
A P2P-Based Architecture for Secure Software Delivery  
Using Volunteer Assistance 

 
 

Purvi Shah, Jehan-François Pâris 
Department of Computer Science 

University of Houston  
Houston, TX 77204-3010 
{purvi, paris}@cs.uh.edu 

Jeffrey Morgan, John Schettino,  
Chandrasekar Venkatraman 

Hewlett-Packard Laboratories 
Palo Alto, CA, 94304-1126 

{jeff.morgan, john.schettino, chandra}@hp.com 
 

 
Abstract 

 
We present a content delivery infrastructure distributing 

and maintaining software packages in a large organization. 
Our work based on a trace-based analysis of an existing 
software delivery system that we conducted to find general 
principles and properties that could be used to devise a better 
solution. Our design combines a conventional server with 
volunteer nodes that expand its scalability. We rely on Peer-to-
Peer technology to speed up content synchronization among 
the volunteer nodes while maintaining a conventional 
client/server interface for the service customers. Finally our 
system includes a novel load balancing mechanism that 
considers both the synchronization workload and the 
customer-generated workload of the volunteer nodes. Our 
simulation results indicate that the feedback information 
currently available at the server/tracker of the P2P system 
offers enough information to ensure a fair load distribution 
among the peers. 

 
1. Introduction 

 
Peer-to-Peer (P2P) systems are a natural form of autonomic 

systems. Member peers offer and receive content from each 
other in a collaborative environment without distinguished 
roles as either pure servers or pure customers. They can be 
programmed to self-organize and self-improve the distributed 
system. In this paper we apply P2P technology to resolve the 
scalability problems observed in current techniques used to 
provide management and maintenance services in enterprise 
networks. 

We present a content delivery network (CDN) that can be 
used by managed services organizations, on the basis of 
donated servers, to distribute and maintain software packages. 
We also introduce a mechanism to optimize load balancing on 
these donated resources. Our CDN is designed to be used in the 
real world to improve the downloading rates of the customers. 

The main contributions of this work include: 

< 256 KB
81.27%

256KB - 1 MB
10.64%

1MB - 4 MB
5.44%

4 MB - 256 MB
2.58%

256 MB - 4 GB
0.06%

 
 

Figure 1. File size distribution in the central software 
server. 

 
• A trace-based analysis of the current software delivery 

system to find general principles and properties that could 
be used as a strategy to devise a better system. 

• A scalable CDN architecture for delivering software using 
volunteer nodes. 

• An efficient mechanism for load balancing in the proposed 
design. This mechanism is instrumental for improving the 
performance and the fairness of the service. 

The remainder of the paper is organized as follows. In the 
next section, we present our trace analysis. Section 3 
introduces our tool to synchronize the content from the server 
on the edge nodes using P2P delivery. Section 4 starts with a 
description of the basic design of the CDN and explains its 
operation using volunteer nodes. Related work is discussed in 
section 5. Finally concluding remarks are given in section 6. 
 
2. Trace analysis 

 
We began by analyzing ten days worth of logs associated 

with a software delivery system supporting various Linux 
installations and distributing their updates in a corporate 
environment. 



256 MB - 4 GB
42%

4 MB - 256 MB
38%

1MB - 4 MB
11%

256KB - 1 MB
6%

< 256 KB
3%

 
 

Figure 2. Fractions of space occupied by files of different 
sizes. 

 

rpm
23.09%

bz2
0.12%

is o
71.27%

deb
3.68%

other
1.84%

 
 

Figure 3. Types of files distributed by the central server. 
 

2.1. Central software repository 
 

This repository served system software and updates for 
approximately ten different Linux distributions and consisted 
of roughly 2.2 million files. As we can see on Fig. 1, 81 
percent of these files are smaller than 256 KB and 91 percent 
of them are smaller than 1 MB. In our study, we considered 
only files that are software packages, that is, applications, 
libraries, software updates and, more generally, any piece of 
software that is published as an independently named file. The 
total size of the repository is approximately 2.86 TB. As Fig. 2 
shows, files larger than 4 MB occupy 80 percent of the disk 
space even though these files account for less than 9 
percentage of the total number of files. 
 
2.2. Access patterns 

 
As Fig. 3 indicates, image (.iso files) downloads comprise 

71 percent of the total server workload, compared to the other 
 

4 MB - 256 MB
5.32%

1MB - 4 MB
11.07%

256KB - 1 MB
17.79%

< 256 KB
65.51%

256 MB - 4 GB
0.31%

 
 

Figure 4. Sizes of files uploaded by the server. 
 

0

5

10

15

20

25

30

1 3 5 7 9 11
Time (d ays )

Pe
rc

en
t o

f D
ow

nl
oa

ds

 
 

Figure 5. How download request rates for a specific 
package varies over time since its release day. 
 

0

5

10

15

20

25

Su
nd

ay

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

Th
ur

sd
ay

Fr
id

ay

Sa
tu

rd
ay

Day of the Week

Pe
rc

en
t o

f R
eq

ue
st

s

 
 

Figure 6. How download request rates vary over the days 
of the week. 
 
packages. At the same time, the percentage of downloads for 
update packages (such as .rpm files) is large. As seen in Fig. 4, 
almost two thirds of the files uploaded by the server are 
smaller than 256K and 83 percent of them are smaller than 1 
MB. 

We observed several interesting access patterns such as 
flash crowds at the time of new package releases. Fig. 5 shows 
the percentages of the customer requests received each day by 
the server after the release of an update package over a span of 
 



0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20
H ourly  Usage

Pe
rc

en
t o

f R
eq

ue
st

s

 
 

Figure 7. How download request rates vary over the time of 
day. 

 
ten days. From it we can observe that more than one third of all 
customer requests for a given package are received before the 
end of the day following the package release. The number 
drops by the third day and is further reduced one week after the 
release. This traffic surge suggests that increasing the server 
capacity to control flash crowds is not a practical solution. 

Fig. 6 shows that the percentage of customer requests 
during weekdays is much higher than during weekends. 
Similarly, Fig. 7 shows the percentage of customer requests 
during evenings is much higher than during the work hours.  
 
2.3. Number of identical files 
 

We found out that 17 percent of files larger than 1 MB were 
identical and differed from other files only in name. In 
addition, 17 percent of these identical files were source-code 
packages by more than one Linux distribution. They comprised 
up to 85 GB of the disk space and accounted for 30 percent of 
the identical files in terms of size. 
 
2.4. Similarity 
 

We also looked for similarity among files as they may exist 
among different versions and variants of the same source-code 
package. The majority of packages in the repository are 
compressed files. They are compressed using tools such as gzip 
[12] and bzip2 [5]. This lack of a standard has some very 
unfavorable effect on exploiting file similarity using the tools 
such as rsync [20]. Unfortunately the gzip-rsyncable patch [13] 
has not been adopted widely by the software vendors. Our 
findings in this sub-section provide an incentive to the vendors 
to adopt rsync-friendly compression algorithms. 

Fig. 8 suggests that considerable similarity exists among the 
uncompressed versions of the same software. Exploiting this 
similarity can considerably reduce the server workload in terms 
of the data being transferred, that is, the network workload. 

We also observed that software has variants, that is, 
different packages for clients with different architectures and 
operating systems. Since the variants of a single package tend 
to be updated around the same time, we observed a strong 
 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

2 3 4 5Versions

D
el

ta
 S

iz
e 

- (
Pe

rc
en

ta
ge

)

Package A
Package B
Package C

 
 

Figure 8. Differences between versions of the same software 
package.  
 

 
 

Figure 9. Download rates for different variants of a newly 
released update package. 
 
correlation among downloads of different variants of the same 
package (see Fig. 9). Utilizing the similarity among these 
variants would greatly benefit any P2P solution as peers could 
find several more potential neighbors and use these neighbors 
improve their download rates. 
 
2.5. Synchronization workload 
 

We also observed that the various departments within the 
enterprise manage around forty edge nodes that maintain 
complete or partial mirrors of the software repository for 
serving updates to a small set of machines. By studying data 
traces collected over a period of 35 days by one of these edge 
nodes we observed that the node spent on average 1.81 hours 
daily synchronizing its repository with the server. As seen in 
Fig. 10, the number of hours spent that way varied between a 
minimum of 0.54 hours and a maximum of 2.53 hours. Fig. 11 
shows that the download bandwidth observed by the edge node 
was approximately 2.25 Mbps even though its download 
capability was 1 Gbps and the capacity of the narrowest link 
from the server to the edge node was approximately 155 Mbps. 



0.10

1.00

10.00

100.00

0 5 10 15 20 25 30 35
Day

Ti
m

e 
(h

ou
rs

)

 
 

Figure 10. Number of hours spent daily by an edge node 
synchronizing its software repository. 
 

0

1

2

3

4

5

0 10 20 30
Day

D
ow

nl
oa

d 
B

an
dw

id
th

 (M
bp

s)

 
 

Figure 11. Download bandwidth observed by an edge node 
synchronizing its software repository. 
 

 
 

Figure 12. How the existing system works. 
 
2.6. Summary 

 
In summary, we identified interesting properties of the 

current software delivery system such as customer request 
patterns, package attributes and more. Fig. 12 gives an idea of 
the current system design and its workload. Based on our 
observations we believe this software delivery system should 
be optimized for efficient delivery of both small and large 
sized files. In addition, it should be capable of managing flash 
crowds and able to exploit identicalness and similarity among 
files. 

 
 

1

10

100

1000

10000

100000

1000000

0 10 20 30
Day

Sp
ee

du
p 

(f
or

 N
et

w
or

k 
D

at
a 

Tr
an

sf
er

re
d)

 
 

Figure 13. Speedup attained by using rsync to synchronize 
the edge server repository. 

 
 
3. Software synchronization by the edge nodes 

 
With insights from our trace analysis, we first developed 

PRsync, a tool that uses P2P technology based on BitTorrent 
[6, 4] for synchronizing the repositories on the edge nodes in 
an efficient fashion. Our tool integrates P2P technology into 
the current synchronization tool, rsync. It is also able to exploit 
both the presence of identical files and similarities existing 
among different versions of the same package. This integration 
was feasible because all edge nodes use the same rsync tool to 
synchronize their repository with the central server. 

In its current form, rsync synchronizes remote repositories 
during an interactive network session involving two sites, 
namely the server and a specific client. Fig. 13 shows the 
speedup (that is, the ratio of the total repository size to actual 
the data actually transferred) attained when synchronizing the 
edge server repository using rsync. 

Using BitTorrent among the edge nodes would allow us to 
further improve the efficiency and scalability of the 
synchronization system. With our new tool, the server can now 
reduce the processing on the server repository for multiple 
edge nodes. This processing includes computing MD4 
checksums, and as a result can be compute-intensive for large 
individual packages. Our tool uses the torrent metadata files, 
which contains the information for each chunk being 
distributed in the BitTorrent system [6]. These files store the 
pre-computed checksums and help to reduce the server’s 
processing workload. While rsync required the server to 
transmit the data to each edge node in a totally separate 
fashion, using BitTorrent allows data transfers among the edge 
nodes themselves.  
A major aspect of PRsync is that it separates content delivery 
from synchronization: the first task is shared by the edge nodes 
and the server while synchronization remains the sole 
responsibility of the server. This separation removes redundant 
processing at the server and permits the use of a P2P protocol 
to deliver the content. 



 

Python-urllib/2.1"
22%

Python-urllib/2.0a1"
12%

Novell ZYPP Installer"
12%

Other
9%

RHN-Applet/2.1.25"
1%

Wget/1.8.1"
1%

RPM APT-HTTP/1.3"
2%

Ultraseek"
1%

Wget"
1%

urlgrabber/2.9.8"
5%

urlgrabber/2.9.6"
2%

Freshrpms.net APT-
HTTP/1.3"

2%

libwww-perl/5.803"
11%

Debian APT-HTTP/1.3"
8%

Dag RPM Repository 
el4/i386 APT-HTTP/1.3"

6%

Dag RPM Repository 
el3/i386 APT-HTTP/1.3"

5%

 
 

Figure 14. Top 15 applications/tools used by customers. 
 

 
4. Software delivery to the customers 

 
Next we explored strategies to improve the software 

delivery. A major problem in integrating pure P2P solutions in 
this scenario is that customers use different tools. Fig. 14 
shows the top 15 of 120 different tools that were used to 
download packages during our trace data collection period. As 
we can see, some of these tools are different variants of the 
same software. A client-transparent solution can achieve a 
widespread use and is much easier than configuring most P2P 
systems. Since we are providing a delivery service, we should 
also avoid consuming customer bandwidth if there is an 
alternative way to obtain the required bandwidth. 

 
4.1. Software delivery system design 

 
We contacted the administrators of the edge nodes and 

asked them whether they would be willing to volunteer their 
nodes for distributing software to machines not under their 
direct administration. Their acceptance allowed us to propose a 
better system design. 

Fig. 15 illustrates the basic components of our new software 
delivery system. Customers first send their file requests to the 
server. Using the data provided by the BitTorrent tracker, the 
server then redirects the customer request to one of the 
volunteer nodes1 hosting the file. The customer downloads the 
entire file from that volunteer node. 

Like existing CDNs our solution does not require custom 
tools. In addition, all the volunteer nodes maintain their own 
administrative organization. They still download packages as 
they do in the current system. In addition, they respond to 
requests from their peers (via PRSync and BitTorrent) as well  

                                                           
1 Note that we use the terms edge nodes, volunteer nodes and peers 

interchangeably in what follows, since edge nodes are volunteered to form a 
self-organizing P2P system to provide the content delivery service to the 
customers. 

 
 

Figure 15. How our proposed system utilizes volunteer 
nodes. 

 
as requests from customers (via the Apache [3] web server and 
HTTP). The resultant system is not a pure P2P system, but a 
client-server system based on P2P technology. Instead of 
requiring a cluster of dedicated nodes, the server consists of an 
inexpensive group of volunteer nodes updating themselves 
through a P2P protocol. 

There are several challenges involved in designing such a 
distributed architecture. While CDNs typically use either 
dedicated connections or a private high-speed networks for 
synchronization of their edge nodes, our system uses the same 
network for both synchronization and delivery tasks. As a 
result, using a load balancer to distribute the customer requests 
without considering the synchronization loads of each 
volunteer cannot guarantee that the loads of our volunteer 
nodes will be well balanced. Thus we need a load balancing 
mechanism that can account for both workloads. 

Security is another important issue, as we cannot fully trust 
the volunteer nodes. To address this issue, our system requires 
that its customers first communicate with the server before 
contacting any of the volunteer nodes. As a result, the 
customers will be able to verify the package received from the 
volunteer nodes through the use of MD4 checksums provided 
by the server. This mechanism can be implemented as a 
customer side transparent lightweight proxy that intercepts and 
verifies the package received from the volunteer node. 

In addition, this design enables the server to attempt to 
optimize the individual workloads of the volunteer nodes. Our 
first step is to collect information on the volunteer nodes and to 
find out which volunteer nodes have which files. To know this, 
we plan to rely on the tracker of the BitTorrent system. This 
way the load balancer will forward the incoming customer 
request only to volunteer nodes that have the package. 

Recall that a BitTorrent tracker is a peer that assists in the 
communication between peers using the protocol by keeping 
complete membership information.  As peers enter the system, 
they first connect to the tracker. Peers that have already begun 
downloading also communicate with the tracker at fixed 
update intervals to learn about new peers and provide statistics. 



0

100

200

300

400

500

100 50 20
System Workload (Percentage)

A
ve

ra
ge

 R
es

po
ns

e 
Ti

m
e 

(s
)

0

5

10

15

20

25

Pe
rc

en
t I

m
pr

ov
em

en
t

With Feedback
Without Feedback

 
 

Figure 16. Average response time performance. 
 
To balance the workload among the volunteer nodes we use 

a feedback-controlled load balancing mechanism. We propose 
to require peers to add information on their current workload to 
the messages they already send to the tracker. This way we can 
identify the volunteer nodes that are currently overloaded and 
redirect fewer customers to such volunteer nodes. Observe that 
our approach does not result in any increase in the network 
traffic as the feedback is merely piggybacked to the messages 
already exchanged between the tracker and the peers. 

 
4.2. Evaluation 

 
In this subsection, we present a simulation study of our 

proposed feedback-controlled load balancing mechanism. Our 
simulations are implemented using the JAVA based discrete-
event General P2P Simulator (GPS) [23]. GPS models 
concurrent uploads of the peer under the various algorithms of 
the BitTorrent protocol and calculates the download rates from 
its neighbors. This way we can model the synchronization 
workload. We modified GPS to also model the client-server 
interactions of our software delivery system. 

We modeled the network transmission and queuing delays 
but assumed that the network propagation delays could be 
neglected since they are relevant only for small sized control 
packets. To keep our model simple, we ignored the complexity 
of the dynamics of TCP connections. We assumed the 
idealized performance of TCP and assumed that connections 
traversing a link shared its bandwidth equally. Like previous 
simulation studies [3, 22], we assumed that bandwidth 
bottlenecks only occurred at the edge and did not model shared 
bottleneck links in the interior of the network. This is the same 
as requiring all the nodes to be in a single Internet region. 

We take an algorithm-independent approach in describing a 
feedback-controlled load balancing mechanism. Nevertheless, 
the effectiveness of any load balancing mechanism depends on 
the algorithm used by the load balancer. For our simulations, 
we used the request counting algorithm provided by the 
Apache load balancer [3]. This algorithm counts the number of 
customer requests and distributes requests across workers until 
they have each served an equal number of requests. 

 
 

Figure 17(a). Response time performance for a 20% 
workload. 

 

 
 

Figure 17(b). Response time performance for a 50% 
workload. 

 

 
 

Figure 17(c). Response time performance for a 100% 
workload. 
 

In this study, we consider both the workload resulting from 
the synchronization activity of the volunteer nodes and the 
customer generated workload. This combination of workload 
introduces some unpredictability in customer response time as 
it causes a customer request not always represent a fixed 
duration of work. As a result, uniformly distributing the 
customer requests will not result in a uniform distribution of 
the workload among the volunteer peers.  We added therefore 



feedbacks that measure number of active connections 
maintained by each volunteer peer and will be retrieved at each 
tracker update interval connections.  Since these feedbacks 
take into account the peer synchronization activity, they 
provide a better tool for dispatching customer requests. 

By varying the rate of customer request arrivals, we 
observed the system performance at different workloads. We 
ran our experiments for eight volunteer nodes and assumed that 
all the packages have the same size. To simulate the underlying 
synchronization workload, we had one half of the volunteer 
nodes periodically download files. This created a state where 
one half of the volunteer nodes had a much higher workload 
than the others because they had to handle at the same time 
download requests from their customers and chunk exchange 
request from the other peers. 

We evaluate the scalability of the load balancer with and 
without our mechanism. We want to determine whether or not 
this mechanism can rebalance the workload on the volunteer 
nodes and improve performance. We measure the response 
time, that is, the intervals between the submission of a 
customer request and its completion of the response as seen by 
the customers. Fig. 16 and 17 show the response times for the 
customers. 

As Fig. 16 shows, our load-balancing scheme improves 
average customer response times at all system workload levels. 
Fig. 17 indicates that there is some unevenness in the response 
times. Without our feedback mechanism the load balancer 
sometimes overloads some volunteer nodes due to poor load 
balancing, which results in higher response times and higher 
unevenness in response times.  As Fig. 17c shows, our load 
balancing mechanism was particularly effective in reducing 
response time unevenness at a 100 percent workload.  Without 
it, one half of the requests went to the four lightly shared peers 
while the other requests went to the four heavily loaded peers.  
As a result, one half of the requests completed within a few 
seconds while the other requests had to wait between 8 and 15 
minutes.  Our load balancing mechanism minutes and no 
request took more than 12 minutes. In addition, our simulations 
also showed an improvement in the download times of the 
underlying synchronization activity. 

Next we measured the volunteer node workload, that is, the 
volunteer node network usage. Fig. 18 presents the respective 
workload of the server and the volunteer nodes. The difference 
in network usage between volunteer nodes when the load 
balancing mechanism is not used clearly shows that one half of 
the volunteer nodes are being underutilized while the central 
server and the other volunteer nodes have a higher workload. 
The results presented here show a definite improvement in the 
performance with the addition of our mechanism. The network 
usage of the volunteer nodes is much closer when the tracker 
limits the number of customer requests sent to peers that are 
busy updating their contents. 
 
4.3. Implementation issues 

 
The current web server used at the server and volunteer 

nodes is the Apache web server. The Apache distribution 
 

0

5

10

15

20

Serv
er

Volun
tee

r 1

Volun
tee

r 2

Volun
tee

r 3

Volun
tee

r 4

Volun
tee

r 5

Volun
tee

r 6

Volun
tee

r 7

Volun
tee

r 8

N
or

m
al

iz
ed

 N
et

w
or

k 
U

sa
ge

With Feedback
WithoutFeedback

 
 

Figure 18(a). Normalized network usage for a 50% 
workload. 
 

0

5

10

15

20

Se
rve

r

Volun
tee

r 1

Volu
nte

er 
2

Volun
tee

r 3

Volu
nte

er 
4

Volun
tee

r 5

Volun
tee

r 6

Volun
tee

r 7

Volun
tee

r 8
N

or
m

al
iz

ed
 N

et
w

or
k 

U
sa

ge

With Feedback
WithoutFeedback

 
 

Figure 18(b). Normalized network usage for a 100% 
workload. 

 
contains a number of modules and third party modules can be 
integrated into it. We are now in the process of modifying the 
Apache load balancer module to provide our proposed 
feedback-controlled load balancing mechanism at the server. In 
addition modifications will be made in PRsync so that the 
volunteer nodes can provide their synchronization workload to 
the tracker, which in turn can be used by the server. 

 
5. Related work 

 
Gkantsidis et al. [10] analyzed traces from a Windows 

update system. We study a software delivery system 
supporting system software and updates for more than ten 
different Linux distributions. We evaluate the current system 
from a networking point of view and look at ways to improve 
the current system design. 

This work builds on a large amount of effort in several 
areas: content delivery networks and P2P systems, 
synchronization software and load balancing. In this section, 
we briefly consider the work accomplished by the research 
community on these topics. 



 
5.1. Content delivery networks 

 
Today CDNs are applied to improve performance and 

scalability of content delivery. While existing CDNs such as 
Akamai [2] and Digital Island [7] can provide very large 
service capacity, the cost of maintaining such CDNs is very 
high. 

Previous work on volunteer computing has shown that 
distributed computing projects such as SETI@Home [1] using 
donated machines can work as well or even better than the 
largest supercomputers. While CDNs such as CORAL [9] offer 
an attractive solution, our approach involving volunteer nodes 
is more economical and has considerably lower administration 
overheads. At the same time CDNs including donated 
resources have to address additional security and load 
balancing issues. 

Possibly the work more closely related to our is Pierre and 
Steen’s work [19]. What distinguishes our CDN from their 
work is that we let volunteer nodes form a self-organizing and 
self-improving P2P system. We use widely accepted and 
efficient BitTorrent to monitor our volunteer nodes and 
redirect customer requests based upon their workload. 

The deployable version of our CDN will contain tools used 
by the current software delivery system such as rsync and 
Apache and tools that have been built before such as 
BitTorrent. We think that constructing a solution on top of the 
current system will save replication of some complicated 
technical effort. Thus we argue this approach has a potential of 
much further distributed reach. 

 
5.2. Synchronization software 

 
Several synchronization systems have been developed, 

mainly in the domain of distributed file systems [21] for 
instance AFS and NFS where stringent data consistency is of 
main importance. For efficient broadcasts of the differences 
between files, rsync+ [8] can be used. 

These systems assume a much tighter pairing of the 
individual nodes than in our environment, which incorporates 
edge nodes under different administrative organizations. 
Moreover, in our environment the repositories are kept 
autonomously and edge node administrators decide the 
synchronization. 

We believe that the ease of integration and performance 
benefits make PRsync an attractive tool for the edge nodes 
wishing to synchronize their repository. We decided to use 
BitTorrent system for P2P distribution because like rsync it 
distributes files at the chunk level. This feature also allows 
parallel downloading and is not supported by other P2P 
protocols such as Gnutella [11], KaZaA [14] and Napster [16]. 
In addition, BitTorrent systems are self-improving since they 
use an incentive mechanism to adapt to the network conditions 
and evolve into a better overlay network. Finally, unlike 
completely decentralized protocols such as Gnutella, the 
BitTorrent tracker allows us to improve system performance 
with some degree of centralization. 

 
5.3. Load balancing 

 
Most CDNs employ their own private high-speed networks. 

Their load balancing mechanism does not need to be concerned 
with the internal traffic due to synchronizing the edge nodes. In 
contrast our system is built over public networks so that traffic 
among the volunteer nodes has a significant influence on the 
performance and thus needs to be taken into account. 

In previous research, a lot of effort has been spent in the 
field of load balancing. Possibly the work more closely related 
to ours is that of Kerr [15]. He proposed using dynamic 
feedback system to optimize load-balancing decisions. This 
approach has not been designed for P2P environments. In 
addition, we exploit the information readily available at the 
BitTorrent tracker instead of deploying a monitoring system. 
As a result the overhead of our approach should be minimal. 

 
6. Conclusions 

 
We have presented a content delivery infrastructure that can 

be used by managed services organizations. We started with a 
trace-based analysis of an existing software delivery system to 
find general principles and properties that could be used as a 
strategy to devise a better solution. Our proposal consists of 
supplementing a conventional server with volunteer nodes that 
expand its scalability. Our design is unique in that it combines 
the concept of volunteering with the P2P technology. We rely 
on P2P technology to speed up content synchronization among 
the volunteer nodes while maintaining a conventional 
client/server interface for the customers of the service. Finally, 
our system includes a novel load balancing mechanism that 
considers both the synchronization workload and the customer-
generated workload of the volunteer nodes. We show that with 
a small of modification to the server side software our load 
balancing mechanism provides better performance. 

In the future, we plan to study content placement policies 
that can handle volatile volunteer nodes. This would allow 
individuals to donate idle machine time to improve the 
software delivery process. Our trace analysis indicates that by 
replicating only the newly released packages we can make use 
of the volatile volunteer nodes to diminish the flash crowd 
effects. 

As the volunteer nodes could be globally distributed, it is 
desirable to select the volunteer nodes that are near to the 
customer. Next, we plan to take into account the round trip 
time as an additional metric when performing load balancing 
[17]. By means of existing tools such as ping or traceroute the 
volunteer node can provide the proximity information between 
itself and the customers it has served to the BitTorrent tracker 
periodically. Even after applying this step, the server will still 
have a choice of few volunteer nodes to pick for a customer via 
our feedback controlled load balancing mechanism. 

So far we have considered exploiting similarity between 
different versions of a package. Similarity Enhanced Transfer 
(SET) [18] exploits chunk level similarity in downloading 
related files. Note their data analysis is fairly different from our 



work given that much of the similarity comes from files with 
the same content but with slightly different metadata 
information in the header. However, we can apply their 
proposed approach to additionally exploit similarity between 
different variants of a package. Though to utilize this similarity 
SET proposes to integrate the chunk level mapping information 
with the CDN infrastructure. 
 

References 

[1] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. 
Werthimer, SETI@home: An experiment in public-
resource computing. Communications of the ACM 
(CACM), 45(11), Nov. 2002. 

[2] Akamai white papers. On-line at: 
http://www.akamai.com/html/perspectives/whitepapers.ht
ml. 

[3] Apache HTTP server documentation, 
Online at: http://httpd.apache.org/docs/. 

[3] A. Bharambe, C. Herley and V. Padmanabhan, Analyzing 
and improving a BitTorrent network's performance 
mechanisms, Proc. IEEE Conference on Computer 
Communications (INFOCOM), Barcelona, Spain, 2006. 

[4] Get BitTorrent, Online at: 
http://www.bittorrent.com/download. 

[5] bzip2 documentation, Online at: 
http://www.bzip.org/docs.html. 

[6] B. Cohen, Incentives build robustness in BitTorrent, Proc. 
Workshop on Economics of Peer-to-Peer Systems 
(P2PEcon), Berkeley CA, June 2003. 

[7] Digital Island Inc., 
Online at: http://www.digitalisland.com. 

[8] B. Dempsey and D. Weiss. On the performance and 
scalability of a data mirroring approach for I2-DSI. Proc. 
Internet2 Network Storage Symposium (NetStore), Seattle, 
WA, Oct. 1999. 

[9] M. Freedman, E. Freudenthal and D. Mazières, 
Democratizing content publication with Coral, Proc. 
USENIX Symposium on Networked Systems Design and 
Implementation (NSDI), San Francisco, CA, Mar. 2004.  

[10] C. Gkantsidis, T. Karagiannis, P. Rodriguez and M. 
Vojnovic, Planet scale software updates, Proc. ACM 
Special Interest Group on Data Communication 
Conference (SIGCOMM), Pisa, Italy, Sept. 2006. 

[11] Online at: http://www.gnutella.com. 

[12] Gzip-rsyncable patch, On-line at:  
http://rsync.samba.org/ftp/unpacked/rsync/patches/gzip-
rsyncable.diff. 

[13] Gzip user's manual, Online at: 
http://www.gnu.org/software/gzip/manual/gzip.html. 

[14] The KaZaA guide, 
Online at: http://www.kazaa.com/us/help/index.htm. 

[15] J. Kerr, Dynamic feedback in LVS, Proc. Australia's 
National Linux Conference (Linux.Conf.Au), Perth, 
Australia, Jan. 2003. 

[16] Online at: http://www.napster.com. 

[17] K. Obraczka and F. Silvia, Network Latency metrics for 
server proximity, Proc IEEE Global Telecommunications 
Conference (GLOBECOM), San Francisco, CA, Nov. 
2000 

[18] H. Pucha, D. Andersen, and M. Kaminsky, Exploiting 
similarity for multi-source downloads using file 
handprints, Proc. USENIX Symposium on Networked 
Systems Design and Implementation (NSDI), Cambridge, 
Massachusetts, Apr. 2007. 

[19] G. Pierre and M. Steen, Globule: a collaborative content 
delivery network, IEEE Communications Magazine, 44(8), 
Aug. 2006. 

[20] Rsync: Remote file synchronization system, On-line at: 
http://samba.anu.edu.au/rsync/documentation.html. 

[21] M. Satyanarayanan. Distributed File Systems, Chapter 14, 
Distributed Systems. Addison-Wesley, 1993. 

[22] P. Shah and J.-F. Pâris, Peer-to-Peer multimedia 
streaming using BitTorrent, Proc. IEEE International 
Performance Computing and Communications 
Conference (IPCCC), New Orleans, LA, Apr. 2007. 

[23] W. Yang and N. Abu-Ghazaleh, GPS: a general Peer-to-
Peer simulator and its use for modeling BT, Proc. 
International Symposium on Modeling, Analysis, and 
Simulation of Computer and Telecommunication Systems 
(MASCOTS), Atlanta, GA, Sep. 2005. 

 


