

Maille Authorization — A Distributed, Redundant Authorization Protocol

Andrew Fritz and Jehan-François Pâris

Department of Computer Science

University of Houston, Houston, TX 77204-3010

afritz@uh.edu, paris@cs.uh.edu

Abstract

The Maille Authorization protocol provides flexible and

reliable authorization in large distributed and pervasive

computing systems. Service owners distribute their access

control lists across the network using threshold cryptography.

Instances of the distributed service need only verify that

requestors have knowledge of a specific secret provided by the

Maille Authorization system. Requestors use the Maille protocol

to find and retrieve individual parts of the scattered key. Once a

sufficient quorum of nodes holding the key is found, the

requestor can reassemble the key and is authorized. Unlike

extant systems, the Maille Authorization protocol has no single

administrative point of failure and tolerates multiple

simultaneous Byzantine failures.

1. Introduction

Within distributed computer systems, services are the

fundamental resource. Authorization protects both simple

data (files, etc) and more complex services from

unauthorized actions by users. Authorization is the

process of making sure a requestor is allowed to carry out

a given action and relies explicitly on the ability to

determine the name of the user in question

(authentication). Authorization is important because

unauthorized accesses may have legal ramifications, cause

lost profits, or result in loss of work.

In small systems, authorization is handled in an ad-hoc

manner. Service owners implicitly trust the computer

systems hosting their service. The computer system

verifies the requestor’s identity (it authenticates them) and

then consults the access policy to determine if the request

can be allowed to complete. In some distributed systems,

a similar scheme is used. Individual computer systems

store the access policies for the services they host. Service

owners must still trust each system that replicates their

service.

This all-in-one approach fails when the services are

scattered over a large set of untrusted hosts. In such

systems, many computers may hold partial or complete

copies of the service. Further, one requestor may use

several replicas at once to increase throughput. As a

result, widely distributed services need to decouple

authorization from hosting. Plutus [8] achieves this goal

by (a) using encryption and (b) letting the client handle all

the key management and distribution. Woo and Lam [13]

assign all authorization task to one or more specialized

servers.

Both approaches have significant drawbacks.

Delegating all key management and distribution to the

clients just shifts the problem. Relying on a few trusted

authentication servers to control access to services

assumes that we have such hosts and that they cannot be

compromised. This is a dubious assumption in large

distributed systems. In addition, the fact that any large-

scale authorization system will have to be replicated

increases the chance that at least one of the authorization

servers could be compromised.

We propose a more robust and more scalable solution.

The Maille Authorization protocol scatters all

authorization tasks among subsets of nodes. It relies on

threshold cryptography [9] to ensure that it will continue

to operate correctly in the presence of a small number of

simultaneous Byzantine failures. In addition, the protocol

degrades gracefully in the presence of increasing numbers

of Byzantine failures. A catastrophic failure, comparable

to the theft of a Kerberos password file [10], could only

occur if nearly all nodes in the network are compromised.

To achieve these goals, the Maille Authorization

protocol assigns one unique access key to each type of

access on each service. This access key is broken into

parts using threshold cryptography. Each part of the key is

then paired with a copy of the access list for that key to

form an access packet. The access packets for a service

are then scattered to random member nodes in a peer-to-

peer network.

When users want to use a service, they initiate a search

for access packets of that service and wait for them to be

returned. When a node holding an access packet receives

a query, it checks to see if the requestor is listed in the

authorized list and then authenticates the requestor. If the

requestor passes these tests, the node returns a copy of the

access packet directly to the requestor.

If the requestor can reconstitute the key, she can use it

to access the service in question. In the case of data, the

access key may be used to decrypt the actual data or

unlock a lock box of other keys. In the case of services,

the key can be used like a ticket to prove the requestor has

been authorized to use the service. Many other

possibilities exist because the protocol does not assume

any specific form for key. It is merely a string of data.

Like Woo and Lam’s proposed scheme [13], the Maille

Authorization protocol relies on a separate authentication

service to verify the identity of all requestors. One

possible choice is the Maille Authentication system [7],

which offers the advantage of offering similar resistance

to inside attacks. Coupling our system with an

authentication system with single points of failure, would

greatly reduce the total trust warranted by the system. A

simple identity theft would then allow any attacker to

acquire authorization to any service.

The remainder of this paper is organized as follows.

Section 2 reviews previous work related to distributed

authorization. Section 3 introduces the Maille

Authorization protocol. Section 4 presents an analysis of

the protocol. Section 5 presents experimental findings

from simulation. Section 6 has our conclusions. Finally,

Section 7 sketches several directions for future work.

2. Related Work

Authentication in both centralized and distributed

computing systems has received much attention over the

last decade [1, 4, 6, 10, 14, 15]. In contrast, authorization

has received little attention in a distributed context aside

from defining policies [2, 3, 5, 12].

Unfortunately, very little work has been done to define

frameworks for handling authorization information in a

distributed system, or even centralized systems. Most

systems implement local ad-hoc authorization schemes

that do not rely on global frameworks. Even large

distributed systems such as Globus rely on ad-hoc local

management of authorization policy information [6].

Woo and Lam [13] proposed a framework for

authorization in distributed systems. Their system relies

on a fixed set of authorization servers. A service chooses

one of the authorization servers to handle its authorization

information. A more recent approach [11] uses PKI and

specialized certificates but still remains centralized.

3. Authorization Protocols

Most authorization systems rely on the service host to

act as a trusted gatekeeper. This requires the service

owner to trust the host. It also results in a fundamental

weakness. If the host is compromised, access can be

granted to unauthorized users. Further, if replication is

used, the chance of at least one host being compromised

increases. The chance of the service being unavailable is

reduced, while the chance that an attacker can be

authorized increases.

To address these problems, our Maille Authorization

protocol is designed to withstand multiple Byzantine

failures such that a quorum is required before a user can

obtain access to a service. The result is a protocol that

tolerates many normal failures, and multiple inside

attackers.

The Maille Authorization protocol suite is made up of

several simple protocols carried out between nodes with

no global knowledge. The following notation is used

throughout the remainder of this paper:

• A, B, C represent specific nodes in the network.

• X and Y represent arbitrary nodes in the network.

• f(...) is a message, containing, among other, the

parameters specified between the parentheses.

• P represents a service.

• x represents a specific action on a service.

• Px represents an access key to perform action x on

service P.

• Pxi represents the ith part of key Px if decomposed

with t of n threshold cryptography.
The Maille protocol operates in a peer-to-peer network.

Each node in the network has a set of trusted peers with

which it has a preexisting trust relationship. How these

relationships are formed is beyond the scope of this paper.

The result of two nodes A and B being peers is that A and

B have exchanged public keys and can pass messages

securely.

Within the Maille Authorization protocol, a service is

uniquely identified by the pair (owner, service name) or

(X,P). Each service has a non-empty set of actions: x1, x2,

x3. A service owner, a requestor’s name and a specific

action uniquely identify a key: Px.

If the protocol states that a secure channel must be

established, it is assumed that data flowing over that

channel cannot be overhead by a third party or be altered

without detection by the receiver.

The following message is defined within the protocol:

ar(A,P,x,ar_id) - an access request by node A for the

access key Px. The ar_id field is a random string selected

by the requestor, unique to each ar(…) message.

Each node in the peer-to-peer network maintains the

following data structures: ar_cache – a list of all ar(...)

messages seen recently and access_lists – a list of all

access packets the node in question has available to

answer ar(…) messages.

All entries in the ar_cache can be retrieved by the tuple

(requestor, target service, action, ar_id). Would the

random string not be part of the cache key, rogue nodes

could easily flood the network with false ar(…) messages

for a node they wish to deny service thus causing other

nodes to drop valid ar(…) messages.

3.1. The Maille protocols

The Maille Authorization suite is made up of four

protocols. Service owners use the key distribution

protocol to scatter access packets onto the network.

Nodes requiring authorization use the authorization

request protocol to acquire the needed access key. All

nodes in the network carry out the authorization request

propagation protocol to forward ar(…) messages in an

efficient manner. Finally, nodes holding access packets

use the authorization verification protocol to verify that

the key component Pxi should be returned to the requestor

when an ar(…) message is received.

A. Key Distribution Protocol

When some service owner wishes to protect service P,

it does the following for each action x :

1. Create a list of entities authorized to perform action x.

2. Create a random, secret ap_id.

3. Create a key Px for action x on service P.

4. Decompose Px using t-of-n threshold cryptography to

create key parts Px,1,… ,Px,n.

5. Create n access packets from the n key parts, each

containing the authorized list, the ap_id, the service

owner, the action and one of the distinct n key parts,

Pxi.

6. Select n nodes at random from the network.

7. Send each selected node one distinct access packet

through a secure channel.

Nodes receiving an access packet from a service owner

authenticate the sender to insure she is the listed owner of

the service and, if successful, simply add it to their

access_list replacing any access packet for action x on

service P with the same owner that might already exist.

How the service owner selects the n random nodes

from the network is not specified. She may use a cache of

observed nodes, or some outside knowledge. For best

security, the nodes should be selected at random from as

large a set of candidates as possible to reduce the risk of

rogue nodes receiving access packets. Also, the service

owner may need to maintain the list of nodes holding

access packets so she can later change or invalidate the

access packets.

B. Authorization Request Protocol

When node A wishes to acquire the access key Px to

perform action x on service P, it does the following:

1. Node A creates an access request: ar(A,P,x,ar_id) and

send it to all its peers.

2. Node A collects responses until a predefined timeout

expires.

Once the timeout has expired, node A may reassemble

some keys Px, P’x, P’’x… Because more than t key parts

may have been received, more than one key may be

represented either by accident or by an attacker’s design.

Node A groups the key parts by their ap_id and owner.

Any set of key parts that has less than t members is

discarded. Node A then uses these sets of key parts to

construct possible access keys Px, P’x, P’’x … Each

possible key Px, P’x, P’’x … is then tried on service P

according to P's own protocol until a good key is found or

all keys have been tried.

If none of these keys works and some sets of key parts

had more than t members, that set is likely to contain

corrupted key parts. The requestor will then try all

possible combinations of t key parts from that set. If this

process results in a new key, that key will be tried on P.

While this procedure might appear cumbersome, most

sets of returned key parts will only contain parts from one

key. Multiple keys will only occur when either some

nodes have out-of-date access packets, or an attacker is

attempting to deny service.

In the first case, the ap_id of the out of date key parts

will differ from the current ap_id so those parts will be

grouped separately and will likely not have t parts

available to assemble a key. The second case is discussed

below in the Byzantine failure subsection.

C. Authorization Request Propagation Protocol

When some node X receives an access request

ar(A,P,x,ar_id) from one of its peers Y, it does the

following:

1. Node X checks ar_cache to see if it contains ar(...)

identified by the tuple (A,P,x,ar_id) If so, it stops.
2. Node X adds ar(...) to the ar_cache.

3. Node X checks to see if access_lists contains an entry

for action x on service P. If so, it carries out the

Authorization Verification Protocol (below) and stops.

4. Node X forwards ar(...) to all peers except Y.

D. Authorization Verification Protocol

When a node X receives an access request

ar(A,P,x,ar_id) for which it has an access packet, it does

the following:

1. Node X verifies that A is listed in the access packet as

allowed to perform action x on service P. If not, it

stops.

2. Node X performs an Authentication against A to

verify its identity. If authentication fails, X stops.

Otherwise, X establishes a secure channel with A.

3. Node X sends node A a copy of the access packet,
minus the authorized list, directly over a secure

channel.

4. Protocol Analysis

In general, the system relies on the fact that all

messages flow over secure channels. In the case of ar(…)

message propagation, only the two peers involved in each

propagation can read or write the data being sent. An

ar(…) message will flow undisturbed from peer to peer

unless some node inside the network corrupts it.

4.1. Key Structure

The Maille Authorization protocol assumes no specific

key structure. This allows for arbitrary keys to be used to

secure services. Service owners are free to implement

whatever key scheme they wish. For example, a service P

may implement its authorization check as a simple nonce

challenge against users trying to perform action x. This

verifies that the user successfully underwent the

authorization protocol and was authorized.

However, this type of system is inherently weak. Once

a single key has been compromised, it can be passed

around among rogue nodes, forcing the service owner to

invalidate the key internally and redistribute new access

packets containing a new key. Hence, access keys should

always have a finite lifetime.

Service owners may wish to use a scheme similar to the

key system used in Plutus [8]. New keys are generated

such that the old versions of the key can be recreated by

anyone with the current version, but old versions provide

no information about the current key. Service owners can

then rotate the key on a regular basis to protect new data

only, thus removing the overhead of reencrypting all the

data.

Service replicas not receiving the revised keys would

continue to operate with the old keys. Users accessing

such replicas need only generate a previous version of the

key. This allows loose updates of security information

among widely distributed replicas of a service and would

be well suited for a data only service such as a distributed

cache.

4.2 Efficient Authorization Request Propagation

Because Maille does not assume an underlying network

structure, it must take steps to insure that the propagation

of authorization requests does not lead to exponentially

growing numbers of messages or to loops in the message

propagation. To prevent both, nodes will only forward

ar(…) messages they have not forwarded before. Nodes

rely on a finite ar_cache of recent ar(…) messages to

determine which messages should be forwarded. If the

cache size is selected appropriately, the number of times

an ar(…) message is forwarded will never exceed the

number of connections in the graph. If an ar(…) message

that is still active is flushed from a node’s ar_cache, it is

possible some extra forwarding of that ar(…) may occur.

4.3. Byzantine Failures

Rogue nodes within the network can subvert the system

in two ways. First, they can attempt to gain access to

services for which they are not authorized. To do this, a

rogue node C must convince t nodes holding access

packets for action x on service P that it is authorized to

perform action x on service P when it is not.

Node C may try to fool the authentication system so

that it can simply request authorization as some node that

is authorized (i.e., identity theft). This protocol assumes

an authentication system that cannot be easily defeated.

Alternately, C may try to collect t key parts by

eavesdropping on other valid authorization requests.

Because nodes holding access packets pass key parts

directly to the requestor via a secure channel, C must

attack the underlying cryptography of that channel. This is

assumed to be practically impossible.

Second, rogue nodes can attempt to prevent otherwise

valid authorization requests from succeeding. To do this,

a rogue node can simply not forward ar(…) messages.

However, this is no different than natural failures. The

redundant nature of the Maille protocol will limit the

impact of this type of attack.

The rogue may also try to answer ar(…) messages with

false access key parts. This will result in a pollution of the

reassembled key. It is conceivable that some threshold

cryptographic system could detect this type of failure.

Maille includes some mechanisms to overcome this type

of attack without relying on the underlying threshold cryp-

tography. There are two scenarios to consider.

The first scenario is that the rogue does not know the

correct ap_id. The random secret ap_id included in valid

access packets is used to group key parts. In the event of

multiple collaborating rogues, a requestor might even

receive enough erroneous responses to assemble more

than one key. However, because only those nodes that

hold valid access packets know the true ap_id, one of the

reassembled keys will be the valid key. The requestor

need only try each key in succession, until the real key is

found.

The second scenario occurs if a rogue is one of the

nodes holding a valid access packet. It may intentionally

return a bad key part P’xi but with the correct ap_id.

Unless the underlying threshold cryptography can detect

this pollution, authorization may initially fail. If this

happens and the requestor has received more than t key

parts, the requestor can attempt to determine which key

parts are bad. Assuming k key parts were received, the

requestor A may attempt every possible t of k

combinations.

Because t will generally be small compared to

computation power available, this does not pose a

TABLE 1 – Average percent of access packets returned for all combinations of parameters. Due to computational time
requirements, the 20 peers, n = 40, simulation runs for networks with 100,000 could never be completed.

Percent Access Packets Returned

 Network Size

Peers n 1000 10000 100000 Average Result

5 5 0.996 1.000 0.980 0.992

 10 1.000 0.997 0.970 0.989

 20 0.999 0.998 0.983 0.993

 40 0.999 0.997 0.977 0.991

10 5 0.992 0.980 0.934 0.969

 10 0.996 0.980 0.944 0.973

 20 0.996 0.976 0.943 0.971

 40 0.995 0.977 0.937 0.969

20 5 0.928 0.910 0.906 0.915

 10 0.940 0.931 0.909 0.927

 20 0.946 0.924 0.896 0.925

 40 0.936 0.926 0.931

computational problem. All false key part attacks can be

handled as in the second scenario. However, for

efficiency, the secret ap_id mechanism is included.

A more robust method, where the service owner signs

the access packets prior to distribution, is possible. Any

requestor can easily and with a high degree of certainty

verify that the access packet is valid and unaltered. This

would incur several (depending on t and n) additional

authentications. The additional overhead seems

unwarranted give that the problem should be rare and can

be dealt with locally by the requestor.

5. Simulation Results

To test the protocol, an event-based simulator was

implemented. It performs the actual protocol without

modeling the underlying hardware and software. To

model the race conditions often found in real world

distributed systems, each message propagation takes a

small random amount of time.

In all experiments, the simulator creates a random

network of a user-defined size. The network is created

such that all nodes have m or m-1 peers. This m value is

known as the peering of the network. When the network is

created a single service/action pair is automatically

created. The number of access packets for the distributed

service is also a user-defined parameter n specifying the

total number of key parts used by the threshold cryptogra-

phy.

5.1. Experiment 1 – Normal Operation

The primary purpose of this experiment is to verify that

the protocol functions as expected and to establish a

baseline for experiment 2. We ran the simulator on all

combinations of the parameters, that is, n = 5, 10, 20, 40,

m = 5, 10, 20 and netsize = 1000, 10000, 100000. Each

combination of parameters was tested on ten different

networks, with ten independent authorization requests per

network. The results of the experiment are summarized in

Table 1. The protocol performed as expected. Nearly 100

percent of access packets were returned with low standard

deviation.

5.2. Experiment 2 – Natural Failures

Ideally, a node sending a request in a network where s

percent of the total number of access packets it requested.

For example if 10 percent of the nodes have failed, one

would expect that on average 10 percent of the access

packets would be unavailable. Any deviation from this is

likely to be caused by problems with ar(…) message

propagation due to node failure and the resulting problem

of finding paths from the requestor to the nodes holding

access packets.

We used the same simulator as in experiment one to

test the performance of the network with various failure

rates. Only networks of 10,000 nodes were tested. The

Percent Access Packets Returned vs Nodes Working for P20

0

10

20

30

40

50

60

70

80

90

100

30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percent Nodes Working

P
e
rc
e
n
t
A
c
c
e
s
s
 P
a
c
k
e
ts
 R
e
tu
rn
e
d

Ideal

N5

N10

N20

N40

Figure 1. Percent of access packets successfully retrieved compared to percentage of nodes functioning for networks with
a peering of 20. Results for 5, 10, 20 and 40 total access packets are shown.

parameters n and m were varied exactly as in experiment 1.

A new parameter f—the percent of all nodes that have

failed—was added. All values of f from 5 to 70 percent

with 5 percent increments were run so that all possible

combinations of the parameters n, m and f were tried. As in

experiment 1, each time the simulator was run, 10 requests

were simulated, and each parameter set was run 10

independent times for a total of 100 requests per parameter

combination.

To analyze the results, we compared the percentage of

nodes not failed to the actual percentage of access packets

that were retrieved. Figure 1, 2 and 3 are summaries of the

results.

Analysis of the data showed that the network’s

performance with failures is not greatly affected by the

parameters tested. Networks with small peering (m=5)

diverge from the ideal at high failure rates (over 50

percent). There was a slight trend for the standard deviation

to increase as the failure rate increased.

The parameter n does not seem to affect the average

return rate, but did show increased standard deviations at

high failure rates with n equal 5. This leaves service owners

to decide the amount of overhead they wish to incur

creating and maintaining access packets in general. In

networks with high failure rates, low values of n will lead to

more erratic performance.

Overall, our data show that a service owner is free to

choose any value of n without worrying about the impact of

her choice on the protocol performance. They also indicate

that the protocol is not sensitive to network size or peering

over a wide range. The network requires little tending for

the protocol to function.

6. Conclusions

The Maille Authorization protocol provides a way for

widely distributed services to use authorization without

requiring service owners to trusting each replica of the

service with all authorization information. It distributes

instead the authentication duties and data to a small subset

of network nodes and relies on threshold cryptography to

protect itself against multiple simultaneous Byzantine

failures of the authentication nodes.

As a result, the Maille Authorization protocol is immune

to the Byzantine failure of any single node. Further,

because a qualified quorum of nodes holding the access

packet for the service/action pair is required, no small

number of Byzantine failures can improperly grant or deny

authorization.

Traditional ad-hoc authorization systems required that

the service owner trust the hosts of the replicas. In

distributed systems this may not always be possible. For

example, someone may wish to create a distributed

database using spare hard drive space on personal

computers. Clearly, the owner of the database cannot trust

every personal computer to enforce all authorization

policies. With the Maille protocol, the data need only be

Percent Access Packets Returned vs Nodes Working for P10

0

10

20

30

40

50

60

70

80

90

100

30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percent Nodes Working

P
e
rc
e
n
t
A
c
c
e
s
s
 P
a
c
k
e
ts
 R
e
tu
rn
e
d

Ideal

N5

N10

N20

N40

Figure 2. Percent of access packets successfully retrieved compared to percentage of nodes functioning for networks with
a peering of 10. Results for 5, 10, 20 and 40 total access packets are shown.

Percent Access Packets Returned vs Nodes Working for P5

0

10

20

30

40

50

60

70

80

90

100

30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percent Nodes Working

P
e
rc
e
n
t
A
c
c
e
s
s
 P
a
c
k
e
ts
 R
e
tu
rn
e
d

Ideal

N5

N10

N20

N40

Figure 3. Percent of access packets successfully retrieved compared to percentage of nodes functioning for networks with
a peering of 5. Results for 5, 10, 20 and 40 total access packets are shown.

encrypted such that the authorization process gives

authorized users the required key. This decoupling of

hosting from authorization is significant for pervasive

computing and other distributed applications.

To date, most authorization research has focused on

policy definition, and assumed that the service replicas

themselves will perform all authorization tasks and retain

the necessary information and policies to grant or deny

access. Such systems only assume reliable authentication,

but require the service owners to trust the hosts of their

replicas. For widely distributed services, such as a wide

area grid cache, the number of service replicas may be

prohibitively large. Just keeping the authorization

information on all replicas in sync may prove impossible.

7. Future Work

During the simulation, we realized that the stop at the

end of step 3 of the authorization request propagation

protocol might be impairing the network’s ability to

function with high failure rates. A better solution would

be to always perform step 4 regardless of the presence of

the requested access packet. Due to computational time

constraints, the slightly altered version of the protocol was

not tested.

Additionally, we would like to incorporate Maille

Authorization with the Maille authentication protocol [7]

and measure performance of the pair with more realistic

simulations that include several simulated distributed

services.

References

[1] Adams, C., and Lloyd, S., 1997, Profiles and Protocols for

the Internet Public-Key Infrastructure, Proc. 6th IEEE

Workshop on Future Trends of Distributed Computing

Systems, pp. 220–224.

[2] Ahn, J., and Sandhu, R., 2000, Role-Based Authorization

Constraints Specification, ACM Transactions on

Information and System Security, 3(4):207-226.

[3] Bertino, E., Bettini, C., and Samarati, P., 1994, A

Temporal Authorization Model, Proc. 2nd ACM Conf on

Computer and Communications Security, pp. 126-135.

[4] Bird, R., Gopan, I., Herzberg, A., Janson, Ph., Kutten, S.,

Molva, R., and Yung, M., 1995, The KryptoKnight family

of light-weight protocols for authentication and key

distribution, ACM/IEEE Transactions on Networking,

3(1):31–41.

[5] Bonatti, P., Vimercati, S., and Samarati, P., 2002, An

Algebra for Composing Access Control Policies, ACM

Transactions on Information and System Security, 5(1):1-

35.

[6] Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S.,

1998, A Security Architecture for Computation Grids,

Proc. 5th ACM Conference on Computer and

Communication Security, pp. 83–92.

[7] Fritz, A., and Pâris, J.-F., 2004, Maille Authentication: A

Novel Protocol for Distributed Authentication, , Security

and Protection in Information Processing Systems (Y.

Deswarte, F. Cuppens, S. Jajodia and L. Wand, eds.),

pages 309–322, Kluwer Academic Publishers, 2004.

[8] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q.,

and Fu, K., 2003, Plutus: Scalable Secure File Sharing on

Untrusted Storage, Proc. 2nd Conference on File and

Storage Technologies, pp 29-42.

[9] Shamir, A., 1979, How to Share a Secret,

Communications of the ACM, pp 612-613.

[10] Steiner, J, G., Neuman, C., and Schiller, J. I., 1988,

Kerberos: An Authentication Service for Open Network

Systems, Proc. 1988 Winter Usenix Conference, pp. 191–

201.

[11] Thompson, M., Essiari, A. and Mudumbai, S., 2003,

Certificate-Based Authorization Policy in a PKI

Environment, ACM Transactions on Information and

System Security, 6(4):566-588.

[12] Varadharajan, V., and Allen, P., 1996, Joint Actions

Based Authorization Schemes, ACM SIGOPS Operating

System Review, 30(3):32-45.

[13] Woo, T. and Lam, S., 1993, A Framework for Distributed

Authorization, 1st ACM Conference on Computer and

Comm. Security, pp. 112-118.

[14] Zhou, L., Schneider, F. B., Van Renesse, R., 2002,

COCA: A Secure Distributed Online Certification

Authority, ACM Transactions on Computer Systems,

20(4):329-368.

[15] Zimmermann, P., 1995, The Official PGP User's Guide.

MIT Press, Cambridge, MA.

