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Abstract—We study the reliability of open and close entan-
glements, two simple data distribution layouts for log-structured
append-only storage systems. Both techniques use equal numbers
of data and parity drives and generate their parity data by
computing the exclusive or (XOR) of the most recently appended
data with the contents of their last parity drive. While open
entanglements maintain an open chain of data and parity drives,
closed entanglements include the exclusive or of the contents of
their first and last data drives. We evaluate five-year reliabilities
of open and closed entanglements, for two different array sizes
and drive failure rates. Our results show that open entanglements
provide much better five-year reliabilities than mirroring and
reduce the probability of a data loss by at least 90 percent over
a period of five years. Closed entanglements perform even better
and reduce the same probability by at least 98 percent.

Index Terms—storage systems; magnetic disks; system reliabil-
ity; fault-tolerance.

I. INTRODUCTION

Despite recent advances in solid state storage, the lower cost
of magnetic disk drives ensures that they remain today the most
widespread storage medium in large data centers. One of the
main disadvantage of these drives is their poor reliability [1]–
[4]. As a result, all disk-based long-term storage solutions
incorporate enough data redundancy to be able to reconstruct
the data stored on any individual drive. These solutions are as
diverse as mirroring, RAID level 5 [5], [6], RAID level 6 [7],
[8], two-dimensional RAID arrays [9], [10], and SSPiRAL
arrays [11].

Entanglements [12], [13] trade space for increased reliability
and faster updates, especially in the case of log-structured
append-only storage systems. Simple entanglements require
equal numbers of data and parity drives; therefore, they have
the same space overhead as mirroring. In counterpart, a simple
open entanglement chain with 2n drives will tolerate the failure
of any of its drives and the simultaneous failure of any two of
them, except for the two last drives, which is much better than
a mirrored organization. At the same time, appending a block
to the entanglement will require one read and two writes while
RAID level 6 and two-dimensional RAID arrays will require
two reads and three writes.

We present here a full probabilistic analysis of the reliability
offered by simple entanglements. We note first that entangle-
ment chains can be closed to increase their reliability and show
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that the conversion process is both fast and reversible. We then
model each entanglement as a Markov chain under standard
stochastic assumptions and use our model to investigate the
behavior of open and closed entanglement chains for four
different scenarios, namely:

1) A small array consisting of 20 fairly reliable drives with
a mean time to failures, MTTF, of 200,000 hours.

2) The same array with drives having an MTTF of only
35,000 hours. These disks would fail at the rate of 25
percent per year.

3) A medium-size array consisting of 50 fairly reliable
drives with an MTTF of 200,000 hours.

4) The same array with drives having an MTTF of only
35,000 hours.

Our results show that open entanglements provide much
better five-year reliabilities than mirroring and reduce the
probability of a data loss by at least 90 percent over a period of
five years, which corresponds to the maximum useful lifetime of
most consumer-class drives [2]. Closed entanglements perform
even better and reduce that probability by at least 98 percent.

The remainder of this paper is organized as follows.
Section II introduces simple entanglements. Section III dis-
cusses possible array organizations. Section IV discusses the
vulnerability of open and close entanglements to double,
triple, and quadruple drive failures. Section V introduces our
Markov model and presents the results of our investigation.
Section VI sketches possible extensions, Section VIII presents
our conclusions.

II. SIMPLE DATA ENTANGLEMENT LAYOUTS

The idea behind simple data entanglement is to intertwine
data and parity blocks using the bitwise XOR operation with the
goal of refreshing previously calculated parities and increasing
the scope of redundant information. The process builds a chain
that associates old information to the new data. In this way,
old blocks will become indirectly dependent on blocks that
will be inserted in future without the need to run the algorithm
more than once.

A pseudocode description of the simple entanglement
encoder algorithm is shown in Algorithm 1. The encoder
has time complexity O(n) with n being the number of data
blocks that are entangled and space complexity O(2n) since it
requires 100 percent extra storage, i.e., the overhead equivalent
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Algorithm 1 — Simple entanglement encoder.
1: pool: Queue containing blocks ready to be encoded

2: while ¬ISEMPTY(pool) do
3: u←GETPARITY() . Get from cache
4: v ←DEQUEUE(pool) . Get oldest element
5: w ←ENTANGLE(u, v) . Compute u⊕ v
6: WRITEDATA(v) . Write to array
7: WRITEPARITY(w) . Write to cache and array
8: end while
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(b) Closed Entanglements

Fig. 1: Open and closed entanglement chains

to mirroring. To improve performance, the encoder uses a
write-through cache to keep in memory the last parity used in
the entanglement. Data blocks are kept in a queue and they
are encoded sequentially per their arrival order. We use the
following notations:

di is a data block. Any object that is stored in the system is
split in one or more di. The index i indicates the order in
which the blocks are entangled and their position in the
chain.

pi,j is the parity block associated with data blocks di and dj .
Di is a drive that stores data blocks.
Pi is a drive that stores parity blocks.

The general expression that defines a data entanglement is

pi,i+1 ← di ⊕ pi−1,i , (1)

for i greater than zero. An equivalent formula was used to
build the more complex entanglements presented in [12].

We define two classes of entanglements, namely, open and
closed entanglement chains (Figure 1).

A. Open Entanglements

The encoder algorithm creates a never-ending chain. As long
as space is available, the encoder will keep adding entangled
blocks at the right extremity of the continuously growing chain.
When the encoder starts for the first time, there is no parity
block p0,1 to use on the right part of Equation 1. The encoder
will instead copy d1 into p1,2, because it is equivalent to
assuming the existence of a fictitious parity block p0,1 that

only contains zeroes. The value of the next parity block, block
p2,3, is computed using Equation 1, that is:

p2,3 ← d2 ⊕ p1,2 .

Similarly, the decoding equations are derived from Equa-
tion 1. They result from the associative property of the exclusive
or (XOR) operator and the iterative process that entangles
blocks while building the entanglement chain. If a data block
is not available, it can be rebuilt using:

di ← pi−1,i ⊕ pi,i+1 .

In addition, there are two ways of recovering parity blocks.
One way is using Equation 1 and the other is using:

pi,i+1 ← di+1 ⊕ pi+1,i+2 .

Note that this second expression does not apply to the last
parity block pn,n+1 of an entanglement chain as neither di+1

nor pi+1,i+2 exist. As a result, the content of the last data block
dn will be irrecoverably lost if both blocks dn and pn,n+1 are
lost.

B. Closed Entanglements

Closing the entanglement chain eliminates this fatal double
failure by entangling the last data block dn with the first data
block d1. A closed entanglement is built exactly as an open
entanglement until there are no more data to be added and the
chain can be closed. When this happens, the content of the
first parity block is recomputed using:

p1,2 ← d1 ⊕ pn,1 ,

where pn,1 is the last parity block of the closed entanglement
chain. As a result, the content of pn,1 can now be reconstituted
using:

pn,1 ← d1 ⊕ p1,2 .

The content of parity disk p2,3 will remain unchanged but it
will now be defined as:

p2,3 ← d2 ⊕ d1 ,

where d1 replaces p1,2. As the conversion process is O(1) with
respect to the length of the chain, closing an open entanglement
is both fast and easy. The reverse process is even simpler: it
only requires overwriting the content of parity block p1,2 with
the content of data block d1. As a result, it is always possible
to add elements to a closed entanglement chain by reopening
it.

III. ARRAY ORGANIZATIONS

The entanglement algorithm presented in the previous section
organizes blocks into a log. There are several choices for
writing the blocks to disks. We sketch here two possible array
organizations: full-partition write and block-level striping. As
both organizations will require equal numbers of data drives
and parity drives, all arrays will have an even number of drives.



(a) Full-partition write with unknown entanglement class (not yet defined)

(b) Block-level striping with open entanglement chain

(c) Block-level striping with closed entanglement chain
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Fig. 2: Array organizations in combination with open and
closed entanglements

A. Full Partition Write

In this approach, blocks are written sequentially on the
same drive. The process does not spread content across drives.
Instead, it waits until the current drive is full before writing
into a new drive. This data layout is best suited for archival
applications with very low read to write ratio. Most of the
drives will remain idle and can be powered off as in a massive
arrays of idle disks, MAID, configuration [14], which could
result in significant energy savings.

Another advantage of the approach is its scalability as
drives can be added to the array at any time. The minimum
requirement is two drives, but this would correspond to a mirror
configuration. To create a true entanglement chain, at least four
drives are needed. In addition, a closed entanglement chain
that can tolerate all double drive failures would require at least
three data drives, for a total of six drives.

The main limitation of this data layout is its write penalty
as three drives are involved in the operation. To complete a
write, the system needs to read a parity from an extant parity
drive, XOR that parity with the new data and write the new
data block and the new parity block on two different drives. A
new parity is computed for every write. The general encoder
algorithm presented in section II uses a write-through cache
to avoid the extra read. The problem is that we would need
a cache large enough to store the contents of a whole parity
drive in order to eliminate the read penalty.

Figure 2a shows an example of a ten-disk array with four
active drives. As writes only involve the last two most recently
written drives of the array, the array could grow indefinitely if
the application requires it.

B. Block-level striping

This second approach distributes data over all available drives
to improve performance. New content is split into data blocks

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖ ✖

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖✖ ✖

(a) Type A failure
D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn

✖ ✖

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖ ✖

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖✖ ✖

(b) Type B failure

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖ ✖

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖✖ ✖
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Fig. 3: The three irreducible fatal failure patterns of open
entanglements

of size b. These data blocks are then spread across some or
all of the n data drives.

Block-level striping requires to decide between an open and
a closed entanglement when the array is set up. Figure 2 shows
instances of both organizations. Their main difference is the
way parities p1,2 and p2,3 are calculated. In an open chain,
unless otherwise stated, the elements stored in the same disk or
partition are part of the same growing chain. Elements located
at n hops are written to the same disk. For example, Figure 2b
shows how to calculate p6,7. It is the second element stored in
drive P1. The figure also shows how to use p6,7 to compute
p7,8, which is stored in drive P2. Special elements p1,2 and p2,3
are calculated only once. Figure 2c shows how to calculate the
special elements in a closed chain. Each closed chain forms a
circular stripe. One of the chains is not yet finished, therefore,
its element p1,2 is not yet calculated. As a result, all blocks
stored in the same disk will be part of independent stripes.

IV. VULNERABILITY ANALYSIS

In this section, we will evaluate the probabilities that open
entanglements, closed entanglements and mirrored organiza-
tions will not be able to tolerate double, triple and quadruple
drive failures. Our focus will be on entanglements using the
full partition write approach as it simplifies our analysis. In all
three cases, we will begin by searching for irreducible failure
patterns, that is, the specific failure patterns that involve a
minimum number of failed drives [15].

A. Open Entanglements

As we can see on Figure 3, open entanglements exhibit three
irreducible failure patterns, namely:

1) The failure of the last data drive of the entanglement,
say, drive Dn in our example, and its associated parity
drive Pn. We will call this failure a type A failure.



2) The failure of two consecutively numbered data drives,
say, drives D2 and D3 in our example, and the parity
drive in between the two failed data drives, that is, parity
drive P2. We will call this failure a type B failure.

3) The failure of two data drives, say, data drives D1 and
D3 in our example, and all the parity drives between
them, say parity drives P1 and P2 in our example. We
will call this failure a type C failure.

In all three cases, the array will lack the information to
reconstruct the contents of the failed data drive(s).

Consider now an open entanglement with 2n drives and
assume it experiences the simultaneous failure of two of its
drives. Out of the

(
2n
2

)
possible double failures, only the type

A failure will result in a data loss. As a result, the probability
α that the entanglement will not tolerate a double drive failure
is:

α =
1(
2n
2

)
The triple failures that will result in a data loss include:
1) The type A double failure mentioned above combined

with the failure of any of the 2n− 2 remaining drives.
2) Any of the n− 1 type B triple failures mentioned above.
Hence, the probability β that the entanglement will not

tolerate a triple drive failure is:

β =
3n− 3(

2n
3

)
The quadruple failures that will result in a data loss include:
1) The type A double failure mentioned above combined

with the failure of two of the 2n− 2 remaining drives
for a total of

(
2n−2

2

)
fatal quadruple failures.

2) Any of the n − 1 type B failures mentioned above
combined with the failure of any of the remaining 2n−3
drives for a total of (n − 1)(2n − 3) fatal quadruple
failures. We need to subtract one from that product not
to count twice the failure of drives Dn−1, Pn−1, Dn and
Pn.

3) Any of the n− 2 type C failures involving a data drive
Di, a data drive Di+2, and the parity drives Pi and Pi+1.

Hence, the probability γ that the entanglement will not tolerate
a quadruple drive failure is:

γ =

(
2n−2

2

)
+ (n− 1)(2n− 3)− 1 + (n− 2)(

2n
4

)
B. Closed Entanglements

Closed entanglements can tolerate all double drive failures
without experiencing a data loss. As we can see on Figure 4,
they share the same B and C irreducible failure patterns as
open entanglements and have an additional irreducible triple
failure that involves drives Dn, Pn and P1. We will call this
failure a type D failure.

Given that closed entanglements tolerate all double failures
without data loss, the probability α that the entanglement will
not tolerate a double failure is zero.

The triple failures that will result in a data loss include:

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖ ✖
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✖ ✖✖ ✖
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✖ ✖✖

(a) Type B failure
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✖ ✖ ✖
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✖ ✖✖

(b) Type C failure
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✖ ✖ ✖

D1 P1 D2 D3P2 P3 Dn-1 DnPn-1 Pn
✖ ✖✖ ✖
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✖ ✖✖

(c) Type D failure

Fig. 4: The three irreducible fatal failure patterns of closed
entanglements

D1 D2 D3 Dn-1 Dn
✖

D’1 D’2 D’3 D’n-1 D’n
✖

Fig. 5: The sole irreducible failure pattern of mirrored organi-
zations

1) Any of the same n − 1 type B triple failures as open
entanglements.

2) One type D triple failure.
As a result, the probability β that the entanglement will not

tolerate a triple drive failure is:

β =
n(
2n
3

)
In the same way, the quadruple failures that will result in a

data loss are:
1) Any of the n − 1 type B failures combined with the

failure of any of the remaining 2n− 3 drives.
2) The single type D failure combined with the failure of

any of the remaining 2n− 3 drives.
3) Any of the n− 2 type C failures involving a data drive

Di, a data drive Di+2, and the parity drives Pi and Pi+1.
The probability γ that the entanglement will not tolerate a

quadruple drive failure is:

γ =
n(2n− 3) + (n− 2)(

2n
4

)
C. Mirrored organizations

As we can see on Figure 5, the sole irreducible failure pattern
for mirrored organizations is the failure of a mirrored pair. As
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a result, the probability α that a mirrored organization with
2n drives will not tolerate a double drive failure is:

α =
n(
2n
2

)
The triple failures that will result in a data loss is the failure

of any of its n mirrored pairs combined with the failure of
any of the 2n− 2 remaining drives. Hence, the probability β
that the mirrored organization will not tolerate a triple drive
failure is:

β =
n(n− 2)(

2n
3

)
In the same way, the number of quadruple failures that

will result in a data loss comprise the failure of any of its n
mirrored pairs combined with the failure of two of the 2n− 2
remaining drives. We must however subtract from this total the(
n
2

)
quadruple failures consisting of the failure of two mirrored

pairs of drives in order not to count them twice. As a result, the
probability γ that the organization will not tolerate a quadruple
drive failure is:

γ =
n
(
2n−2

2

)
−
(
n
2

)(
2n
4

)
V. RELIABILITY ANALYSIS

Estimating the reliability of a storage system means estimat-
ing the probability R(t) that the system will operate correctly
over the time interval [0, t] given that it operated correctly at
time t = 0. Computing that function requires solving a system
of linear differential equations, a task that becomes quickly
intractable as the complexity of the system grows. Instead, a
simpler option is to use the five-year reliability of the array.
As this value is typically very close to 1, we will express it in
“nines” using the formula number of nines = − log10(1−Rd),
where Rd is the five-year reliability of the array. Thus a
reliability of 99.9 percent would be represented by three nines,
a reliability of 99.99 percent by four nines, and so on.

We develop first a generic Markov model that will apply
to open entanglements, closed entanglements and mirrored
organizations. The specific behavior of each fault-tolerant drive
array will be represented by the four parameters m, α, β, and
γ, where m = 2n is the number of disks in the array and α,
β, and γ are the respective probabilities that the array will

not tolerate the simultaneous failures of two, three or four
drives. In all three cases, we will neglect the probability that
the array will tolerate a quintuple drive failure, assuming that
this probability is small enough to be neglected.

The model consists of an array of drives with independent
failure modes. Whenever a drive fails, a repair process is
immediately initiated for that drive. Should several drives fail,
this repair process will be performed in parallel on those drives.
We assume that drive failures are independent events and are
exponentially distributed with mean λ. In addition, we require
repairs to be exponentially distributed with mean µ. Both
hypotheses are necessary to represent our system by a Markov
process with a finite number of states.

Figure 6 displays the state transition probability diagram.
State <0> is the initial state where all m drives are operational
and no drive has failed. Should any of the drives fail, the system
would move to state <1> with an aggregate failure rate mλ.
Since some double failures can be fatal, the two possible failure
transitions from state <1> are:

1) A transition to the data loss state with rate α(m− 1)λ
where the actual value of the α parameter will depend on
the specific storage organization, as computed in previous
section.

2) A transition to state <2> with rate (1− α)(m− 1)λ.

In the same way, the two failure transition from state <2>
are:

1) A transition to the data loss state with rate β(m− 2)λ
where the actual value of the β parameter will depend
on the specific storage organization.

2) A transition to state <3> with rate (1− β)(m− 2)λ.

Following the same pattern, the two failure transition from
state <3> are:

1) A transition to the data loss state with rate γ(m− 3)λ
where the actual value of the γ parameter will depend
on the specific storage organization.

2) A transition to state <4> with rate (1− γ)(m− 3)λ.

As we did not take into account the possibility that the
array could survive a quintuple failure, there is a single failure
transition leaving state <4>.

Recovery transitions are more straightforward: they bring
the array from state <4> to state <3>, then from state <3>
to state <2> and so on until the system returns to its initial
state <0>.

The Kolmogorov system of differential equations that



describes the behavior of the storage organization is:

dp0(t)

dt
= −mλp0(t) + µp1(t)

dp1(t)

dt
= −((m− 1)λ+ µ)p1(t) +mλp0(t) + 2µp2(t)

dp2(t)

dt
= −((m− 2)λ+ 2µ)p2(t)

+ (1− α)(m− 1)λp1(t) + 3µp3(t)

dp3(t)

dt
= −((m− 3)λ+ 3µ)p3(t)

+ (1− β)(m− 2)λp2(t) + 4µp4(t)

dp4(t)

dt
= −((m− 4)λ+ 4µ)p4(t) + (1− γ)(m− 3)λp3(t) ,

where pi(t) is the probability that the system is in state <i>
with the initial conditions p0(0) = 1 and pi(0) = 0 for i 6= 0.

Observing that the mean time to data loss (MTTDL) of the
system is given by:

MTTDL =

4∑
i=0

p∗i (0) ,

where p∗i (s) is the Laplace transform of pi(t), we compute
the Laplace transforms of the above equations and we solve
them for s = 0 and a fixed value of m [16]. We then use this
result to compute the mean time to data loss (MTTDL) of our
system and convert this MTTDL into a five-year reliability,
using the formula:

Rd = exp

(
− d

MTTDL

)
,

where d is a five-year interval expressed in the same units as the
MTTDL. Observe that the above formula implicitly assumes
that long-term failure rate 1/MTTDL does not significantly
differ from the average failure rate over the first five years of
the array.

We analyzed the reliability of both open and close entan-
glements and compared them with the reliability of mirrored
solutions under four different array configurations, namely:

1) A small array of 20 drives and a drive mean time to
failure (MTTF) of 200,000 hours.

2) The same array with a drive MTTF of 35,000 hours.
3) A medium size array of 50 drives and a drive MTTF of

200,000 hours.
4) The same array with a drive MTTF of 35,000 hours.
A drive MTTF of 200,000 hours corresponds to an annual

failure rate of 4.28 percent, which represents what can be
expected from an array built with very good drives. The
annual failure rate is calculated using the inverse of the MTTF
expressed in years. A drive MTTF of 35,000 hours corresponds
to an annual failure rate of 25 percent. While this failure rate
is pathological, it is neither exceptional nor confined to disks
of dubious origin. Beach [2] reported just such a rate for a
batch of 539 disks coming from a reputable manufacturer.

Figure 7 summarizes the findings. It shows the five-year
reliabilities of the four configurations described above for

mean time to repair (MTTR) varying between half a day and
one week. Since reliabilities are expressed in nines, each unit
increment on the vertical scale corresponds to a 90 percent
reduction of the probability of a data loss.

As we can see, open entanglements provide much better
five-year reliabilities than mirroring and reduce the probability
of a data loss by 90 percent for the small array and by 98
percent for the large array. The very good performance of open
entanglements for large arrays should not surprise us given that
these entanglements only have a single fatal double failure.

As expected, closed entanglements perform even better and
reduce the probability of a data loss:
• by at least 99.87 percent for the small disk array and a

200,000-hour MTTF,
• by at least 99.93 percent for the large disk array and a

200,000-hour MTTF,
• by at least 99.21 percent for the small disk array and a

35,000-hour MTTF,
• by at least 98.68 percent for the large disk array and a

35,000-hour MTTF.
We should note that these are minimum values observed for

very large drive repair times. The improvements observed for
a more reasonable two -day drive repair time vary between
99.79 and 99.98 percent.

Two features of our model may affect the accuracy of our
results. First, we assumed that drive failures were independent
events, which is not always true. Second, we assumed that all
quintuple drive failures were fatal. This assumption is fairly
reasonable as long as the quintuple disk failures remain rare
events, which is certainly true for small arrays consisting of
drives with high MTTFs and low MTTRs. This is less true for
larger arrays especially if their drives have lower MTTFs and
higher MTTRs. As these arrays will experience more drive
failures and have their failed drives remain for longer periods
of time in that state, quintuple drive failures will become less
uncommon. Assuming that all these failures are fatal will then
provide pessimistic evaluations of the array five-year reliability.

VI. POSSIBLE EXTENSIONS

While both open and closed entanglements provide much
higher five-year array reliabilities than mirroring, there are
circumstances where even higher levels of data protection
must be sought. This could be the case if the array includes
disk drives that exhibit high failure rates or if geographic
considerations result in longer repair times. Let us show how
we can address that issue by eliminating all fatal double drive
failures in the case of open entanglements and all fatal triple
drive failures in the case of their closed counterparts.

A. Open Entanglements

As we have seen in Section IV, an open entanglement with
n data drives and n parity drives will not tolerate the combined
failure of its last data drive Dn and its associated parity drive,
drive Pn.

As we can see on Figure 8, the simplest solution is to
mirror data drive Dn, thus adding an additional data drive D′n.
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Fig. 7: Five-year reliability of four array configurations for mean time to repair varying between half a day and one week
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Fig. 8: An open entanglement that tolerates all double failures
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Fig. 9: A closed entanglement that tolerates all triple failures

The outcome will be an array with 2n+ 1 drives that would
tolerate double drive failures and provide the same reliability
as a closed entanglement with 2n drives.

B. Closed Entanglements

Recall that the sole fatal triple failures in closed entangle-
ments are (a) type B triple failures involving Dk, its associated
parity drive Pk, and the next data drive Dk+1 and (b) a single
type D triple failure involving Dn, Pn and P1. So, if we
number sequentially all data drives starting with D1, all type
B triple fatal failures will involve both an odd-numbered and
an even-numbered data drive. Thus any mechanism that will
allow the recovery of any failed odd-numbered data drive will
eliminate all fatal type B triple failures.

To achieve this goal, we group all odd-numbered data drives
into pairs (D1, D3), (D5, D7) and add to each pair an extra
parity drive Qj such that:

Qj = D4k+1 ⊕D4k+3 ,

where 0 ≤ k ≤
⌊
n−3
4

⌋
and n is the number of data drive in

the entanglement. In half the cases, the pairing process will
leave the last odd-numbered data drive alone. Then, two cases
need to be considered:

1) If n is odd, the last odd-numbered data drive is drive Dn.
We do not need extra protection since the drive is already
entangled with the first drive of the chain, namely drive
D1.



2) If n is even, the last odd-numbered data drive is drive
Dn−1. To protect data against the simultaneous failure
of drives Dn−2, Pn−2 and Dn−1 and parity drive Pn−2,
we must mirror drive Dn−1 and have

Qx = Dn−1 .

Figure 9 illustrates this last case.

VII. PREVIOUS WORK

RAID arrays were the first disk array organizations to utilize
erasure coding in order to protect data against disk failures [5]–
[7]. While RAID levels 3, 4 and 5 only tolerate single disk
failures, RAID level 6 organizations use (n−2)-out-of-n codes
to protect data against double disk failures [8]. EvenOdd,
Row-Diagonal Parity and the Liberation Codes are three
implementations of RAID level that use only XOR operations
to construct their parity information [17]–[21]. Huang and Xu
proposed a coding scheme correcting triple failures [22].

Two-dimensional RAID arrays, or 2d-Parity arrays, were
investigated by Schwarz [23] and Hellerstein et al. [9] who
noted that these arrays tolerated all double disk failures but
did not investigate how they reacted to triple or quadruple disk
failures. More recently, Lee patented a two-dimensional disk
array organization with prompt parity updates in one dimension
and delayed parity updates in the second dimension [24].

SSPiRAL (Survivable Storage using Parity in Redundant
Array Layouts) [11] layouts use simple t parity computations
to provide high reliability and maintainability. Every SSPiRAL
arrangement is defined by its number of unique data nodes (its
degree), the number of nodes that contribute to constructing a
parity node (its x-order), and the total number of nodes. For
instance, a SSPiRAL layout of degree 3 and x-order 2 would
use two nodes to build a parity node, and consist of three data
nodes and two to four parity nodes.

VIII. CONCLUSION

Our study reveals that open and closed entanglements
provide better five-year reliability than mirroring, reducing
the probability of data loss by respectively 90 and 98 percent.
Furthermore, these techniques are very efficient and simple to
implement, either in software or hardware, and are hence of
practical interest for cloud storage systems.

ACKNOWLEDGEMENT

V.E.G. thanks Prof. Ethan Miller for hosting her during part
of this work. Thanks are also due to the Computer Science
Department of University of Houston for their hospitality during
the author trip to Houston that motivated initial discussions
for this work.

REFERENCES

[1] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler,
“An analysis of latent sector errors in disk drives,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 35. ACM, 2007, pp. 289–300.

[2] B. Beach, “What hard drive should i buy?” Backblaze Blog from January,
January 2014.

[3] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large
disk drive population.” in FAST, vol. 7, 2007, pp. 17–23.

[4] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?” in FAST, vol. 7, 2007,
pp. 1–16.

[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: High-performance, reliable secondary storage,” ACM Computing
Surveys (CSUR), vol. 26, no. 2, pp. 145–185, 1994.

[6] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proceedings of the 1988
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’88. New York, NY, USA: ACM, 1988, pp. 109–116.
[Online]. Available: http://doi.acm.org/10.1145/50202.50214

[7] T. J. Schwarz and W. A. Burkhard, “RAID organization and performance.”
in ICDCS, 1992, pp. 318–325.

[8] W. A. Burkhard and J. Menon, “Disk array storage system reliability,”
in Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers., The
Twenty-Third International Symposium on. IEEE, 1993, pp. 432–441.

[9] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A.
Patterson, “Coding techniques for handling failures in large disk arrays,”
Algorithmica, vol. 12, no. 2-3, pp. 182–208, 1994.

[10] T. Schwarz, A. Amer, T. Kroeger, E. L. Miller, D. D. E. Long, and
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