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1. Introduction

One of the most important characteristics of videe-

watching that video. Second, home-based clieqtieaily

have much lower upstream than downstream bandwidths

while these clients might be able to download vidata at
twice their video consumption rate, they might obé/able

demand (VOD) services is their very high bandwidth to forward video data at one fourth to one half thte.

requirements.
format, each user request will require the delivedy
approximately six megabits of data per second. ceea
video server allocating a separate stream of dateath
request would need an aggregate bandwidth of giabdfis

Assuming that the videos are in MREG The video distribution protocol we present hererasses

these two issues: first it is a purely reactiveastn tapping
protocol; second, it does not require clients toabée to
broadcast video data at the video consumption rate.in
conventional stream tapping, our protocol requitee

per second to accommodate one thousand overlappingerver to start a new video broadcast wheneverieatcl

requests.
require a costly infrastructure, typically consigti of a
large number of computing nodes linked by sophrastid
interconnection network.

This situation has led to numerous proposals aimed

Servers capable of handling such batissvid cannot get enough video data by “tapping” a previou

broadcast of the same video. Unlike conventiati@am
tapping, our protocol uses the previous client'silable
upstream bandwidth to reduce the amount of videa et
the server will still have to send to the clierttatt“tap” a

reducing the bandwidth requirements of VOD services previous broadcast of the video. Our simulatiordicate

These proposals can be broadly classified into dveups.

Proposals in the first group are said topbeactivebecause
they distribute each video according to a fixedesithe that
is not affected by the presence—or the absenceeuiests
for that video. They are also knowntkasadcastingproto-

cols. Other solutions are purebactive they only transmit
data in response to a specific customer requestlikéJ
proactive protocols, reactive protocols do not coms
bandwidth in the absence of customer requests.

Nearly all these proposals assume a clear separafio
functions between the server, which distributes \titkeo,

that our protocol works best when clients can fodwadeo
data at least half the video consumption rate. WMthes is
not the case, the best alternative is to involvéeast two
previous clients in the retransmission.

The remainder of the paper is organized as foll@&estion
2 reviews previous work on reactive video distribat
protocols. Section 3 introduces our stream tappnagocol
and section 4 discusses its performance, whilei@e&
discusses possible extensions. Finally Sectiora$ dur
conclusions.

and the customers, who watch it on their personal2. PreviousWork

computers or on their television sets. They art sugted
to commercial environments where the respectivesraoif
the service provider and its customers are welinddf

However they do not address the case of collalverati

Two of the earliest reactive distribution protocase
batching and piggybacking. Batching [5] reduces the
bandwidth requirements of individual user requesys

video-on-demand services where customers could benulticasting one single data stream to all custsnwveno

expected to contribute to the distribution of theleo.
Similar arrangements already exist in peer-to-phler
distribution systems. For instance, the BitTorreypstem
[4] penalizes customers who are not willing to s#itbute
the data they have already received.

Involving clients in the distribution process raséwo
issues. First, most clients will only be willing participate
in the video distribution process while they thelvse are

request the same video at the same tirRéggybacking9]
adjusts the display rates of overlapping requeststtie
same video until their corresponding data streaars lme
merged into a single stream. Consider for instahwe
requests for the same video separated by a tireevaitof
three minutes. Increasing the display rate of gheond
stream by 10 percent will allow it to catch up wilte first
stream after 30 minutes.
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Figure 1: How chaining works

Chaining [13] improves upon batching by constructing
chains of clients such that (a) the first clienttlre chain
receives its data from the server and (b) subsedquliemts
in the chain receive their data from their immegliptede-
cessor. As a result, video data are actually ‘1pipd”
through the clients belonging to the same chairinces
chaining only requires clients to have very smaliadbuff-
ers, a new chain has to be restarted every timetitie
interval between two successive clients exceedsdpac-
ity B of the buffer of the first client. Figure 1 shotsee
sample customer requests. Since customé the first
customer, it will get all its data from the serv&ince
customerb arrives less thaf minutes after customes, it
can receive all its data from custonaerFinally customec
arrives more thafs minutes after customex and must be
serviced directly by the server.

Stream tapping[2, 3], also known aspatching [11],

assumes that each customer set-top box has a baffable
of storing at least 10 minutes of video data. Thier will

allow the set-top box to “tap” into streams of datathe
server originally created for other clients, anénthstore
these data until they are needed. In the best clisats
can get most of their data from an existing stream.

In particular, stream tapping defines three typestr@ams.
Complete streamead out of a video in its entirety. These
are the streams clients typically tap frofeull tap streams
can be used if a complete stream for the same \stited

A < B minutes in the past, whefeis the size of the client

buffer, measured in minutes of video data. In tase, the
client can begin receiving the complete streamtrayhay,
storing the data in its buffer. Simultaneouslycan receive
the full tap stream and use it to display the flxathinutes
of the video. After that, the client can consumeecily

from its buffer, which will then always contain awing A-

minute window of the video. Stream tapping alsinds

partial tap streamswhich can be used wheén> f. In this

case clients must go through cycles of filling upml @ahen
emptying their buffer since the buffer is not laegeough to
account for the complete difference in video positi

To use tap streams, clients need only receive at tw
streams at any one time. If they can actually haadigher

Customer a Complete stream
Customer b Useful part of complete stream
Tap
b, : 4,
Customer ¢ Useful part of complete stream
<«—— Useful part of previous tap
z
A, A,

Figure 2: How stream tapping works

bandwidth than this, they can use an option ofpttetocol
called extra tapping Extra tapping allows clients to tap
data from any stream on the VOD server, and notfjom
complete streams. Figure 2 shows some samplentasto
requests. Since customeris the first customer, it is
serviced by a complete stream, whose duration usiletp
the durationD of the video. Since customér arrivesh,

minutes after customes, it can shardd — A, minutes of

the complete stream and only requires a full taguwia-
tionA, minutes. Finally customer can use extra tapping

to tap data from both the complete stream and teeiqus
full tap, and so its service time is smaller than.

Eager and Vernon'slynamic skyscraper broadcasting
(DSB) [6] is another reactive protocol based on tdnd
Sheu’sskyscraper broadcastingrotocol [10].  Like sky-
scraper broadcasting, it never requires the STBeteive
more than two streams at the same time. Their mement
hierarchical multicast stream mergingHMSM) protocol
requires less server bandwidth than DSB to ham#lesame
request arrival rate. Its bandwidth requirememn¢siadeed
very close to the upper bound of the minimum badthwi
for a reactive protocol that does not require tfidB So
receive more than two streams at the same timeistha

7, In(1+&j
P!

wheren, = (1+ \/E)IZ andN,; is the request arrival rate.

Selective catchinf8] combines both reactive and proactive
approaches. It dedicates a certain number of channels for
periodic broadcasts of videos while using the other channels
to allow incoming requests to catch up with the current
broadcast cycle. As a result, its bandwidth requirements are
O(log(, L)) where/, is the request arrival rate ahgdthe
duration of the video.



. Last full stream From server
Client a From server
From server
4 Last client

Client b From client a ; i

o

Current client iTapping!
Clientc From client b | From server From_client
AP At From server
TC

SERVER Toa Tob Toc

Figure 4: How a full tap streams are shared by the server
and the previous customer wh&n> D —At and the last
client terminates before having sent its share of the tap
stream of the current client.

Finally the cooperative video distribution protocol [12]

requires c[ients to forward the_video they are watching ©Oour protocol is a fairly straightforward implementation of
the next client. As shown on Figure 3, the video serviér wi stream tapping without extra tapping as it would have

?nly hgve tr? d'St”bUt? parlt(s gf a vurj]eo tr|1.at nohchent Cf";‘,nrequired clients able to receive videos at three times the
qrwalr) 'ﬁT e protocol works hest when c||en'ts %ve SUIM-yideo consumption rate. It only differs from the origina
cient buffer capacity to store t he previously viewed portion gyeam tapping protocol in the way it handles tap streams.

they are watching until they are have finished watching it.\yjje tap streams originally were the sole responsibility of

As chaining, it assumes that clients can retransmit data a,o server. this task is now shared by the server and the
the video consumption rate. previous client. Consider two consecutive requests for a

Figure 3: How the cooperative video distribution protocol
works.

video of duratiorD. Let 7, denote the time elapsed since

3. Our Protocol

the start of the last complete stream @wdepresent the

time interval between the two requests:

We wanted to develop a video distribution protocol that
allowed clients to participate in the video distributiongsro
ess even if they could not retransmit data at the video
consumption rate. We thus assumed that:

1. Clients would be able to receive video data at twice
their video consumption rate;

2. Clients would only be able to forward video data at a
rate equal to fraction of the same video consump-
tion rate;

3. Clients would not have to forward video data after
they have finished watching that video;

4. Clients should have enough buffer space to store the
previously viewed portion of the video they are
watching until they have finished watching it.

As we can see, our protocol makes few demands on the
transmission capabilities of the client hardware. In contrast,
it requires client buffers capable of storing an entire video
that is, several gigabytes of compressed video data. Two
factors motivated this choice. First, the diminishing obst
every kind of storage let it be RAM, flash memory akdi
drives, makes this requirement less onerous today than it
would have been a few years ago. Second, we expected
many clients to keep the previously viewed portion of the
video they are watching in their buffer in order to previd
the equivalent of a VCR rewind feature.

If 7.=D, the second client will be unable to tap any
data from the last complete stream. As in the origi-
nal stream tapping protocol, the server will then start
a new complete stream.

If 7. < D, there is an overlap between the current

request and the last complete stream. As in the origi-
nal stream tapping protocol, the server will then

evaluate whether it would be more advantageous to
keep tapping from the last complete stream or to start
a new one. If the server decides to keep tapping
from the last complete stream, it will have to provide

the second client with a full tap stream of duration

7.. Two alternatives must now be considered:

a. If 7. < D — At, the previous customer will
provide a fractiora of the full tap stream and
the server the remaining lofraction.

b. If 7. > D — At, the previous customer will
finish watching the video before being able to
transmit all its share of the full tap stream. As
seen on Figure 4, the previous client will only
be able to transmit a fraction

D-At
Tc
of the full tap stream with the server transmit-
ting the remainder of the stream.

a
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Figure 5: How the full tap streams are distributgdhe
server and the previous customer.

Consider for instance how the protocol would harttie
three requests displayed in Figure 5. The firgtiest to the
video will be entirely serviced by a complete stneaThe
second request will get the ld3t— At minutes of the video
by tapping client’s stream and the firgft minutes from a
full tap stream of duratioAt. A fractiona of this stream
will be sent by customex and the remaining 1e-fraction
will come from the server.
decides not to start a new complete stream folomestc,
that customemvould get the lasD — (4t + 4t') minutes of
the video by tapping clierst's stream and the firgft + At’
minutes from a full tap stream of the same duratfiince

Assuming that the serve 3.1

10

—o—New ST a=0
—4&— New ST a=0.25
- X- Stream Tapping
—8—New ST a=0.5
—m— New ST a=0.75
—#— New ST a=1

Bandwidth (channels)

]

1 10 100 1000

Requests/hour

Figure 6: Server bandwidth requirements of the staam
tapping protocol. The dotted curve refers to aveotional
stream tapping protocol with extra tapping.

This criterion is similar but not identical to thased by
Carter and Long [2, 3].

Fault-Tolerance | ssues

To operate correctly, our protocol requires alkemwis to
forward some of the video data they have receigethé
next customer requesting the video. As a resnoit,diient
failure will deprive all subsequent customers froineir

customerb will finish watching the video before the end of \4eq data. This is clearly not acceptable andireg a

that stream, t will only able to send its sharethad first

mechanism allowing the protocol to handle clientufas

to pick up the rest.

One last issue to consider is when to halt tapfriowp the
current complete stream and start a new one. Gentie
group of requests sharing the same complete stréhm.
lowest possible server workload will be achievedntiyi-

voluntary disconnect.

There is a simple solution to the problem. Letetsirn to
the scenario of Figure 5 where clienteceives almost half
of its tap stream from cliert, who receives almost half of
its tap stream from clierd. Any failure of clientb will

mizing the average request service time of the @rou jmmediately affect the correct flow data to client Fortu-

When a group starts and only has one request,ettvics
time of that request will be equal to the duratioha
complete stream, that is, the duratién of the video.
Adding more requests to the group will reduce therage
request service time of the group as long as thetdp
streams remain short. At some moment, this will @
true anymore and adding one extra request to thapgr
could actually increase its average request seftiite It
will then be time to start a new group.

To implement this criterion, our protocol keepskraf the

nately for us, a failure of clieftwill also free clienta from

its obligation to send data to cliebta fraction of its tap
stream, thus freeing enough upstream bandwidtHldav a
client a to take over the role of cliedt and send the
missing video data to client. Since clienta has no
predecessors, its failure would be handled by #mees

alone.

Making the protocol fault-tolerant will thus regaiiprovid-

ing each client with the addresses of the last twadhree
clients that have requested the video. Whenewdreat

minimum average request service time of all request getects a failure of its immediate predecesswillithus be

sharing the same complete stream. Before addingvwa
request to a group, it computes what would be tbw n
average request service time of the group if tive meguest
was added to the group. Should this new averageest
service time be lesser than or equal to the minirauerage
request service time of the group, our protocokdtid new
request to the group; otherwise, it starts a newmr

able to notify its next to last predecessor andétyver and
request them to redirect their data flows. Oncé iext to
last predecessor and the server have completedatsits
everything will happen as if the client that failegver
requested the video.
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Figure 7: Network bandwidth requirements of the new
stream tapping protocol.

4. Performance Evaluation

Figure 6 displays the server bandwidth requiremehtsur
new stream tapping protocol for selected values @ind
request arrival rates varying between one and lomasand
requests per hour. All bandwidths are expressaudihi-

ples of the video consumption rates. We assumeidthie
server was broadcasting a two-hour video and t@iast
arrivals could be modeled by a Poisson process.

In addition, the dotted red line represents th@eselband-
width requirements of the original stream tappimgtqcol
with extra tapping. Let us note that the compariso
between the two protocols is not absolutely faicsiextra
tapping requires clients capable of receiving videta at
three times the video consumption rate, while cotqeol
only requires clients capable of receiving videtadat two
times that rate.

As we can see, our new stream tapping protocoleputp
forms conventional stream tapping whenever clieras
forward data at more than half the video consumptade,
that is, whema > 0.5. As can expected, the lowest server
bandwidth requirements are obtained witesr 1 because
most, if not all, tap streams are then handlecctirdy the
clients without any server intervention.

This excellent performance comes however at a [stitie.
First, it requires clients capable of forwardingadat the
video consumption rate, which excludes most honsedha
clients. Second, the very low server bandwidthuireg
ments of the protocol are only achieved becausdaall
streams are now handled by the clients. Since @aith
vidual tap stream is dedicated to a single clit&,network
bandwidth requirements of the protocol become rbugh
proportional to the client request arrival rates geen on
Figure 7, the network bandwidth requirements of our
stream tapping protocol increase more rapidly thase of
the original stream tapping protocol when the tlieguest

arrival rate exceeds ten requests per hour. Tiémngme-
non can be explained in part by the fact that aotgzol
does not allow extra tapping. Another importarttda is
the way the server decides when to start a new letenp
stream. Recall that the server starts a new cdenpteeam
whenever adding one additional request to the greaydd
increase the average service time of the requesthe
group. Whenevea is very close to one, adding one extra
request to any existing group will have a negligilvhpact
on the server workload. As a result the servelrnat start

a new group until it becomes physically impossitalegap
data from the current complete stream. The vesyderver
bandwidths result from the fact that the servet néver
start a new complete stream before the end of iivqus
one. Thus the average duration of a tap streamnbwil
equal to half the duration of the video. Hencedkierage
network bandwidth required to distribute the videil be
roughly equal to one half the bandwidth required @y
scheme allocating a new complete stream to eaokovid
request.

5. Possible Extensions

In this section, we present several options forrawimg the
performance of our stream tapping protocol eithgr
making a more efficient use of the available ¢liband-
width or by reducing the network bandwidth requiesrs
of the protocol.

5.1 Involving several clients in the distribution

of tap streams

In its current state, our protocol only involves threvious
client in the transmission of tap streams. Assalteprevi-
ous clients whose upstream bandwidth is much Idien
the video consumption rate would leave most of tde
stream transmission workload to the server.

A better solution would be to involve several rdcdients
in the transmission of tap streams. For instaioee,clients
capable of transmitting data at a rate equal tofongh of
the video consumption rate could transmit the whale
stream without any server intervention.

5.2 Allowing extratapping

Allowing extra tapping would let several clientsash a
common tap stream. This would greatly reduce gtevork
bandwidth requirements of the protocol but wouldquise
clients capable of:

1. receiving data at more than twice the video
consumption rate, and
2. multicasting data to other clients, possibly thioug

user-level multicasting [1, 14].



5.3 Controlling network bandwidth usage (4]

The criterion that is now used by the server tadiewhen

it should start a new complete stream should tale i [5]
consideration the impact of its decision on thewoek
bandwidth requirements of the protocol. We areenily
investigating several possible options.

6. Conclusions [6]

Almost all existing distribution protocols for viden-
demand assume a clear separation of functions batthe
server, which distributes the videos, and its ¢iemwho  [7]
watch them. Those that do not make this assumption
require client machines capable of forwarding vidata at

the video consumption rate, which is not true fopsin
home-based clients. [8]
We have presented a stream tapping protocol thatvies
clients in the video distribution process. Ourtpool is
tailored to environments where client machinesadne to
download video data at twice the video consumptite

but can only forward video data at a fraction adtthate. [9]
As in conventional stream tapping, our protocouiess the
server to start a new video broadcast wheneverieatcl
cannot get enough video data from a previous bamsddaf
the same video. Our protocol uses the availabstregm
bandwidth of the previous client to reduce the ambaf
video data that the server needs to send to offents
Our simulations indicate that our protocol workstb&hen
clients can forward video data at least at one thalfvideo
consumption rate.

More work is still needed to develop techniques tauld
make a more efficient use of the available clieaidwidth
and reduce the network bandwidth requirements ef
protocol. The most promising avenue seems to &\in
ing several recent clients in the transmissiorapfdtreams.

[10]

[11]

th [12]
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