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Abstract 

The Maille Authorization protocol provides flexible and 

reliable authorization in large distributed and pervasive 

computing systems.  Service owners distribute their access 

control lists across the network using threshold cryptography. 

Instances of the distributed service need only verify that 

requestors have knowledge of a specific secret provided by the 

Maille Authorization system. Requestors use the Maille protocol 

to find and retrieve individual parts of the scattered key. Once a 

sufficient quorum of nodes holding the key is found, the 

requestor can reassemble the key and is authorized.  Unlike 

extant systems, the Maille Authorization protocol has no single 

administrative point of failure and tolerates multiple 

simultaneous Byzantine failures. 

1. Introduction 

Within distributed computer systems, services are the 

fundamental resource. Authorization protects both simple 

data (files, etc) and more complex services from 

unauthorized actions by users. Authorization is the 

process of making sure a requestor is allowed to carry out 

a given action and relies explicitly on the ability to 

determine the name of the user in question 

(authentication). Authorization is important because 

unauthorized accesses may have legal ramifications, cause 

lost profits, or result in loss of work. 

In small systems, authorization is handled in an ad-hoc 

manner. Service owners implicitly trust the computer 

systems hosting their service. The computer system 

verifies the requestor’s identity (it authenticates them) and 

then consults the access policy to determine if the request 

can be allowed to complete. In some distributed systems, 

a similar scheme is used. Individual computer systems 

store the access policies for the services they host. Service 

owners must still trust each system that replicates their 

service. 

This all-in-one approach fails when the services are 

scattered over a large set of untrusted hosts. In such 

systems, many computers may hold partial or complete 

copies of the service. Further, one requestor may use 

several replicas at once to increase throughput. As a 

result, widely distributed services need to decouple 

authorization from hosting.  Plutus [8] achieves this goal 

by (a) using encryption and (b) letting the client handle all 

the key management and distribution.  Woo and Lam [13] 

assign all authorization task to one or more specialized 

servers.  

Both approaches have significant drawbacks.  

Delegating all key management and distribution to the 

clients just shifts the problem.  Relying on a few trusted 

authentication servers to control access to services 

assumes that we have such hosts and that they cannot be 

compromised. This is a dubious assumption in large 

distributed systems.  In addition, the fact that any large-

scale authorization system will have to be replicated 

increases the chance that at least one of the authorization 

servers could be compromised. 

We propose a more robust and more scalable solution. 

The Maille Authorization protocol scatters all 

authorization tasks among subsets of nodes. It relies on 

threshold cryptography [9] to ensure that it will continue 

to operate correctly in the presence of a small number of 

simultaneous Byzantine failures.  In addition, the protocol 

degrades gracefully in the presence of increasing numbers 

of Byzantine failures. A catastrophic failure, comparable 

to the theft of a Kerberos password file [10], could only 

occur if nearly all nodes in the network are compromised.  

To achieve these goals, the Maille Authorization 

protocol assigns one unique access key to each type of 

access on each service. This access key is broken into 

parts using threshold cryptography. Each part of the key is 

then paired with a copy of the access list for that key to 

form an access packet. The access packets for a service 

are then scattered to random member nodes in a peer-to-

peer network.  

When users want to use a service, they initiate a search 

for access packets of that service and wait for them to be 

returned. When a node holding an access packet receives 

a query, it checks to see if the requestor is listed in the 



 

authorized list and then authenticates the requestor. If the 

requestor passes these tests, the node returns a copy of the 

access packet directly to the requestor.  

If the requestor can reconstitute the key, she can use it 

to access the service in question. In the case of data, the 

access key may be used to decrypt the actual data or 

unlock a lock box of other keys. In the case of services, 

the key can be used like a ticket to prove the requestor has 

been authorized to use the service. Many other 

possibilities exist because the protocol does not assume 

any specific form for key. It is merely a string of data.  

Like Woo and Lam’s proposed scheme [13], the Maille 

Authorization protocol relies on a separate authentication 

service to verify the identity of all requestors. One 

possible choice is the Maille Authentication system [7], 

which offers the advantage of offering similar resistance 

to inside attacks. Coupling our system with an 

authentication system with single points of failure, would 

greatly reduce the total trust warranted by the system. A 

simple identity theft would then allow any attacker to 

acquire authorization to any service.  

The remainder of this paper is organized as follows. 

Section 2 reviews previous work related to distributed 

authorization. Section 3 introduces the Maille 

Authorization protocol. Section 4 presents an analysis of 

the protocol. Section 5 presents experimental findings 

from simulation. Section 6 has our conclusions. Finally, 

Section 7 sketches several directions for future work. 

2. Related Work 

Authentication in both centralized and distributed 

computing systems has received much attention over the 

last decade [1, 4, 6, 10, 14, 15]. In contrast, authorization 

has received little attention in a distributed context aside 

from defining policies [2, 3, 5, 12].  

Unfortunately, very little work has been done to define 

frameworks for handling authorization information in a 

distributed system, or even centralized systems. Most 

systems implement local ad-hoc authorization schemes 

that do not rely on global frameworks. Even large 

distributed systems such as Globus rely on ad-hoc local 

management of authorization policy information [6]. 

Woo and Lam [13] proposed a framework for 

authorization in distributed systems. Their system relies 

on a fixed set of authorization servers. A service chooses 

one of the authorization servers to handle its authorization 

information. A more recent approach [11] uses PKI and 

specialized certificates but still remains centralized. 

3. Authorization Protocols 

Most authorization systems rely on the service host to 

act as a trusted gatekeeper. This requires the service 

owner to trust the host. It also results in a fundamental 

weakness. If the host is compromised, access can be 

granted to unauthorized users. Further, if replication is 

used, the chance of at least one host being compromised 

increases. The chance of the service being unavailable is 

reduced, while the chance that an attacker can be 

authorized increases.  

To address these problems, our Maille Authorization 

protocol is designed to withstand multiple Byzantine 

failures such that a quorum is required before a user can 

obtain access to a service. The result is a protocol that 

tolerates many normal failures, and multiple inside 

attackers.  

The Maille Authorization protocol suite is made up of 

several simple protocols carried out between nodes with 

no global knowledge. The following notation is used 

throughout the remainder of this paper: 

• A, B, C represent specific nodes in the network.  

• X and Y represent arbitrary nodes in the network. 

• f(...) is a message, containing, among other, the 

parameters specified between the parentheses. 

• P represents a service.  

• x represents a specific action on a service. 

• Px represents an access key to perform action x on 

service P.  

• Pxi represents the ith part of key Px if decomposed 

with t of n threshold cryptography. 
The Maille protocol operates in a peer-to-peer network. 

Each node in the network has a set of trusted peers with 

which it has a preexisting trust relationship. How these 

relationships are formed is beyond the scope of this paper. 

The result of two nodes A and B being peers is that A and 

B have exchanged public keys and can pass messages 

securely.  

Within the Maille Authorization protocol, a service is 

uniquely identified by the pair (owner, service name) or 

(X,P). Each service has a non-empty set of actions: x1, x2, 

x3.  A service owner, a requestor’s name and a specific 

action uniquely identify a key: Px. 

If the protocol states that a secure channel must be 

established, it is assumed that data flowing over that 

channel cannot be overhead by a third party or be altered 

without detection by the receiver. 

The following message is defined within the protocol: 

ar(A,P,x,ar_id) - an access request by node A for the 

access key Px. The ar_id field is a random string selected 

by the requestor, unique to each ar(…) message. 

Each node in the peer-to-peer network maintains the 

following data structures: ar_cache – a list of all ar(...) 

messages seen recently and access_lists – a list of all 

access packets the node in question has available to 

answer ar(…) messages.  

All entries in the ar_cache can be retrieved by the tuple 

(requestor, target service, action, ar_id). Would the 

random string not be part of the cache key, rogue nodes 



 

could easily flood the network with false ar(…) messages 

for a node they wish to deny service thus causing  other 

nodes to drop valid  ar(…) messages. 

3.1.  The Maille protocols 

The Maille Authorization suite is made up of four 

protocols. Service owners use the key distribution 

protocol to scatter access packets onto the network. 

Nodes requiring authorization use the authorization 

request protocol to acquire the needed access key. All 

nodes in the network carry out the authorization request 

propagation protocol to forward ar(…) messages in an 

efficient manner. Finally, nodes holding access packets 

use the authorization verification protocol to verify that 

the key component Pxi should be returned to the requestor 

when an ar(…) message is received. 

A.  Key Distribution Protocol 

When some service owner wishes to protect service P, 

it does the following for each action x : 

1. Create a list of entities authorized to perform action x. 

2. Create a random, secret ap_id. 

3. Create a key Px for action x on service P.  

4. Decompose Px using t-of-n threshold cryptography to 

create key parts Px,1,… ,Px,n.   

5. Create n access packets from the n key parts, each 

containing the authorized list, the ap_id, the service 

owner, the action and one of the distinct n key parts, 

Pxi. 

6. Select n nodes at random from the network. 

7. Send each selected node one distinct access packet 

through a secure channel. 

Nodes receiving an access packet from a service owner 

authenticate the sender to insure she is the listed owner of 

the service and, if successful, simply add it to their 

access_list replacing any access packet for action x on 

service P with the same owner that might already exist. 

How the service owner selects the n random nodes 

from the network is not specified. She may use a cache of 

observed nodes, or some outside knowledge. For best 

security, the nodes should be selected at random from as 

large a set of candidates as possible to reduce the risk of 

rogue nodes receiving access packets. Also, the service 

owner may need to maintain the list of nodes holding 

access packets so she can later change or invalidate the 

access packets. 

B.  Authorization Request Protocol 

When node A wishes to acquire the access key Px to 

perform action x on service P, it does the following:  

1. Node A creates an access request: ar(A,P,x,ar_id) and 

send it to all its peers.  

2. Node A collects responses until a predefined timeout 

expires. 

Once the timeout has expired, node A may reassemble 

some keys Px, P’x, P’’x… Because more than t key parts 

may have been received, more than one key may be 

represented either by accident or by an attacker’s design. 

Node A groups the key parts by their ap_id and owner. 

Any set of key parts that has less than t members is 

discarded. Node A then uses these sets of key parts to 

construct possible access keys Px, P’x, P’’x … Each 

possible key Px, P’x, P’’x … is then tried on service P 

according to P's own protocol until a good key is found or 

all keys have been tried. 

If none of these keys works and some sets of key parts 

had more than t members, that set is likely to contain 

corrupted key parts. The requestor will then  try all 

possible combinations of t key parts from that set. If this 

process results in a new key, that key will be tried on P.  

While this procedure might appear cumbersome, most 

sets of returned key parts will only contain parts from one 

key. Multiple keys will only occur when either some 

nodes have out-of-date access packets, or an attacker is 

attempting to deny service.  

In the first case, the ap_id of the out of date key parts 

will differ from the current ap_id so those parts will be 

grouped separately and will likely not have t parts 

available to assemble a key. The second case is discussed 

below in the Byzantine failure subsection. 

C.  Authorization Request Propagation Protocol 

When some node X receives an access request 

ar(A,P,x,ar_id) from one of its peers Y, it does the 

following:  

1. Node X checks ar_cache to see if it contains ar(...) 

identified by the tuple (A,P,x,ar_id) If so, it stops. 
2. Node X adds ar(...) to the ar_cache.  

3. Node X checks to see if access_lists contains an entry 

for action x on service P. If so, it carries out the 

Authorization Verification Protocol (below) and stops.  

4. Node X forwards ar(...) to all peers except Y.  

D.  Authorization Verification Protocol 

When a node X receives an access request 

ar(A,P,x,ar_id) for which it has an access packet, it does 

the following: 

1. Node X verifies that A is listed in the access packet as 

allowed to perform action x on service P. If not, it 

stops. 

2. Node X performs an Authentication against A to 

verify its identity. If authentication fails, X stops. 

Otherwise, X establishes a secure channel with A. 

3. Node X sends node A a copy of the access packet, 
minus the authorized list, directly over a secure 

channel. 

4. Protocol Analysis 

In general, the system relies on the fact that all 

messages flow over secure channels. In the case of ar(…) 



 

message propagation, only the two peers involved in each 

propagation can read or write the data being sent. An 

ar(…) message will flow undisturbed from peer to peer 

unless some node inside the network corrupts it.  

4.1.  Key Structure 

The Maille Authorization protocol assumes no specific 

key structure. This allows for arbitrary keys to be used to 

secure services. Service owners are free to implement 

whatever key scheme they wish. For example, a service P 

may implement its authorization check as a simple nonce 

challenge against users trying to perform action x. This 

verifies that the user successfully underwent the 

authorization protocol and was authorized.  

However, this type of system is inherently weak. Once 

a single key has been compromised, it can be passed 

around among rogue nodes, forcing the service owner to 

invalidate the key internally and redistribute new access 

packets containing a new key. Hence, access keys should 

always have a finite lifetime.  

Service owners may wish to use a scheme similar to the 

key system used in Plutus [8]. New keys are generated 

such that the old versions of the key can be recreated by 

anyone with the current version, but old versions provide 

no information about the current key. Service owners can 

then rotate the key on a regular basis to protect new data 

only, thus removing the overhead of reencrypting all the 

data.  

Service replicas not receiving the revised keys would 

continue to operate with the old keys. Users accessing 

such replicas need only generate a previous version of the 

key. This allows loose updates of security information 

among widely distributed replicas of a service and would 

be well suited for a data only service such as a distributed 

cache. 

4.2  Efficient Authorization Request Propagation 

Because Maille does not assume an underlying network 

structure, it must take steps to insure that the propagation 

of authorization requests does not lead to exponentially 

growing numbers of messages or to loops in the message 

propagation. To prevent both, nodes will only forward 

ar(…) messages they have not forwarded before. Nodes 

rely on a finite ar_cache of recent ar(…) messages to 

determine which messages should be forwarded. If the 

cache size is selected appropriately, the number of times 

an ar(…) message is forwarded will never exceed the 

number of connections in the graph. If an ar(…) message 

that is still active is flushed from a node’s ar_cache, it is 

possible some extra forwarding of that ar(…) may occur.  

4.3.  Byzantine Failures 

Rogue nodes within the network can subvert the system 

in two ways. First, they can attempt to gain access to 

services for which they are not authorized. To do this, a 

rogue node C must convince t nodes holding access 

packets for action x on service P that it is authorized to 

perform action x on service P when it is not. 

Node C may try to fool the authentication system so 

that it can simply request authorization as some node that 

is authorized (i.e., identity theft). This protocol assumes 

an authentication system that cannot be easily defeated. 

Alternately, C may try to collect t key parts by 

eavesdropping on other valid authorization requests. 

Because nodes holding access packets pass key parts 

directly to the requestor via a secure channel, C must 

attack the underlying cryptography of that channel. This is 

assumed to be practically impossible. 

Second, rogue nodes can attempt to prevent otherwise 

valid authorization requests from succeeding. To do this, 

a rogue node can simply not forward ar(…) messages. 

However, this is no different than natural failures. The 

redundant nature of the Maille protocol will limit the 

impact of this type of attack. 

The rogue may also try to answer ar(…) messages with 

false access key parts. This will result in a pollution of the 

reassembled key. It is conceivable that some threshold 

cryptographic system could detect this type of failure. 

Maille includes some mechanisms to overcome this type 

of attack without relying on the underlying threshold cryp-

tography. There are two scenarios to consider. 

The first scenario is that the rogue does not know the 

correct ap_id. The random secret ap_id included in valid 

access packets is used to group key parts. In the event of 

multiple collaborating rogues, a requestor might even 

receive enough erroneous responses to assemble more 

than one key. However, because only those nodes that 

hold valid access packets know the true ap_id, one of the 

reassembled keys will be the valid key. The requestor 

need only try each key in succession, until the real key is 

found. 

The second scenario occurs if a rogue is one of the 

nodes holding a valid access packet. It may intentionally 

return a bad key part P’xi but with the correct ap_id. 

Unless the underlying threshold cryptography can detect 

this pollution, authorization may initially fail. If this 

happens and the requestor has received more than t key 

parts, the requestor can attempt to determine which key 

parts are bad. Assuming k key parts were received, the 

requestor A may attempt every possible t of k 

combinations.  

Because t will generally be small compared to 

computation power available, this does not pose a 

 



 

TABLE 1 – Average percent of access packets returned for all combinations of parameters.  Due to computational time 
requirements, the 20 peers, n = 40, simulation runs for networks with 100,000 could never be completed. 

Percent Access Packets Returned   

  Network Size  

Peers n 1000 10000 100000 Average Result 

5 5 0.996 1.000 0.980 0.992 

 10 1.000 0.997 0.970 0.989 

 20 0.999 0.998 0.983 0.993 

 40 0.999 0.997 0.977 0.991 

10 5 0.992 0.980 0.934 0.969 

 10 0.996 0.980 0.944 0.973 

 20 0.996 0.976 0.943 0.971 

 40 0.995 0.977 0.937 0.969 

20 5 0.928 0.910 0.906 0.915 

 10 0.940 0.931 0.909 0.927 

 20 0.946 0.924 0.896 0.925 

 40 0.936 0.926  0.931 

 

computational problem. All false key part attacks can be 

handled as in the second scenario. However, for 

efficiency, the secret ap_id mechanism is included.  

A more robust method, where the service owner signs 

the access packets prior to distribution, is possible. Any 

requestor can easily and with a high degree of certainty 

verify that the access packet is valid and unaltered. This 

would incur several (depending on t and n) additional 

authentications. The additional overhead seems 

unwarranted give that the problem should be rare and can 

be dealt with locally by the requestor. 

5. Simulation Results 

To test the protocol, an event-based simulator was 

implemented. It performs the actual protocol without 

modeling the underlying hardware and software. To 

model the race conditions often found in real world 

distributed systems, each message propagation takes a 

small random amount of time.  

In all experiments, the simulator creates a random 

network of a user-defined size. The network is created 

such that all nodes have m or m-1 peers. This m value is 

known as the peering of the network. When the network is 

created a single service/action pair is automatically 

created. The number of access packets for the distributed 

service is also a user-defined parameter n specifying the 

total number of key parts used by the threshold cryptogra-

phy. 

5.1.  Experiment 1 – Normal Operation 

The primary purpose of this experiment is to verify that 

the protocol functions as expected and to establish a 

baseline for experiment 2.  We ran the simulator on all 

combinations of the parameters, that is, n = 5, 10, 20, 40, 

m = 5, 10, 20 and netsize = 1000, 10000, 100000. Each 

combination of parameters was tested on ten different 

networks, with ten independent authorization requests per 

network. The results of the experiment are summarized in 

Table 1. The protocol performed as expected. Nearly 100 

percent of access packets were returned with low standard 

deviation. 

5.2.  Experiment 2 – Natural Failures 

Ideally, a node sending a request in a network where s 

percent of the total number of access packets it requested. 

For example if 10 percent of the nodes have failed, one 

would expect that on average 10 percent of the access 

packets would be unavailable. Any deviation from this is 

likely to be caused by problems with ar(…) message 

propagation due to node failure and the resulting problem 

of finding paths from the requestor to the nodes holding 

access packets. 

We used the same simulator as in experiment one to 

test the performance of the network with various failure 

rates. Only networks of 10,000 nodes were tested. The  
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Figure 1.  Percent of access packets successfully retrieved compared to percentage of nodes functioning for networks with 
a peering of 20. Results for 5, 10, 20 and 40 total access packets are shown.  

parameters n and m were varied exactly as in experiment 1. 

A new parameter f—the percent of all nodes that have 

failed—was added. All values of f from 5 to 70 percent 

with 5 percent increments were run so that all possible 

combinations of the parameters n, m and f were tried. As in 

experiment 1, each time the simulator was run, 10 requests 

were simulated, and each parameter set was run 10 

independent times for a total of 100 requests per parameter 

combination. 

To analyze the results, we compared the percentage of 

nodes not failed to the actual percentage of access packets 

that were retrieved. Figure 1, 2 and 3 are summaries of the 

results.  

Analysis of the data showed that the network’s 

performance with failures is not greatly affected by the 

parameters tested. Networks with small peering (m=5) 

diverge from the ideal at high failure rates (over 50 

percent). There was a slight trend for the standard deviation 

to increase as the failure rate increased.  

The parameter n does not seem to affect the average 

return rate, but did show increased standard deviations at 

high failure rates with n equal 5. This leaves service owners 

to decide the amount of overhead they wish to incur 

creating and maintaining access packets in general. In 

networks with high failure rates, low values of n will lead to 

more erratic performance.  

Overall, our data show that a service owner is free to 

choose any value of n without worrying about the impact of 

her choice on the protocol performance. They also indicate 

that the protocol is not sensitive to network size or peering 

over a wide range. The network requires little tending for 

the protocol to function. 

6. Conclusions 

The Maille Authorization protocol provides a way for 

widely distributed services to use authorization without 

requiring service owners to trusting each replica of the 

service with all authorization information. It distributes 

instead the authentication duties and data to a small subset 

of network nodes and relies on threshold cryptography to 

protect itself against multiple simultaneous Byzantine 

failures of the authentication nodes. 

As a result, the Maille Authorization protocol is immune 

to the Byzantine failure of any single node. Further, 

because a qualified quorum of nodes holding the access 

packet for the service/action pair is required, no small 

number of Byzantine failures can improperly grant or deny 

authorization.  

Traditional ad-hoc authorization systems required that 

the service owner trust the hosts of the replicas. In 

distributed systems this may not always be possible. For 

example, someone may wish to create a distributed 

database using spare hard drive space on personal 

computers. Clearly, the owner of the database cannot trust 

every personal computer to enforce all authorization 

policies. With the Maille protocol, the data need only be 
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Figure 2.  Percent of access packets successfully retrieved compared to percentage of nodes functioning for networks with 
a peering of 10. Results for  5, 10, 20 and 40 total access packets are shown.  
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Figure 3.  Percent of access packets successfully retrieved compared to percentage of nodes functioning for networks with 
a peering of 5. Results for 5, 10, 20 and 40 total access packets are shown.  



 

encrypted such that the authorization process gives 

authorized users the required key. This decoupling of 

hosting from authorization is significant for pervasive 

computing and other distributed applications. 

To date, most authorization research has focused on 

policy definition, and assumed that the service replicas 

themselves will perform all authorization tasks and retain 

the necessary information and policies to grant or deny 

access. Such systems only assume reliable authentication, 

but require the service owners to trust the hosts of their 

replicas. For widely distributed services, such as a wide 

area grid cache, the number of service replicas may be 

prohibitively large. Just keeping the authorization 

information on all replicas in sync may prove impossible.  

7. Future Work 

During the simulation, we realized that the stop at the 

end of step 3 of the authorization request propagation 

protocol might be impairing the network’s ability to 

function with high failure rates.  A better solution would 

be to always perform step 4 regardless of the presence of 

the requested access packet. Due to computational time 

constraints, the slightly altered version of the protocol was 

not tested.  

Additionally, we would like to incorporate Maille 

Authorization with the Maille authentication protocol [7] 

and measure performance of the pair with more realistic 

simulations that include several simulated distributed 

services.  
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