 Send packets from C + 1 to C + Cmin
 Set C = C + Cmin
 Break
 End switch
 End loop
 Leave multicast group

Figure 2. Sender node algorithm

 A first way to accommodate this sliding window is to add Ssender extra slots in the buffers of each repair

node. Define Dj as the highest numbered packet that repair node j can safely discard based on the

randomized ACKs sent by its receiver nodes. One simple mechanism to advance the sliding window

would be to have all repair nodes sending to the sender node an ACK for each packet Dj they have

discarded from their buffer. As we observed at the end of the previous subsection, our scheme requires

Nmax less repair nodes than a scheme where all repair nodes receive ACKs from all their receiver nodes for

all packets sent by the sender node. Hence the sender node is not likely to be flooded by an inordinate

number of ACK packets for a wide range of small to medium multicast group sizes.

 Let us now extend our scheme to the case where different repair nodes may have different buffer sizes.

Let B* denote the minimum buffer size of all repair nodes. Then, the sender node can initially send up to

packet B*. Let Dj be the last packet acknowledged by repair node j. The highest-numbered packet Cmin

that was acknowledged all repair nodes is then given by

 Cmin = min{ Dj |1 � j� NRP} , (6)

where NRP is the number of repair nodes.

 When all repair nodes have acknowledged packet Cmin, the sender can now safely sends packets up to

Cmin + B*.

 11

Algorithm:
 Join multicast group
 Set Li = 0 for all 1 � i � Nj

 Set Rrand
j = random(1, Ns)

 Set count = 0
 Begin loop
 Switch (event)
 event : Data from sender node arrives
 Store packet in buffer
 Increment count
 Break
 event : ACK from a receiver node arrives
 Set D = min{ Li | 1 � i � Nj}
 Remove up to packet D from its buffer
 If count = Rrand

j mod Ns then
 Send ACK for D to sender node
 Endif
 Break
 event : NAK from a receiver node arrives
 Retransmits missing packet
 Set D = min{ Li | 1 � i � Nj }
 Remove up to packet D from its buffer
 If count = Rrand

j mod Ns then
 Send ACK for D to sender node
 Endif
 Break
 End switch
 End loop
 Leave multicast group

Figure 3. Algorithm for repair node j (1 � j � NRP)

 As we mentioned earlier, this scheme will work well as long as there are not too many repair node.

When this is not the case, we can randomize ACKs at the repair node level to allow the sender node to

handle more repair nodes. Our fully randomized scheme assumes every repair node has a large enough,

but finite, buffer. Define a slot as the transmission time of a packet. Recall that, under our scheme, repair

node j receives an average of Nj/Nmax ACKs from its Nj receiver nodes during every slot.

 At the beginning of each multicast, the sender node will send to all repair nodes a packet containing an

integer Ns specifying the factor by which all repair nodes must divide the number of ACKs they will send

to the sender node. Each repair node j will then select a random number Rrand
j between 1 and Ns

 Rrand
j = random (1, Ns), (7)

 12

Algorithm:
 Join multicast group
 Select Nrand

i = random(1, Nmax)
 Set count = 0
 Set k = 0
 Begin loop
 Switch (event)
 event : Data from sender node arrives
 Store packet in buffer
 Increment count
 Note packet as successfully received
 If count = Nrand

i mod Nmax then
 Send ACK for count to sender node
 Increment k
 Endif
 Break
 event : Missing packet detected
 Send NAK to repair node
 Find last packet that was correctly received
 as well as all its predecessors
 Piggyback ACK for that packet
 Select N’ rand

i = random(1, Nmax)
 If count + N’ rand

i > Nrand
i + kNmax then

 Set Nrand
i = (count + N’ rand

i) mod Nmax

 Endif
 Break
 End switch
 End loop
 Leave multicast group

Figure 4. Algorithm for receiver node i (1 � i � N)

 Rather than sending an ACK to the sender node for each packet it discards from it buffer, repair node

will send its first ACK for the packet it will discard during slot Rrand
j. After that, it will only send ACKs

to the sender every Ns slots. Hence it will only send during slots RPj such that

 RPj = Rrand
i + kNs, for k = 0, 1, 2, 3,… (8)

The total number MRAND of ACKs sent by repair nodes during a multicast session of duration M packets is

thus given by

 MRAND = M/N (9)

 We now show the minimum buffer size required to implement a given sliding window of duration

Ssender under our fully randomized scheme:

 13

 Each receiver node will wait for up to Nmax – 1 slots to notify the repair node it has successfully

received a given packet. Each repair node will wait for up to Ns – 1 slots to notify the repair node it has

discarded a given packet from its buffer. As a result, the minimum buffer size required for achieving a

sliding window of duration Ssender is given by

 Ssender + Nmax + Ns – 2 (10)

 Our flow control scheme has two advantages. First, it provides scalability, because it reduces the

number of ACKs sent by repair nodes. This feature reduces not only the sender’s workload, but also

network traffic in a multicast session. Second, it guarantees reliability, as we never loose any packet

anywhere and the buffers of the repair nodes never experience any overflow. The summarized algorithm

for each type of nodes is given in Figure 2 to Figure 4.

IV. Performance Analysis

 In this section, we show the performance of the proposed buffer management scheme by computer

simulation. All the simulation experiments are performed for up to 100 receiver nodes per repair node.

IV.1 Feedback Implosion

 The first main advantage of our scheme is that it significantly reduces the number of feedbacks from

receiver nodes, required to safely discard the packets from repair node’s buffer. Over a session involving

the transmission of m packets, the maximum number of feedbacks from receiver node i is given by

�m/Nmax� + 1 + m·LPi ,

where �m/Nmax� +1 is the number of ACKs sent by node i, including the ACK for the last packet of the

transmission and m·LPi is the number of NAKs sent by the same node.

 Hence the total number FRAND of feedbacks received by the repair node from its N receiver nodes will

obey the inequality

 FRAND � �
=

N

i 1
(�m/Nmax� + 1 + m·LPi) (11)

 When all link failure probabilities are equal, that is, LP1 = LP2= …= LPN = LP, equation (11) simpli-

fies into

 FRAND � N (�m/Nmax� + 1 + m·LP) (12)

 14

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100

Number of receiver nodes

M
in

im
um

 d
iff

er
en

ce
 in

 th
ou

sa
nd

s
of

 fe
ed

ba
ck

s Nmax=10

Nmax=100

0

200

400

600

800

1000

1200

20 40 60 80 100

Number of repair nodes

M
in

im
um

 d
iff

er
en

ce
 in

 th
ou

sa
nd

s
of

 fe
ed

ba
ck

s Ns=10

Ns=100

Figure 5. Minimum ∆∆∆∆min Figure 6. Minimum ∆∆∆∆min′′′′

 Under the same assumptions, the number of feedbacks FACK for an ACK-based scheme, where all

receiver nodes acknowledge all the packets they receive, is given by

mNFACK =

 The minimum difference ∆min between the numbers of feedbacks of the two schemes will obey the

inequality

 ∆min ≥ N (m - �m/Nmax� – 1 – m·LP) (13)

 This means our scheme guarantees at least a ∆min reduction of the number of feedbacks. We also com-

pare the number of feedbacks sent by repair nodes for sender node’s flow control. The minimum

difference ∆min′ between the numbers of feedbacks for the two schemes can be given by

 ∆min′ ≥ Nrp(m - �m/Ns�) (14)

where Nrp is the number of repair nodes in multicast session and Ns is the maximum random number given

by sender node.

 Figure 5 shows how the minimum difference increases as N increases for two Nmax values. Also,

figure 6 shows that for performing flow control for two Ns values. We assumed that m was equal to

10,000, which roughly represents a transfer of 10 megabytes when the packet size is 1 kilobyte. We also

assumed that the individual loss probabilities LPi would be uniformly distributed between 0.01 and 0.2.

When there are 100 receiver nodes, the minimum difference is about one million feedbacks. This result

indicates that our scheme provides efficient buffer management functionality for repair node by reducing

the number of feedbacks sent by receiver nodes. This feature provides scalability, since each repair node

will be able to handle more receiver nodes.

 15

Table I. Configuration Parameters

Sending rate S 128packets/second

Avg_RTT 40ms

Avg_OTT 15ms

N 100 receiver nodes

NAK_TIMERi, 1 � i � N 30ms

m 10,000 packets (≅10Mbyte)

0

10

20

30

40

50

60

0 20 40 60 80 100
Receiver node id#

R
ou

nd
 T

rip
 T

im
e

(m
s)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 20 40 60 80 100

Receiver node id#
Lo

ss
 p

ro
ba

bi
lit

y

 Figure 7. Simulated round trip time Figure 8. Simulated loss probability

0

5

10

15

20

25

30

0 20 40 60 80 100

Receiver node id#

O
ne

-w
ay

 tr
an

si
t t

im
e

(m
s)

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100
Number of receiver nodes

P
ac

ke
t m

is
si

ng
 p

ro
ba

bi
lit

y

NAK-based scheme

Proposed scheme

Figure 9. Simulated one-way transit time Figure 10. Packet loss probability

IV.2 Additional Retransmissions

 The proposed scheme does not require any additional retransmission either from its upper-stream

repair nodes or sender node, because it always has in its buffer all packets that can be requested by any of

its receiver nodes. This feature provides fast error recovery for receiver nodes and reduces network

traffics between the repair nodes.

 In NAK-based schemes, the repair node batches NAKs for a packet and retransmits the packet periodi-

cally as long as there is a pending NAK for that packet. Let us call the period δ and assume that the

 max = 57ms
 min = 26ms
 avg = 40ms

max = 0.1343
min = 0.0279
avg = 0.0633

 max = 26ms
 min = 7ms
 avg = 15ms

 16

packets arrive at repair node with a Poisson process with mean arrival rate λ. If the repair node has B

buffers, we can define the random variable NA (δ) to represent the number of packet arrivals at the repair

node within a time interval of length δ. In order to perform at least one retransmission successfully, the

following condition should be satisfied.

 P(NA (δ) � B) = �
−

=

−
−

1

0 !

)(
1

B

n

n

n

e λδλδ
 = 0, (15)

which simplifies into

1
!

)(1

0

=�
−

=

−B

n

n

n

e λδλδ

λδλδ
e

n

B

n

n

=�
−

=

1

0 !

)(

Since we have �
∞

=
=

0 !

)(

n

n

n
e

λδλδ , equation (15) can only be satisfied when B goes to infinity.

 Hence, a NAK-based scheme must require the repair nodes to buffer all packets for an infinitely long

amount of time to achieve full coverage of all retransmission requests by the repair node.

 In NAK-based schemes using a timer mechanism, repair nodes discard some packets from its buffer

after a time interval I without considering whether these packets were received by all its receiver nodes.

As a result, some packets might be removed from the repair node buffer while their retransmission could

still be requested by one of the receiver nodes. In this case, the missing packets will have to be resent

from either an upper repair nodes or the sender node. In most cases, the packets will have to be resent by

the sender node, especially when all repair nodes apply the same buffer management policy and discard

the same packets at the same time. This generates unnecessary traffics decreasing the whole Internet

performance.

 To evaluate the number of these additional retransmissions, we define MNAK
 as a missing probability of

repair node. The miss occurs when some receiver nodes request retransmission for the packets that have

already been discarded from the buffer. Hence, MNAK means the probability that the repair node cannot

retransmit the packet for any other receiver because it was already removed from buffer.

 17

 In NAK-based scheme, some packets are available if the NAKs arrive before the timer is expired. Let

us call this probability A. The probability might be very close to 1 if the repair node has large enough

timer value. If we assume that A is equal to 0.9, the repair node will only be unable to deal with 10% of

the retransmission requests sent by other nodes, because the requested packet will be removed before any

NAK arrives. We also need to take into account the impact of lost NAKs. If the NAKs of all the receiver

nodes that did not receive the packet fail to reach the repair node, then the repair node will discard the

packet before it receives a second request for that packet from one of the receiver nodes. Hence, a realis-

tic estimate of the probability MNAK is given by

 MNAK = (1−A)× P(some other nodes did not receive the packet) (16)

 + A × P(all other nodes that did not receive the packet failed to notify the repair node)

 = (1−A)× (1−P(all other nodes have received the packet))

 + A × P(all other nodes that did not receive the packet failed to notify the repair node)

 =))1()1(())1(1)(1(
11

2

1
∏ −−∏ +−∏ +−−−
===

N

i
i

N

i
ii

N

i
i LPLPLPALPA

 If A is equal to 1, the minimum probability of MNAK is given by

 MNAK ≥ ∏ −−∏ +−
==

N

i
i

N

i
ii LPLPLP

11

2)1()1((17)

 Given the difficulty of finding a closed-form expression for the parameter A, we decided to simulate

the behavior of a system with 100 receiver nodes per repair node. The parameters of this model are sum-

marized in table I. To generate the loss probability of each receiver node, we applied the formula S =

1.22/(iis LPRTT ,) (from [11]), where S is the packet sending rate in packets/sec, RTTs,i is the round trip

time from the sender node to receiver node i and LPi is the loss probability between the sender node and

receiver node i. This assumes that the sender node transmits packets in TCP-friendly manner and each

node in the multicast session uses the UDP protocol.

 We simulated the round-trip times RTTs,i as Poisson random variables each having mean Avg_RTT.

Similarly, the one-way transit times OTTi,rp between a receiver node i and its repair node rp were also

simulated by Poisson random variables with mean Avg_OTT. Figure 7, 8 and 9 respectively show our

measurements for roundtrip time, loss probability and one-way transit time for 100 receiver nodes.

 18

0

5

10

15

20

25

30

0 20 40 60 80 100

Number of receiver nodes

A
ve

ra
ge

 e
rr

or
 r

ec
ov

er
y

de
la

y
fo

r
ea

ch
 r

ec
ei

ve
r

no
de

 (
se

co
nd

s)

NAK-based scheme

Ramdomized scheme

Figure 11. Difference between the error recovery delays of our scheme and a NAK-based scheme

 Using the configuration parameters in Table I, we evaluate the probability that a requested packet will

not be present in the repair node. In particular, we compared the performance of our scheme with that of

a NAK-based scheme keeping all packets in the repair node buffer for 60 ms. Figure 10 shows how the

probability of not finding a requested packet in the repair node buffer is affected by the number of

receiving nodes per repair node. As proved in previous section, the missing probability of our scheme is

zero, because the requested packets from receiver nodes are always available in the repair node’s buffer.

 We also see that the NAK-based scheme performs significantly worse than our scheme despite having

a timer delay equal to the sum of two one-trip time in one NAK_TIMER delay. We should also mention

that the conditions under which the comparison is performed are very favorable to NAK-based scheme as

we assumed that all requests from receiver nodes arrive before timer is expired (A=1). The performance

of NAK-based scheme will improve whenever the repair nodes have very large buffers as well as a long

enough timer values. However, this would result in an inefficient use of the available buffer space,

because too many packets will remain in buffer for a long time. In addition, the absence of an efficient

buffer management scheme is likely to cause sooner or later buffer overflow.

IV.3 Error Recovery Delay

 The additional retransmissions, evaluated in previous subsection, increase the error recovery delay,

because the repair node cannot retransmit the requested packet immediately. The packets should be

retransmitted from its original sender node or upper stream repair node. This might double or triple the

 19

error recovery delay. Also, these additional retransmissions cause unnecessary traffics between the repair

nodes.

 To evaluate the minimum delay difference between both schemes, we assume that the additional

retransmission is always correctly transmitted from the upper stream repair node. Otherwise, the differ-

ence would be much more prominent. Under these assumptions, each receiver node measures the average

recovery delay over all packet loss it experienced. These results are shown in Figure 11. Even under

simulated parameter values, the proposed scheme performs slightly better than the NAK-based scheme.

Also, the result indicates that the most reasonable number of receiver nodes per repair node is

equal to 40.

 Note that the difference becomes progressively close to 0 when the number of receiver nodes per

repair node increases above 20. This is because the packet missing probability of the NAK-based scheme

is decreased with group size. However, we should consider that the repair node has to retransmit the

requested packets to more receiver nodes to maintain this performance, which generates unacceptable

traffics between the repair node and its receiver nodes.

V. Conclusion

 We have proposed a buffer management scheme combining NAKs and infrequent ACKs to provide

scalability and reliability in a multicast session. Under our scheme, receiver nodes send negative

acknowledgments to repair nodes to request packet retransmissions. At infrequent intervals, they also

send ACKs to their repair nodes to indicate which packets they can safely discard. Our scheme reduces

delay in error recovery, because the packets requested from the repair nodes are always available in their

buffers. It achieves this goal without increasing the server workload because (a) each receiver node only

sends infrequent positive acknowledgments and (b) their sending times are randomized among all the

receiver nodes. In addition, it greatly reduces the number of repair nodes required to handle a given num-

ber of receiver nodes. We have also shown how our scheme can provide full flow control and eliminate

buffer overflows by having repair nodes sending ACKs at infrequent intervals to the sender node. Hence

it provides an acceptable trade-off between ACK-based and NAK-based schemes, using both positive and

negative acknowledgments to achieve reliability and scalability.

 20

 More work is still needed to ascertain the optimal randomization intervals for both receiver nodes and

repair nodes.

References

[1] J. Baek, “A Hybrid Configuration of ACK Tree for Multicast Protocol,” Proceedings of the 2002
International Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS 2002), pp. 852–856, San Diego, USA, July 2002.

[2] K. P. Birman et al., “Bimodal Multicast,” ACM Transactions on Computer Systems, 17(2):41–88, May 1999.
[3] M. Costello and S. McCanne, “Search Party: Using Randomcast for Reliable Multicast with Local

Recovery,” Proceedings of the 18th IEEE Conference on Computer Communications (INFOCOM ‘99), pp.
1256–1264, New York, NY, March 1999.

[4] S. Floyd et al, “A Reliable Multicast Framework for Lightweight Sessions and Application-Level Framing,”
IEEE/ACM Transactions on Networking, 5(6):784–803, December 1997.

[5] T. Gemmel et al., “The use of Forward Error Correction in Reliable Multicast,” IETF draft-ietf-rmt-info-fec-
02.txt, October 2002

[6] K. Guo, and I. Rhee, “Message Stability Detection for Reliable Multicast,” Proceedings of the 19th IEEE
Conference on Computer Communications (INFOCOM 2000), pp. 814–823, New York, USA, March 2000.

[7] M. Kadansky et al., “Reliable Multicast Transport Building Block: Tree Auto-Configuration,” IETF Internet
Draft, draft-ietf-rmt-bb-tree-config-01.txt, November 2000.

[8] L. Kleinrock, Queuing Systems, Volume I: Theory, John Wiley & Sons, 1975.
[9] S. J. Koh et al., “Configuration of ACK Trees for Multicast Transport Protocols,” ETRI Journal, 23(3):111–

120, September 2001.
[10] B. Levine, and J. J. Garcia-Luna-Aceves, “A Comparison of Reliable Multicast Protocols,” ACM Multimedia

Systems Journal, 6(5): 334–344, August 1998.
[11] J. Mahdavi and S.Floyd, “TCP-friendly unicast rate-based flow control,”

 http://www.psc.edu/networking/papers/tcp_friendly.html, January 1997.
[12] C. Maihofer and K. Rothermel, “A Robust and Efficient Mechanism for Constructing Multicast

Acknowledgment Trees,” Proceedings of the 8th IEEE International Conference on Computer
Communications and Networks (ICCCN ’99), pp. 139–145, Boston-Natick, MA, October 1999.

[13] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgement Options,” RFC 2018,
October 1996.

[14] O. Ozkasap, R. van Renesse, K. P. Birman, and Z. Xiao, “Efficient Buffering in Reliable Multicast
Protocols,” Proceedings of the First International Workshop on Networked Group Communication (NGC99),
pp. 188–203, Pisa, Italy, November 1999.

[15] S. Pingali, D. Towsley, J. F. Kurose, “A Comparison of Sender-Initiated and Receiver-Initiated Reliable
Multicast Protocols,” IEEE Journal on Selected Areas in Communications, pp. 221–230, April 1997.

[16] R. Renesse, Y. Minsky, and M. Hayden, “A Gossip-Style Failure Detection Service,” Proceedings of
MIDDLEWARE ’98, pp. 55–70, The Lake District, England, September 1998.

[17] B. Whetten and G. Taskale, “The Overview of Reliable Multicast Transport Protocol II,” IEEE Networks,
14(1):37–47, January-February 2000.

[18] Z. Xiao, K. P. Birman, R. Renesse, “Optimizing Buffer Management for Reliable Multicast,” Proceedings of
the International Conference on Dependable Systems and Networks (DSN’02), pp. 187–202, Washington,
DC, June 2002.

[19] M. Yamamoto, Y. Sawa, S. Fukatsu and H. Ikeda, “NAK-based Flow Control Scheme for Reliable Multicast
Communications,” IEICE Transactions on Communications, E82-B(5):712–720, May 1999.

[20] K. Yamamoto, M. Yamamoto, H. Ikeda, “Performance Evaluation of ACK-based and NAK-based Flow
Control Mechanisms for Reliable Multicast Communications,” IEICE Transactions on Communications,
E84-B(8) 2313–2316, Aug. 2001.

[21] R. Avatar, J. Griffon, M. Sudan, “A Reliable Dissemination Protocol for Interactive Collaborative
Applications,” Proceedings of the 3rd ACM International Conference on Multimedia, pp. 333–344, San
Francisco, CA, November 1995.

