

Voting with Bystanders

Jehan-Franc,ois Pâris

Department of Computer Science
University of Houston

Houston, TX 77204-3475

ABSTRACT

Voting protocols ensure the consistency of replicated data
objects by disallowing all read and write requests that can-
not collect the appropriate quorum of replicas. Voting pro-
tocols require a minimum number of three copies to be of
any practical use and often disallow a relatively high
number of read and write requests.

We present here a voting protocol overcoming this
limitation and providing a significant amount of fault-
tolerance with as little as two replicas. Voting with
Bystanders (VWB), as this protocol is named, applies to all
networks consisting of LAN segments that are immune to
partial failures linked by gateways that might fail. A sto-
chastic analysis of the protocol under general Markovian
assumptions is presented showing that VWB provides
excellent read availabilities and good write availabilities
with as little as two or three replicas.

Keywords: file consistency, distributed file systems, repli-
cated files, voting.

1. INTRODUCTION

Redundancy has been widely used to increase the fault-
tolerance of physical systems. Recent advances in storage
and communication technology have extended the scope of
the technique to data objects. Critical data are now often
replicated to protect them against equipment failures or to
reduce read access times. This trend has created a new
problem as the multiple copies—or replicas—of a replicated
object must be kept consistent. Special consistency proto-
cols have been devised to perform that task and to provide
the users with a single consistent view of the object.

Voting protocols [Elli77] probably constitute the best
known class of consistency protocols. They ensure the
consistency of replicated data objects by disallowing all
read and write requests that cannot collect an appropriate
quorum of replicas. Different quorums for read and write
operations can be defined and different weights, including
none, assigned to every replica [Giff79]. Consistency is
hhhhhhhhhhhhhhhhhhhhh

This work was supported in part by a grant from the NCR Corporation
and the University of California MICRO program.

guaranteed as long as the write quorum W is high enough
to disallow parallel writes on two disjoint subsets of repli-
cas, and the read quorum R is high enough to ensure that
read and write quorums always intersect.

These conditions are simple to verify, which accounts
for the conceptual simplicity and the robustness of voting
schemes. Voting has however some disadvantages. It
requires a minimum number of three copies to be of any
practical use. Even then, quorum requirements tend to
disallow a relatively high number of read and update opera-
tions.

Several solutions have been proposed to overcome
these limitations. Dynamic Voting (DV) [DaBu85] and
Dynamic-Linear Voting (DLV) [JaMu87] adjust quorums to
reflect changes in replica availability and network topology.
Both protocols greatly improve the availability and reliability
of replicated objects with more than three replicas. They
do not perform better than Majority Consensus Voting
(MCV) when only two or three replicas are present. Voting
with Witnesses [Pari86a, Pari86b, BMP87] reduces the
number of physical copies necessary to achieve a given
level of fault-tolerance by replacing some replicas by
records of the object status that hold no data. Storage
requirements can be significantly reduced but three voting
entities are still required to improve upon the availability of
non-replicated data. Agrawal and El Abbadi [AgEl88] have
recently proposed to store overlapping fragments of the
object instead of whole replicas. Their technique
significantly reduces storage costs but still requires at least
three voting entities.

We present here a voting protocol overcoming this
limitation and providing a significant amount of fault-
tolerance with as little as two replicas. Voting with
Bystanders (VWB), as this protocol is named, applies to all
networks consisting of LAN segments that are immune to
partial failures linked by gateways that might fail. VWB
does not require dynamic adjustments of weights and
quorums. Like most consistency protocols, it expressly
excludes Byzantine failures.

Section 2 of this paper introduces our protocol. Sec-
tion 3 presents a brief analysis of replicated object availabil-
ity under VWB and section 4 discusses several possible
extensions to our basic protocol. Finally, section 5
presents our conclusions.

394

2. THE PROTOCOL

VWB extends MCV by generalizing the notion of quorum.
Access to the replicated object is given to small groups of
replicas that will often contain a single replica. These
groups do not need to intersect. Mutual exclusion is
enforced by requiring an access quorum that includes (a)
one complete group of active replicas and (b) one replica
from every group that does not have at least one inactive
replica. Accesses that are not mutually exclusive, such as
read accesses, require one complete group of active repli-
cas. VWB performs best in environments where it is easy
and inexpensive to verify that a replica not answering a
quorum call is inactive. This is the case for networks con-
sisting of token rings or CSMA segments linked by gate-
ways or repeaters. Since CSMA segments and token rings
are immune to partial communication failures, receiving an
acknowledgment from any site on the same token ring or
LAN segment as a silent replica is sufficient to establish
that the silence of the replica is not due to a network parti-
tion and to conclude that the replica must be inactive. The
polled sites are called bystanders to emphasize the fact
that, unlike witnesses, they do not know anything about the
status of the replicated object.

A more detailed and more accurate description of the
protocol follows. We begin by stating the assumptions
made about the network and the replicated objects.

2.1. Our Model

A replicated file will consist of a set of replicas resid-
ing on distinct sites of a local area network. These sites can
fail and can be prevented from exchanging messages by
failures of the communication subnet. We will assume that
sites not operating correctly will immediately stop opera-
tions and that all messages delivered to their destinations
will be delivered without alterations in the order they were
sent. Byzantine failures are expressly excluded. We will
further assume that the communication layer of the network
guarantees that two sites that can communicate with the
same third site can also communicate with each other.

We will focus our attention on replicated objects that
contain uninterpreted values. Two primitive operations on
these objects will be defined: a read operation that returns
the current value of the object and a write operation that
modifies that value in an arbitrary fashion. To guarantee
single-copy serializability, we will disallow concurrent write
operations and strictly enforce a single writer policy.

2.2. General Principle

Mutual exclusion between writes is traditionally
enforced by requiring all write quorums to intersect. This
requirement severely limits the level of fault-tolerance pro-
vided by voting protocols as no set of intersecting quorums
can allow access to the data in more than one half of the
possible replica states [PaBe88]. The Generalized Quorum
Consensus protocol (GQC) proposed by Herliyi exploits
available type specific properties of data objects to allow
more flexible write quorum assignments. This will result in
quorums that are better tuned to the requirements of the
application and enhance the overall availability of the data.

The protocol has however a major limitation. Since it
requires that two operations depending on each other have
intersecting quorums, any increase in the availability of the
data for some operation oi will necessarily result in a
decrease of the availability of the data for all operations that
depend on oi or on which oi depends.

A better paradigm to follow is the one of Available
Copy (AC) protocols [BeGo84, LoPa87]. AC protocols do
not rely, like MCV and GQC, on intersecting quorums to
guarantee data consistency. They are based on the obser-
vation that all live replicas of a data will remain current as
long as they receive all write requests. This philosophy has
a few important consequences. First, replicated objects
remain available as long as at least one replica remains
alive. Second, read operations can be satisfied by any live
replica. Third, replicas that reside on sites that have failed
need to be marked non-available or comatose until they are
brought up to date. Finally, AC protocols do not guarantee
data consistency in the presence of communication failures
as it then becomes impossible to guarantee that all live
replicas receive all write requests.

We propose here to follow an intermediary approach
and to define small subsets of replicas needed to access
the data object. We will call a collection of such subsets a
clique to emphasize the fact that cliques are a generaliza-
tion of the coteries introduced by Barbara and Garcia-
Molina to represent weight assignments in MCV protocols
[GaBa85].

Definition 2.1 A replica is said to be live if it resides on a
site that has not experienced any failure since the last time
the replica was written to or repaired.

Definition 2.2 A replica is said to be dead if it resides on a
site that is not operational.

Definition 2.3 A replica is said to be comatose if it resides
on a site that has failed and the replica has not been
repaired yet.

Definition 2.4 Clique. Let U be the set of all replicas of a
replicated object. A set of groups C ⊂ 2U is a clique under
U iff

(a) H∈C implies H⊆U and H≠∅, and

(b) there are no H, J∈C such that H⊂J,

A clique S such that all groups H, J∈S have a non-empty
intersection is a coterie.

Since the groups of a clique do not necessarily inter-
sect, a process gathering the votes of all the replicas in a
group is not guaranteed exclusive access to the replicated
object. Mutual exclusion would be guaranteed if every pro-
cess requesting exclusive access was required to gather
the votes of one complete group from the clique plus one
vote from every other group in the same clique. This condi-
tion is however unnecessarily restrictive as some of these
groups may already be unable to compete because they
contain one or more dead replicas. Assume for the sake of
the argument that the protocol has a mechanism that can
reliably certify that a given replica is dead. We could use
this mechanism to increase the write availability of the repli-
cated object by excluding from our requirement all groups

395

containing one or more dead replicas. This solution would
however complicate the task of the read protocol as entire
groups of replicas could miss a write because one of the
replicas was dead when the write took place. This problem
disappears once the protocol distinguishes between live
replicas and comatose replicas: a group containing a
replica recovering from a failure will be identifiable by the
fact that the recovering replica will remain comatose until it
has been brought up to date.

Rule 1 : Write Rule. The minimum quorum for a write
operation must include:

(a) at least one complete group of live replicas from the
clique C and

(b) at least one replica from every group in C that does
not contain any replicas that are dead or comatose.

The write rule guarantees that, after every write operation,
(a) at least one group in C only contains active up-to-date
replicas, and (b) every group in C whose replicas are all
active contain at least one up to date replica.

Rule 2 Read Rule. The minimum quorum for a read
operation must include either

(a) one complete group of live replicas, or

(b) one replica from every group in the clique.

Consider for instance a replicated object X with two replicas
A and B. The four possible clique assignments are {{A}},
{{B}}, {{A, B}}, and {{A}, {B}}. The three first cliques have
all a single subset and constitute valid coteries. Cliques
{{A}} and {{B}} represent traditional weight assignments
where one of the two replicas is assigned a higher weight
than the other one. The clique {{A, B}} corresponds to a
situation in which equal weights are assigned to both repli-
cas. This clique is sub-optimal since it requires both repli-
cas to be available to have a majority. The fourth clique is
not a coterie since the groups {A} and {B} are disjoint. It
represents a novel situation in which write requests can be
satisfied either by gathering the votes of two live replicas or
by obtaining the vote of one live replica and establishing
that the other one is dead or comatose. This second alter-
native illustrates the additional flexibility afforded by our
protocol: one group of live replicas is enough to grant
access to the replicated object if it is possible to verify that
no competing group of live replicas could be formed. Since
read requests need to gather the votes of one group of live
replicas, they can be satisfied as long as either A or B is
alive.

2.3. The Role of Bystanders

We had assumed in the previous section the existence of a
mechanism that can reliably certify that a given replica is
dead. Although this mechanism might be difficult or impos-
sible to implement on traditional point-to-point networks, it
can be implemented very inexpensively on a large class of
local-area networks. Many local-area networks consist of
several carrier-sense segments or token rings linked by
selective repeaters or gateway hosts. Figure 1 shows one
example of such networks: it contains three CSMA seg-
ments AB, ACD and EF. A is the gateway between AB and
ACD while ACD and EF are linked by the repeater X.

X

A

B

C D

E

F

Figure 1: A LAN with Six Sites and Three Segments

Since repeaters and gateways can fail without causing a
total network failure, such networks can be partitioned. The
key difference with conventional point-to-point networks is
that sites that are on the same carrier-sense network or
token ring will never be separated by a partition. We will
refer to these entities as LAN segments [ReTa88]. It is
easy in these environments to verify that a replica not
answering a quorum is inactive by polling any site residing
on the same LAN segment as the site holding the silent
replica. One need only to receive one acknowledgment
message from any of the polled sites to know that the
silence of the replica results from a site failure and not from
a network partition. The polled sites are called bystanders
to emphasize the fact that, unlike witnesses they do not
know anything about the status of the replicated object.
Bystanders have negligible fixed costs and can be imple-
mented on sites that do not have their own secondary
storage.

procedure READ(d : data_object)
begin

let U be the set of all replicas
〈R,v,s〉←START(U, d)
SL←{r∈R : r is live}
SC←{r∈R : r is comatose}
vmax = maxr∈SL∪SC {vr}
if (∃ c ∈ C :c ⊆ SL) ∨ (∀ c ∈ C :c ∩ (SL ∪ SC) ≠ ∅) then

perform the read on any r : vr = vmax

COMMIT

else
ABORT

fi
end READ

Figure 2: Read Algorithm

Figures 2, 3 and 4 respectively contain the read,
write and recovery algorithms for the VWB protocol. These
three algorithms assume that each replica of the data
object has a version number vi that represents the ordinal

396

number of the last successful write recorded in that replica
and a bystander table. The bystander table has one entry
for each site holding a replica of the data object; each entry
contains the name of some or all of the other sites residing
on the same LAN segment.

The read algorithm starts by broadcasting a message
to all replicas requesting their state (live or comatose) and
their version number. It then evaluates SL, the set of all
live replicas, and SC, the set of all comatose replicas. If the
algorithm is able to gather a group of live replicas or one
replica from each group c ∈ C, it can assert that the current
version number of the replicated object is the maximum
version number vmax of all replicas in SL ∪ SC. The read
operation can then be performed on any copy in U whose
version number is equal to vmax.

procedure WRITE

begin
let U be the set of all replicas
let B be the set of all bystanders
let B (r) be the set of all bystanders of replica r
〈R,v,s〉←START(U∪B, d)
SL←{r∈R : r is live}
SC←{r∈R : r is comatose}
SD←{s∈U : s ∉ R ∧ B (s) ∩ R ≠ ∅}
vmax = maxr∈SL∪SC {vr}
T←{s∈SL∪SC : vs = vmax}
if (∃ c∈C : c⊆SL) ∧ (∀ c∈C : c ∩ (SL∪SC∪SD) ≠ ∅) then

perform the write
COMMIT(T,vmax+1)

else
ABORT(R)

fi
end WRITE

Figure 3: Write Algorithm

The write algorithm starts by broadcasting a mes-
sage to all replicas requesting their state (live or comatose)
and their version number. A simpler message only
requesting an acknowledgment is sent to all bystanders. It
then computes the set of live replicas SL, the set of coma-
tose replicas SC, and the set of replicas known to be dead
SD. It then attempts to establish that SL includes all repli-
cas from at least one group of C and at least one replica
from any group that does not have a replica in SC ∪ SD. If
this attempt is successful, the algorithm commits the write
operation, sending the new version number to all the copies
that were updated.

The recovery algorithm is similar to the read algo-
rithm but uses a two-phase commit protocol like the write
algorithm. It begins by ascertaining whether a read quorum
exists. If this quorum exists, it computes the maximum ver-
sion number vmax and determines if the replica being
repaired is up-to-date. If it is not, then it is copied from any
up-to-date replica.

procedure RECOVER (I : replica)
begin

repeat
let U be the set of all replicas
〈R,v,s〉←START(U, d)
SL←{r∈R : r is live}
SC←{r∈R : r is comatose}
vmax = maxr∈SL∪SC {vr}
if (∃ c∈C : c⊆SL) ∨ (∀ c∈C : c∩(SL∪SC) ≠ ∅) then

if vl < vmax then
repair I from any r : vr = vmax

fi
COMMIT

else
ABORT

fi
until successful

end RECOVER

Figure 4: Recovery Algorithm

The protocol we have sketched is a static protocol in
the sense that it does not attempt to adjust cliques to reflect
changes in replica status or network partitions. Bystander
tables need only to be updated when a replica is migrated
from one LAN segment to another one. The only significant
additional costs occurred by the protocol result then from
the additional messages broadcast by the write algorithm to
bystanders to ascertain the status of silent replicas. An
obvious optimization of the protocol would consist of wait-
ing for replies from replicas before broadcasting to
bystanders. This would considerably reduce the overall
message traffic as most sites holding replicas can be
expected to be operational most of the time.

3. AVAILABILITY ANALYSIS

In this section we present an analysis of the availability pro-
vided by our protocol. Several definitions of the availability
of a replicated object have been proposed [Pari86a,
JaMu88]. We will assume here that the availability of a
replicated data object is the stationary probability of the
object being in a state permitting access. AS

ο (n) will denote
the availability for an operation ο of an object with n repli-
cas managed by the protocol S.

Our model consists of a set of sites with independent
failure modes that are connected via a network composed
of LAN segments linked by gateways or repeaters. When a
site fails, a repair process is immediately initiated at that
site. Should several sites fail, the repair process will be
performed in parallel on those failed sites. We assume that
failures are exponentially distributed with mean failure rate
λ , and that repairs are exponentially distributed with mean
repair rate µ . The system is assumed to exist in statistical
equilibrium and to be characterized by a discrete-state Mar-
kov process. No attempt is made to model failures of LAN
segments, gateways or repeaters.

The assumptions that we have made are required for
a steady-state analysis to be tractable [GBS69]. They have

397

been made in most recent probabilistic analyses of the
availability of replicated data [Pari86a, Pari86b, JaMu87,
CLP87]. Purely combinational models that do not require
assumptions about failure and repair distributions have
been proposed [PNP88, ReTa88] but these models cannot
distinguish between live and comatose replicas.

n n − 1

(n −1)′ (n −2)′

2 1

1′ 0′

n λ

µ
µ

(n −1)λ

2µ

(n −1)λ

2µ

(n −2)λ

3µ

. . .

. . .

3λ

(n −2)µ

2λ

(n −1)µ

2λ

(n − 1)µ

λ

n µ

λ

Figure 5: n Replicas on the Same LAN Segment

The easiest topology to analyze has all replicas of
the object on the same LAN segment. Since each live
replica can act as a bystander for all dead replicas, the best
clique for an object with n replicas r1, r 2, . . . , rn is the
clique {{r 1}, {r 2}, . . . , {rn}} whose n groups are all single-
tons. This clique allows read and write operations as long
as one replica remains alive. When that last live replica
has failed, the object will remain unavailable until all sites
holding replicas have recovered. The protocol behaves
identically to a Naive Available Copy protocol (NAC)
[LoPa87, CLP87] and has exactly the same availability and
reliability. Figure 5 contains the state-transition-rate
diagram of these two protocols. The n upper states labeled
from 1 to n represent the states of the object when 1 to n
replicas are alive; the n lower states labeled from 0′ to
(n −1)′ represent the states of the object when all replicas
block have failed and 0 to n −1 replicas are on sites that
have recovered but remain comatose. Left-to-right and
top-to-bottom transitions represent site failures while right-
to-left and bottom-to-top transitions indicate site repairs.

The availability AVWB(n) of a replicated object with n
replicas on the same LAN segment managed by the VWB
protocol is then equal to the availability ANAC(n) of the
same object managed by the NAC protocol, which is given
by:

AVWB(n) = ANA(n) =
k = 1
Σ
n

pk =
B(n,ρ) +ρ B(n,

ρ
1hh)

B(n,ρ)hhhhhhhhhhhhhhhhh

where

B(n,ρ) =
k = 1
Σ
n

j = 1
Σ
k

(n−k)! k !
(n− j)! (j−1)!hhhhhhhhhhhhρ j −k

and ρ =λ /µ is the failure rate to repair rate ratio.

These availability figures are excellent. In the range
of values of ρ found in most installations, they closely
approximate the availability afforded by the Available Copy
protocol, which is the best known protocol for managing
replicated objects when network partitions are excluded.
Since sites holding replicas double as bystanders, VWB

incurs exactly the same message traffic as NAC. All argu-
ments previously made in favor of NAC [CLP87] apply to
VWB.

11 10∗

10′ 00′

2λ

µ

λ

2µ

µ λ

X

A

B

Figure 6: Two Replicas on Two LAN Segments

Consider now the case of a replicated object with two
replicas A and B placed on disjoint LAN segments of a net-
work. Assume that the clique C = {{A}, {B}}. As long as
communication failures are not taken into account, such a
system can be represented by a diagram with four states.
On the diagram shown in figure 6, state labels represent
numbers of operational sites on each LAN segment. States
01 and 01′ are not represented on the diagram as they
have been respectively merged with states 10 and 10′.
Here too, left-to-right and top-to-bottom transitions
represent site failures while right-to-left and bottom-to-top
transitions indicate site repairs. The states fall into three
categories:

1. Active States. The active states are the states in
which the file is always accessible for read and write.
Active states correspond to situations where all the
replicas in at least one group of the clique are live
and all groups have at least one live replica. State
11 is the only active state on the diagram of figure 6.

2. Semi-active States. The semi-active states are the
states in which the file is always accessible for read
but relies on the availability of one or more
bystanders to allow write accesses. These states
correspond to situations where all the replicas in at
least one group of the clique are live but some other
groups have no live replicas. State 10∗ is the only
semi-active state on the diagram.

3. Inactive States The inactive states are the states in
which the data object is inaccessible. States 00′ and
11′ are the two inactive states on the diagram.

398

The read availability is given by the sum of probabili-
ties of being in any non-primed state:

AVWB
R (2) = p11 + p10

∗ =
(ρ + 1)3

3ρ + 1hhhhhhhh

where pij is the probability of the system being a the state ij
and ρ =λ /µ is the failure-rate-to-repair-rate ratio. Write
availabilities are lower since they depend on the availability
of bystanders in all starred states. We have therefore:

AVWB
W (2) = p11 + p10

∗ pb

where pb is the probability that at least one of the
bystanders of the dead replica is operational. When each
replica has one bystander, we have:

pb =
(ρ + 1)

1hhhhhhh and AVWB
W (2,2) =

(ρ + 1)4

ρ 2 + 4ρ + 1hhhhhhhhhh .

For four bystanders, we have:

pb =
(ρ + 1)2

2ρ + 1hhhhhhhh and AVWB
W (2,4) =

(ρ + 1)5

ρ 3 + 7ρ 2 + 5ρ + 1hhhhhhhhhhhhhhh.

A(2)

Failure rate to repair rate ratio (ρ)

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2

...

AVWB
R (2)

AVWB
W (2,4)

AVWB
W (2,2)

AMCV(2)

Figure 7: Compared Availabilities for Two Replicas

The graph on figure 7 shows the compared read and write
availabilities of MCV with two replicas and VWB with two
replicas and two or four bystanders. As expected, MCV
with two replicas fails to provide any improvement upon the
availability of a non-replicated object. VWB provides an
excellent read availability— identical in this case to that
afforded by MCV for three replicas—and good to very good
write availabilities. Since the write availability of an object
with four bystanders closely approaches its read availabil-
ity, adding more bystanders would only have minimal
effects on write availability.

A complete analysis of all possible network topolo-
gies for more than two replicas would be quite tedious and
falls beyond the scope of this paper. We will limit ourselves
here to the case of a replicated object with three replicas A,
B and C and assume a clique C = {{A}, {B}, {C}}. The

12 11

02∗ 01∗

10∗

11′

02′ 01′ 00′

10′

2λ

µ

λµ

2λ

µ

λ

2µ

λ
µ λ

λ

λ

2µ

λµ

2λ

µ

λ
µ

λ

2µ

µ

µ

X

A

B C

Figure 8: Three Replicas on Two LAN Segments

A(3)

Failure rate to repair rate ratio (ρ)

0.92

0.94

0.96

0.98

1

0 0.05 0.1 0.15 0.2

.
..
.
.
................

AVWB
R (3)

AVWB
W (3,3)

AVWB
W (3,2)

AVWB
W (3,1)

AMCV(3)

Figure 9: Compared Availabilities for Three Replicas

corresponding state diagram is in figure 8. Here too, state
labels represent numbers of operational sites on each LAN
segment. The diagram has two active states (12 and 11),
three semi-active states (02∗, 01∗ and 10∗) and five inactive
states (02′, 11′, 01′, 10′ and 00′). The read availability of
the replicated object AVWB

R (3) is given by the sum of the
probabilities of being in a non-primed state:

AVWB
R (3) = p12 + p11 + p02

∗ + p10
∗ + p01

∗

%

This expression would not be affected if all non-primed
states having the same numbers of operational sites—such
as 11 and 02∗—were merged. Performing then the same
operation on primed states, one could transform the state
diagram of figure 8 to the state diagram of figure 5 for n = 3.
Hence AVWB

R (1 + 2) = ANAC(3). The graph on figure 9 shows
the compared read and write availabilities of MCV with
three replicas and VWB with three replicas and one, two or
three bystanders. VWB provides an excellent read availa-
bility and good to very good write availabilities when two or
three bystanders are present. Since the write availability of
the object for three bystanders closely approaches its read
availability, the addition of more bystanders would only
have minimal effects on write availability.

4. EXTENSIONS

Two possible extensions of the VWB protocol are briefly
discussed here. They concern the applicability of the
method to networks with non-transitive communication pat-
terns and the feasibility of dynamic quorum adjustments.

4.1. Non-Transitive Communication Environments

The correctness of the VWB protocol depends on the
assumption that the receipt of an acknowledgement mes-
sage from any bystander of a silent replica is enough to
establish that the replica is dead. This assumption is
correct as long as the communication layer of the network
guarantees that sites that can communicate with the same
third site can also communicate with each other.

Gateways between LAN segments can however
have their routing tables corrupted by some software error.
As a result, the gateway may stop forwarding packets for
one or more sites while continuing to handle correctly pack-
ets directed to other destinations. It might therefore hap-
pen that site A can talk to site B but not to site C while B
and C can communicate with each other [Mull86]. A rela-
tively inexpensive palliative to this problem exists. It con-
sists of replacing the "please-acknowledge" message sent
to bystanders of a silent replica by one of the two mes-
sages "can you communicate with site X?" or "please list
the sites with whom you can communicate."

4.2. Dynamic Quorums

The performance of the VWB protocol could be improved
by adjusting the clique to reflect changes in replica status
or network partitions. Replicas that cannot be reached
could be temporarily excluded from the clique until they can
be reached again. This would have the advantage of
enhancing the write availability of replicated objects by
diminishing the reliance of the protocol on bystanders to
establish the status of unreachable replicas. We plan to
report later on that line of research.

5. CONCLUSIONS

We have presented a voting protocol providing a
significant amount of fault-tolerance with as little as two
replicas. Voting with Bystanders (VWB), as this protocol is
named, applies to replicated objects residing on networks
consisting of LAN segments that are immune to partial

failures linked by gateways that might fail. Bystanders are
sites residing on the same LAN segment as one or more
replicas of the object. Bystanders do not know anything
about the status of the replicated object and are only used
to establish the status of replicas that cannot be reached. A
stochastic analysis of the protocol under general Markovian
assumptions has shown that VWB provides excellent read
availabilities and good write availabilities with as little as
two or three replicas and two or three bystanders.

Acknowledgements

This work was supported in part by a grant from the NCR
Corporation and the University of California MICRO program.
We are grateful to Walter Burkhard, Darrell D. E. Long and
all of the members of the Computer Systems Research
Group of the CSE Department of the University of Califor-
nia, San Diego for the numerous discussions we had with
them at the early stages of our work. We also wish to
thank Ms. Elizabeth Mendez for her editorial comments.

The Markov analysis of the availability of the proto-
cols under study has been done with the aid of MACSYMA,
a large symbolic manipulation program developed at the
Massachusetts Institute of Technology Laboratory for Com-
puter Science. MACSYMA is a trademark of Symbolics,
Inc.

References

[AgEl88] D. Agrawal and A. El Abbadi, ‘‘Reducing
Storage for Quorum Consensus Algorithms,’’
Proc. 14th VLDB Conference (1988), pp. 419-
430.

[BeGo84] P. A. Bernstein and N. Goodman, ‘‘An Algorithm
for Concurrency Control and Recovery in Repli-
cated Distributed Databases,’’ ACM Transac-
tions on Database Systems, Vol. 9, No. 4 (Dec.
1984), pp. 596-615.

[BMP87] W. A. Burkhard, B. E. Martin and J.-F. Pâris,
‘‘The Gemini Replicated File Test-bed.’’ Proc.
3rd International Conference on Data Engineer-
ing (1987), pp. 596-615.

[CLP87] J. L. Carroll, D. Long and J.-F. Paris, ‘‘Block-
Level Consistency of Replicated Files,’’ Proc.
7th International Conference on Distributed
Computing Systems (1987) pp. 146-153.

[DaBu85] D. Davcev and W. A. Burkhard, ‘‘Consistency
and Recovery Control for Replicated Files,’’
Proc. 10th ACM Symposium on Operating Sys-
tem Principles (1985) pp. 87-96.

[Elli77] C. A. Ellis, ‘‘Consistency and Correctness of
Duplicate Database Systems,’’ Operating Sys-
tems Review, Vol. 11 (1977).

[GaBa85] H. Garcia-Molina and D. Barbara, ‘‘How to
Assign Votes in a Distributed System,’’ Journal
of the Association for Computing Machinery,
Vol. 32, No. 4 (Oct. 1985), pp. 841-855.

[Giff79] D. K. Gifford, ‘‘Weighted Voting for Replicated
Data,’’ Proc. 7th ACM Symposium on Operating

400

System Principles (1979), pp. 150-161.

[GBS69] B. V. Gnedenko, , Yu. K. Belyayev and A. D.
Soloviev, Mathematical Methods of Reliability
Theory, (English translation of "Matema-
ticheskiye Metody V Teorii Nadezhnosti"),
Academic Press, New York (1969).

[JaMu87] S. Jajodia and D. Mutchler, ‘‘Enhancements to
the Voting Algorithm,’’ Proc. 13th VLDB Confer-
ence (1987), pp. 399-405.

[JaMu88] Jajodia S and Muetchler D, ‘‘Integrating Static
and Dynamic Voting Protocols to Enhance File
Availability,’’ Proc. 4th International Conference
on Data Engineering (1988), pp. 144-153.

[LoPa87] D. D. E. Long and J.-F. Pâris, ‘‘On Improving
the Availability of Replicated Files,’’ Proc. 6th
Symposium on Reliability in Distributed
Software and Database Systems (1987), pp.
77-83.

[Mull86] K. Muller, private communication.

[PaBe88] J.-F. Pâris and F. Berman, ‘‘How to Make Your
Votes Count,’’ submitted for publication.

[Pari86a] J.-F. Pâris, ‘‘Voting with Witnesses: A Con-
sistency Scheme for Replicated Files,’’ Proc. 6th
International Conference on Distributed Com-
puting Systems, (1986), pp. 606-612.

[Pari86b] J.-F. Pâris, ‘‘Voting with a Variable Number of
Copies,’’ Proc. 16th Fault-Tolerant Computing
Symposium (1986), pp. 50-55.

[PNP88] C. Pu, J. D. Noe and A. Proudfoot, ‘‘Regenera-
tion of Replicated Objects: A Technique and its
Eden Implementation,’’ IEEE Transactions on
Software Engineering, Vol. SE-14, No. 7 (July
1988), pp. 936-945.

[ReTa88] R. van Rennesse and A. Tanenbaum, ‘‘Voting
with Ghosts,’’ Proc. 8th International Confer-
ence on Distributed Computing Systems,
(1988), pp. 456-462.

401

IDIOT

402

