
Peer-to-Peer Multimedia Streaming Using BitTorrent

Purvi Shah Jehan-François Pâris

Department of Computer Science
University of Houston,

Houston, TX 77204-3010
{purvi, paris}@cs.uh.edu

Abstract

We propose a peer-to-peer multimedia streaming
solution based on the BitTorrent content-distribution
protocol. Our proposal includes two modifications
that allow it to deliver multimedia data on time. First,
we replace the rarest-first chunk downloading policy
of BitTorrent by a policy requiring peers to download
first the chunks that they will watch in the near future.
Second, we introduce a new randomized tit-for-tat peer
selection policy that gives free tries to a larger number
of peers and lets them participate sooner in the media
distribution. Our simulations indicate that both
changes are required to achieve a good streaming
quality.

1. Introduction

Recent technology advances have allowed the
successful deployment of multimedia streaming for
video-conferencing and surveillance applications over
private networks. However streaming high-quality
video over the Internet to address the demands of
large-scale distance learning, telemedicine and video-
on-demand still remains a challenging issue.

In recent years, peer-to-peer (P2P) technology has
captured the interest of the research community as well
as the industry. By allowing peers to serve each other,
P2P solutions overcome many limitations of traditional
client-server architectures. They can handle flash
crowds (that is, very large and sudden surges of
demand) as well as achieve bandwidth scalability (that
is, overcome the bandwidth limitations of the server).
In addition, P2P solutions do not require any special
support from the network, let it be IP multicast or any
specific content distribution infrastructure.

As a result, several content-providers over the
Internet have adopted P2P technology to reduce the
server-workload, minimize the content-distribution

costs and improve their distribution times [1, 2]. In
addition, there has been an increasing interest in the
use of P2P architecture for large-scale, high-quality
multimedia streaming.

The paper presents a P2P solution for multimedia
streaming based on the BitTorrent (BT) protocol. We
first identify the algorithms of BT that require to be
modified to make it suitable for multimedia streaming
and discuss how these changes affect the performance
of our solution.

The rest of the paper is structured as follows:
Section 2 presents a quick overview of BT. Section 3
introduces our modifications to the BT protocol to
enhance its applicability for multimedia streaming.
Sections 4 and 5 describe our experimental setup and
present our results. In section 6 we discuss related
work in P2P multimedia streaming. Finally Section 7
has our conclusions.

2. The BT protocol

BT [3] is a very scalable P2P protocol for large-
scale content-distribution over the Internet. BT works
by chopping up the data to be distributed into small
chunks and delivering the chunks in a non sequential
manner.

BT differentiates between two types of peers:
leeches and seeds. Leeches are peers that only have
some or none of the data while seeds are peers that
have all the data but stay in the system to let other
peers download from them. Thus seeds only perform
uploading while leeches download chunks that they do
not have and upload chunks that they have.

BT implements a set of algorithms that balances
the content distribution load among a swarm of peers,
that is, an overlay mesh network of peers. Each swarm
is managed by a centralized process, a tracker. The
tracker does not host any content but maintains
metadata about it.

Fig. 1. Sliding window notion using the rarest-first
policy for BT.

As leeches enter the swarm they first connect to
the tracker. The tracker returns a random list of peers
that have the content. Each leech then randomly selects
a subset of that list as its neighbors and initiates
requests to set up bidirectional TCP connections with
these neighbors.

Instead of downloading directly from the server,
each leech requests chunks from all the peers it is
connected to. To increase the overall efficiency of the
swarm, BT employs a rarest-first policy for selecting
chunks to download. Each peer tries to download first
the chunks that are least replicated among its
neighbors.

BT employs a tit-for-tat policy to deter free riding
(that is, when the peers behave selfishly and use the
swarm only to download chunks without making any
contribution to the swarm). Peers upload to typically k
peers that recently provided it with the best
downloading rate, even though it may have received
requests from more than k leeches. This process of
temporary refusal to upload to some peers is called
choking. It lets each peer attempt to maximize its own
interest by downloading as much as it can. BT also
includes a mechanism, called optimistic unchoking,
that lets peers reserve a share of their available
bandwidth for uploading chunks to randomly selected
peers. Among other things, optimistic unchoking
gives newcoming peers a chance to join the swarm.
The decision to choke/unchoke is performed at regular
rechoking intervals.

In addition to having a low control overhead, a BT
swarm is scalable, efficient, cost-effective, self-
improving and easy to deploy. These interesting
properties make BT an attractive choice for P2P
multimedia streaming. In addition, BT swarms bear

strong similarities to the functionality required in P2P
multimedia streaming networks. In BT as in
multimedia streaming, the content to be distributed is
divided into multiple chunks or segments to be down-
loaded from the server.

3. Proposed modifications

Although multimedia streaming networks have
similarities with BT swarms, BT in itself is not suitable
for multimedia streaming since it does not account for
the real-time needs of streaming applications. First,
peers do not download chunks in sequence, which
leaves them unusable until the download is complete.
Second, the tit-for-tat policy forces too many peers to
wait for too long before joining the swarm.

We propose two modifications to the BT
algorithm that address these issues.

3.1. Chunk selection policy

Maintaining a window of chunks of the video at
the application level is a common approach in
multimedia streaming to smooth out the playback
jitters. This introduces a playback delay at the client.

We introduce a sliding window which is illustrated
in Fig. 1. This window contains the next w chunks to
be consumed by a client. Observe first that we can
safely drop chunks that arrive after their scheduled
playback deadline as they are useless. Conversely,
downloading chunks located ahead of the current
window is not desirable either since it would take
away download time from chunks within the window.
Hence the best approach is to prevent peers from
requesting chunks located outside their current
window as this window contains the most urgently
needed chunks. While this additional constraint on
chunk selection may decrease overall efficiency of the
BT protocol, it will also improve the quality of the
delivered stream.

A decision to be made by each peer is which
chunks within its sliding window it should download
first. Adopting a sequential policy would require peers
to download first the chunks at the beginning of the
window as these chunks will be needed first. This
policy would have the major drawback of not taking
into account the rarity of the chunks. We decided
instead to keep the original rarest-first policy of the BT
protocol. As we will see later, we found out that this
policy allowed a larger variety of chunks to be
downloaded from the seed and delayed the download
of most common chunks until the end of the playback
delay.

We want the size of the sliding window to
correspond to the playback delay d in a way that would
allow a peer to use the playback delay to download all
the chunks necessary to play back the first d time units
of the stream, then use that time to download the
chunks necessary to play back the next d time units of
the stream and so on. To achieve that goal, the size w
of the window, expressed in number of chunks should
satisfy the relation

c

db
w = (1)

where d is the playback delay, b is the video
consumption rate and c is the chunk size. The
assumption here is that the observed download rate at
each peer must be at least equal to the streaming rate of
the video in order to obtain a good streaming quality.

3.2. Neighbor selection policy

In BT, peers select other peers according to their
observed behaviors. Each seed selects its peers based
on their observed download rates, that is, the rates at
which these peers can download chunks from it. It will
always prefer the faster peers in order to speed up the
chunk propagation in the BT swarm.

We could thus see a subset of peers with high-
speed connections consuming a large portion of the
seed’s entire upload bandwidth. These advantaged
peers will in turn favor each other, effectively denying
slower peers a chance to get chunks.

As a result, a significant number of BT peers
suffer from slow start. This is because new neighbor
discovery is done only by a single optimistic unchoke
that occurs at a longer interval. Hence a slower peer in
the swarm will have to wait until it has been
optimistically selected by an advantaged peer before it
can download chunks from that advantaged peer.

To use BT for real-time multimedia streaming it is
essential to speed up this bootstrapping process. We
use a randomized policy in which at the beginning of
every playback each peer selects neighbors at random
for the randomized choking interval from the list of
peers that it got from the tracker. This policy gives
more free tries to a larger number of peers in the
swarm to download chunks which they can use to
share later.

Once they have chunks to exchange peers then use
tit-for-tat policy until the end of the playback duration
to deter free riding. As more peers become able to
actively participate during each playback interval, the
efficiency of the system improves and more peers will
improve the quality of their streaming.

4. Experimental setup

In this section we discuss some details of our
simulation settings. We collected results for a P2P
network consisting of one hundred peers. We assumed
that each multimedia streaming session consisted of a
single initial seed streaming the video to all peers. We
further assumed that we had a well behaved BT swarm
where each peers would continue uploading until it
views the complete video.

We considered a homogeneous setting where all
leeches within a sub-network have the same link
bandwidth. Unless otherwise specified we use the
following default settings in our simulations:

Video size = S = 150 MB
Chunk size = 256 KB
Number of initial-seeds/servers = 1
Link bandwidth = 10 Mbps
Maximum number of concurrent upload transfers = 5
Rechoking interval = 5 s
Optimistic unchoking interval = 15 s
Number of random peers returned by the tracker = 50
Number of neighbors of each peer = 10

Assuming that the original streaming rate b is 3
Mbps, the total duration D of the video is

s400==
b
S

D

We modeled the network transmission and
queuing delays but assumed that the network-
propagation delays could be neglected since they are
relevant only for small sized control packets, such as
the packets used by peers to requests chunks from their
neighbors, while the multimedia streaming time is
dominated by the chunk exchange traffic.

To keep our model simple, we ignored the
complexity of the dynamics of TCP connections. We
assumed the idealized performance of TCP and relied
on the long-term fairness of TCP (that connections
traversing a link share the link bandwidth equally with
the portion of each connection fluctuating as the
number of connections vary).

Like previous simulation studies [4, 5] we
assumed that bandwidth bottlenecks only occurred at
the edge and did not model shared bottleneck links in
the interior of the swarm.

We used the following two metrics to measure the
performance of BT and the improvements brought by
our proposed modifications:

TABLE 1. Success ratio for different chunk selection
policies for video consumption rate 4 Mbps and a
playback delay of 60 s.

Chunk Selection Policy Success Ratio
(percent)

Rarest-first policy (original BT) 23.6%
Sequential policy 8.1%
Sliding window and rarest-first
policy

83.3%

• Success ratio: This metric represents the playback

continuity defined as the number of chunks that
arrive before a scheduled playback deadline over
the total number of chunks in the video. We use
the success ratio to quantify the performance of
the P2P multimedia streaming network. The
quality is different from throughput and captures
performance parameters such as the playback
delay, chunk loss and jitter. We use the average of
success ratio of all the peers in the network to
define the quality of the P2P streaming network.

• Normalized network throughput: This metric is the
ratio of the total number of bytes uploaded by all
the peers up until that time to the network capacity
(i.e. total network bandwidth).

5. Experimental results

We performed a series of experiments to validate
our proposals to modify the chunk selection policy and
the neighbor selection policy.

5.1. Chunk selection policy

We investigated first the impact of the chunk
selection policy on the quality of the streaming.

Table I summarizes the impact of the policy on the
fraction of chunks that arrive before scheduled
playback deadline. As we can see, the original BT
protocol can only deliver 23.6 percent of the chunks
before that deadline, thus showing that it is not suited
to streaming applications. Adopting a sequential policy
that downloads first the chunks at the beginning of a
sliding window would have a very negative impact on
the effectiveness of the policy as only 8.1 percent of
the chunks would arrive on time. The best solution is
to introduce a sliding window while using a rarest-first
policy to select the chunks to download within that
window as this solution allows the BT protocol to
deliver 83.6 of the chunks on time. While this is not
yet enough to ensure a satisfactory streaming quality, it
is already 250 percent better than the original BT
protocol.

0

30

60

90

120

0

10
0

20
0

30
0

40
0

50
0

60
0

Window Size

S
uc

ce
ss

 R
at

io
 (p

er
ce

nt
)

Sliding window and rarest-first policy
Original BT rarest-first policy
Sequential policy

Fig. 2. Effectiveness of the sliding window concept.

Fig. 2 shows how the window size w affects the
quality of the streaming. We let the window size vary
from 90 to 540 chunks and assume a streaming rate of
4 Mbps and a playback delay of 60 s. Hence the
optimal window size w, as obtained from Equation
(1), should be 120 chunks. In fact, we can observe that
the maximum of the curve occurs for values of w
around 150 chunks, that is, 20 percent higher than the
reasonable expectation.

When the window size is smaller than that, the
success ratio goes down because a smaller window
puts undue restrictions on the chunk selection process,
thus reducing the effectiveness of the swarm.

As the window size increases, the number of
chunks than can be exchanged also increases. Having
more chunks per window increases the effectiveness of
the process and thus the probability that a given chunk
will arrive on time.

Increasing the window size beyond a certain point
slowly degrades the streaming quality as peers end up
downloading chunks the rarest chunks within their
neighborhood while considering less and less the
scheduled playback deadline.

5.2. Neighbor selection policy

In this subsection we evaluate our modified
neighbor selection policy—which we will call BT-
randomized-tit-for-tat—and compare it with BT’s tit-
for-tat policy—which we will refer to as BT-tit-for-tat.

Define t as the average video distribution time,
that is, the average time required by a peer to obtain
the whole content of the object being distributed. We
can then use this value to compute the average
observed download rate r at which the peers receive
the content.

TABLE II. Average video distribution time and
average observed download rate using BT.

Average video
distribution time t (s)

Average observed
download rate r (Mbps)

296.418 4.048

t
S

r = (2)

The value of r for the network plays an important
role in the analysis of the streaming quality in each
region. Table II displays that value for our simulated
network.

Comparing this rate r to the original streaming rate
b let us identify three types of regions:

1. Resource-rich: This is an over-capacity region
when r is greater than the original streaming rate
b. Here there is more than enough bandwidth
available to stream the video across the network.
Higher streaming quality in terms of shorter
playback delays and higher success ratio can be
achieved in this region.

2. Resource-critical: This is when r is approximately
equal to the original streaming rate b. Achieving a
high streaming quality is difficult in this region.

3. Resource-starved: This is an under-capacity
region when r is less than the original streaming
rate b. In this region the peers are starved for
bandwidth resources hence not all peers in the
network will be able to achieve an acceptable
streaming quality.

Let us consider first how our new neighbor
selection policy would affect the streaming
performance of the BT protocol in the resource-rich
region. Fig. 3 shows how the playback delay affects
the streaming qualities achieved by the original BT tit-
for-tat policy with our proposed modification in
resource-rich regions. We assumed that both policies
were combined with our new chunk section policy and
calculated the size of the sliding window using
Equation (1). In addition, we set the randomized
choking period to one-third of the playback interval.

As we can see, the success ratio of our
randomized-tit-for-tat policy is 100 percent for all
playback delays. This property will hold as long as the
streaming rate remains below or around 3Mbps. In
contrast, the original BT tit-for-tat policy performs
rather unsatisfactorily, especially for the smaller
playback delays.

Resource-rich region (3 Mbps)

40

50

60

70

80

90

100

30 60 90 120
Playback Delay (s)

Su
cc

es
s

R
at

io
 (p

er
ce

nt
)

BT-tit-for-tat
BT-randomized-tit-for-tat

Fig. 3. Comparing BT original tit-for-tat policy with
our new randomized-tit-for-tat policy for resource-
rich region in terms of success ratio: We have an
overall good streaming solution.

Resource-rich region (3 Mbps)

0.0

0.3

0.5

0.8
20 80 14

0

20
0

26
0

32
0

38
0

Time (s)

N
or

m
al

iz
ed

 N
et

w
or

k
Th

ro
ug

hp
ut

BT-tit-for-tat
BT-randomized-tit-for-tat

Fig. 4. Comparing BT original tit-for-tat policy with
our new randomized-tit-for-tat policy for resource-
rich region in terms of normalized network
throughput.

This is because in BT the peers selected by the
seed are at advantage and have more chunks to upload
due to a quick bootstrap. These peers are given a
higher priority and suffer less chunk loss. The original
BT tit-for-tat policy motivates these peers to pair up
among themselves. In contrast, other peers achieve
lower download rates and hence worse streaming
quality.

Resource-critical region (4 Mbps)

40

50

60

70

80

90

100

30 60 90 120
Playback Delay (s)

Su
cc

es
s

R
at

io
 (p

er
ce

nt
)

BT-tit-for-tat
BT-randomized-tit-for-tat

Fig. 5. Comparing BT original tit-for-tat policy with
our new randomized-tit-for-tat policy for resource-
critical region in terms of success ratio: Larger
playback delays lead to a good streaming solution.

Resource-critical region (4 Mbps)

0.4

0.6

0.8

20 80 140 200 260
Time (s)

N
or

m
al

iz
ed

 N
et

w
or

k
Th

ro
ug

hp
ut

120 s
90 s
60 s
30 s

Fig. 6. Compares normalized network throughput
for different playback delays.

This phenomenon would indeed worsen in the
case of a heterogeneous environment consisting of a
mix of peers with different link bandwidths. Here the
peers with high bandwidth would pair up among
themselves and hence receive higher quality compared
to other low bandwidth peers.

In contrast, our policy makes the bootstrapping
quicker for all the peers in the system. As soon as these
peers have chunks to share, they actively participate in
the swarm. The resulting increase in total network
utilization can be seen in Fig. 4, which shows how the
normalized network throughput evolves over time

Resource-starved region (5 Mbps)

40

50

60

70

80

90

100

30 60 90 120
Playback Delay (s)

S
uc

ce
ss

 R
at

io
 (p

er
ce

nt
)

BT-tit-for-tat
BT-randomized-tit-for-tat

Fig. 7. Comparing BT original tit-for-tat policy with
our new randomized-tit-for-tat policy for resource-
starved region in terms of success ratio.

assuming a playback delay of 60 s and a streaming rate
of 3 Mbps.

Our randomized-tit-for-tat policy still performs
much better than the BT tit-for-tat policy in the ---
consumption rate is around 4 Mbps. As we can see on
Fig. 5, the performances of both protocols improve as
the playback delay increases.

This is because BT’s efficiency depends on the
number of chunks to exchange. As Equation (1)
shows, the window size w is proportional to the
playback delay d. As a result any increase in that delay
will also increase the window size. A larger window
will contain more chunks, allow more parallel
downloading and utilize the network more efficiently.
In particular, Fig. 6 shows how increasing the
playback delay from 30 s to 120 s will increase the
normalized network throughput by at least 10 percent.

There is little to say about the performance of the
two policies in the resource-starved region, that is
when the streaming rate is 5 Mbps. As Fig. 7
indicates, neither of the two policies can achieve a
satisfactory success rate. Even setting the window size
to the video size and the playback delay to the duration
of the video would not suffice to achieve an average
download rate equal to the video consumption rate.

An admission control policy should be used so
that only a number of peers that can be satisfied are
allowed to participate in the swarm while the other
peers are put on hold. Peers could be selected based
on their priority or at random depending on the
application needs.

Even in this resource-starved region our BT-
randomized-tit-for-tat policy never performs worse and

sometimes performs slightly better than the original
BT tit-for-tat policy.

6. Related work

Several studies have explored the P2P multimedia
streaming from different aspects. Narada [5] focuses
on multi-sender multi-receiver streaming applications
and maintains a mesh among the peers and establishes
a tree whenever a sender wants to stream the video to a
set of receivers. Due to heavy control overhead
(because of intensive interactions between peers)
Narada does not scale well to large P2P networks. Xu
et al. [6] were among the first to propose the concept
of P2P multimedia streaming. It mainly focuses on the
analysis of the capacity of P2P networks for
multimedia streaming.

Nice [7], DirectStream [8] and ZIGZAG [9] try to
construct an overlay tree such that they minimize the
end-to-end delay and maximize the utilization of the
bandwidth of the peers. Banerjee et al. [10] the authors
suggest that any traditional overlay tree scheme can be
made resilient by duplicating chunks along a small
number of randomly chosen additional overlay links.
This way they utilize all the peers in the network. The
major issue of such single overlay tree protocols is to
build a scalable overlay tree with high efficiency.

In contrast multi-tree approaches, such as
SplitStream [11], CoopNet [12] and P2Cast [13],
advocate the use of multiple distribution trees and
assume the presence of uninterested nodes to forward
traffic. The multi-tree overlay protocols cannot provide
backup streaming services in case of leaving or
crashing of the peers in the upper layers of the trees.

To improve the reliability and increase the
resource utilization mesh-based P2P protocols have
been proposed [14-16]. Gnustream [14] is built upon
the Gnutella [17] P2P content-distribution protocol.
Unlike most P2P protocols such as Napster [18],
Gnutella, Kazaa [19] and eDonkey [20], BT focuses on
fast and efficient replication to distribute files. Most
traditional protocols were more specifically designed
to share MP3 or image files a few mega-bytes in size
where the search time is more crucial than the
distribution time.

Unlike our tracker based solution, CoolStreaming
[15] has each peer periodically exchange the
availability information of the media stream with
different neighbors. The construction and maintenance
of the swarms requires much higher overhead which
may result in peers experiencing longer playback
delays. In addition these solutions [14-16] use very

different internal policies to deal with the real-time
requirements of multimedia streaming.

 There have been several analyzes of performance
of BT for content-distribution. Previous work on BT
has focused on measurements and theoretical analysis.
Wu and Chiueh [21] have suggested that BT-style
mechanisms may be adapted for streaming purposes.

Vlavianos et al. have presented BiToS, a BT-
based protocol that can support P2P streaming [22].
These authors claim that the chunk selection policy is
the only feature of the original BT that has to be
modified in order to support streaming applications. In
contrast to them, we believe that modifications to the
chunk selection policy together with the neighbor
selection policy are both required to achieve that goal.

Furthermore, in the chunk selection process the
peers in BiToS choose with some probability p to
download a chunk from the current high-priority set or
from the remaining set. Thus a cumbersome process of
dynamically adapting the value of p as well as the size
of high-priority set is required in BiToS to adjust to
different flash-crowd scenarios.

In contrast, we believe in large BT swarms
periodically selecting neighbors randomly for a short
duration is a more feasible approach to make sure that
peers would have enough chunks to exchange and
consequently not be choked by other peers. Using tit-
for-tat neighbor selection policy for the remaining
duration ensures fairness and deters free riding.

7. Conclusion

Despite its numerous advantages, the BitTorrent
protocol is poorly suited to multimedia streaming
applications. We have presented two modifications
correcting this limitation. First, we replace the rarest-
first chunk downloading policy of BitTorrent by a
policy preventing peers from requesting chunks
located outside of a sliding window containing the
chunks that they will watch in the near future. Second,
we introduce a new randomized tit-for-tat peer
selection policy that gives free tries to a larger number
of peers and lets them participate sooner in the media
distribution. Our simulations indicate that both
improvements significantly improve the number of
chunks that streaming clients will receive on time.
Combining them ensures the on-time delivery of more
than 90 percent of the chunks as long as the average
peer download rate remains greater than or equal to the
multimedia consumption rate.

Future work includes developing a control
mechanism capable of striking a balance between the

playback delay and Quality of Service (QoS)
requirements.

More work is also needed to improve the
applicability of our solution for video-on-demand
applications because in Internet P2P networks, peers
are free to join at any time. A P2P multimedia
streaming network therefore must incorporate this peer
dynamicity and employ an admission control
mechanism to ensure that the resources required by a
new request do not affect the QoS requirements of
streams already being serviced.

References

[1] http://www.internetnews.com/dev-
news/article.php/3321911.

[2] http://news.bbc.co.uk/1/hi/business
/4753435.stm.

[3] B. Cohen, “Incentives build robustness in
BitTorrent,” In Proc. of First Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA,
June 2003.

[4] A. Bharambe, C. Herley and V. Padmanabhan,
“Analyzing and improving a BitTorrent network's
performance mechanisms,” In Proc. of 25th IEEE
INFOCOM Conference, Barcelona, Spain, Apr. 2006.

[5] Y. Chu, S. Rao and H. Zhang, “A case for end system
multicast,” Proc. ACM SIGMETRICS Conference,
Santa Clara, CA, June 2000.

[6] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava,
“On peer-to-peer media streaming,” Proc. 22nd

International Conference on Distributed Computing
Systems (ICDCS 2003), Wien, Austria, July 2002.

[7] S. Banerjee, B. Bhattacharjee and C. Kommareddy,
“Scalable application layer multicast,” Proc. ACM
SIGCOMM 2002 Conference , Pittsburgh, PA, Aug.
2002.

[8] Y. Guo, K. Suh, J. Kurose and D. Towsley "A Peer-
to-Peer on-demand streaming service and its
performance evaluation," Proc. 2003 IEEE
International Conference on Multimedia & Expo
(ICME 2003), Baltimore, MD, July 2003.

[9] D. Tran, K. Hua and T. Do, “Zigzag: an efficient
peer-to-peer scheme for media streaming,” Proc. 22nd
IEEE INFOCOM Conference, San Francisco, CA,
2003.

[10] S. Banerjee, S. Lee, B. Bhattacharjee and A.
Srinivasan, “Resilient multicast using overlays,”
Proc. 2003 ACM SIGMETRICS Conference, San
Diego, CA, June 2003.

[11] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A.
Rowstron and A. Singh, “SplitStream: high-
bandwidth multicast in a cooperative environment,”
Proc. 19th ACM Symposium on Operating Systems
Principles (SSOP 2003), Bolton Landing, NY, Oct.
2003.

[12] V. Padmanabhan, H. Wang, P. Chou, and K.
Sripanidkulchai, “Distributing streaming media
content using cooperative networking,” Proc. ACM
NOSSDAV, Miami Beach, FL, May 2002.

[13] Y. Guo, K. Suh, J. Kurose and D. Towsley, "P2Cast:
Peer-to-peer Patching Scheme for VoD Service,"
Proc. World Wide Web Conference (WWW),
Budapest, Hungary, May, 2003.

[14] X. Jiang, Y. Dong, D. Xu, and B. Bhargava,
“Gnustream: a p2p media streaming prototype,” Proc.
of 2003 IEEE International Conference on
Multimedia & Expo (ICME 2003), Baltimore, MD,
July 2003.

[15] X. Zhang, J. Liu, and B. Li, “On large-scale peer-to-
peer live video distribution: CoolStreaming and its
preliminary experimental results,” Proc. of IEEE
Multimedia Signal Processing Workshop (MMSP
2005), Shanghai, China, Oct. 2005.

[16] J. Li, "PeerStreaming: a practical receiver-driven
peer-to-peer media streaming system," MSR-TR-
2004-101, Sept. 2004.

[17] http://www.gnutella.com.
[18] http://www.napster.com.
[19] http://www.kazaa.com.
[20] http://www.eDonkey.com
[21] G. Wu and T. Chiueh, “How efficient is BitTorrent?”

Proc. of 2006 SPIE Multimedia Computing and
Networking Conference (MMCN 2006), San Jose,
CA, 2006.

[22] A. Vlavianos, M. Iliofotou and M. Faloutsos, “BiToS:
enhancing BitTorrent for supporting streaming
applications,” Proc. 9th IEEE Global Internet
Symposium, Barcelona, Spain, Apr. 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

