
The Management of Replicated Data

Jehan-François Pâris ?

Department of Computer Science, University of Houston
Houston, TX 77204-3475

1 Introduction

Fourteen years have passed since Gifford’s seminal paper on weighted voting
[7]. These years have seen the development of numerous protocols for managing
replicated data and a handful of experimental systems implementing replicated
files. The time has now come to attempt an inventory of the problems for which
we have found solutions and the issues that remain open. One way to structure
this inventory is to organize it around general observations reflecting points of
agreement and disagreement within the replicated data community.

Our frame of reference will be simple: We will consider systems maintaining
multiple copies–or replicas–of the same data at distinct nodes of a computer
network. We define the availability of replicated data for a given operation as
the probability that the operation can be successfully carried out at some node
within the network. We will focus on the problem of protecting the users of
the replicated data from the inconsistencies that may result from node failures
and network partitions. This is normally done through a group communication
mechanism [3, 4, 22] or a replication control protocol. Group communication mecha-
nisms focus on the problem of reliable delivery of messages to the replicas while
replication control protocols operate by mediating all accesses to the replicated
data. Hence they are more general. An ideal replication control protocol should
guarantee the consistency of the replicated data in the presence of any arbitrary
combination of non-Byzantine failures while providing the highest possible
data availability and occasioning the lowest possible overhead.

2 What we have learned

Observation 1. Applications that can tolerate slight inconsistencies among replicas
should not have to pay the price of maintaining all replicas in a fully consistent state.

Maintaining replicated data in a fully consistent state is an expensive proposition
because all updates must become simultaneously visible to all users of the
replicated data. Reducing the number of replicas required to obtain a write
quorum cannot be achieved without simultaneously increasing the read quorum
and vice versa.
? Internet Address: paris@cs.uh.edu



Many practical applications can tolerate minor inconsistencies among repli-
cas and operate with data that are slightly out of date. We can provide these
applications with replicas that are slightly out of date and even guarantee that
these quasi-copies will never deviate too far from the true data [1]. For instance,
we can guarantee that the quasi-copies will never be more than 10 minutes
behind the true data or differ by more than 5%.

Other distributed applications only require eventual consistency [10]. Replicas
can be in different states but will eventually receive the same set of update
messages. Consider, for instance, a mail system where each user is given two
mailboxes and incoming messages are guaranteed to be delivered to at least one
mailbox. Merging the two mailboxes can be done very easily by sorting their
contents according to message arrival time and removing duplicate messages.

Observation 2. Network partitions are much more difficult to handle than node fail-
ures.

In the absence of network partitions, we can guarantee the consistency of
replicated data by (a) imposing a total ordering on all writes so that all replicas
receive them in the same order, (b) broadcasting these writes to all available
replicas, and (c) requiring that replicas residing on nodes recovering from a
failure remain unavailable or comatose until they are brought up to date. This
available copies protocol has two major advantages [2, 17]. First, read requests
never need to access more than one available replica because all available repli-
cas are guaranteed to be up to date. Second, the replicated data can be accessed
as long as there is at least one available replica.

The situation is quite different when network partitions must be taken into
account. A first class of replication control protocols takes the approach that
network partitions are unlikely to occasion conflicting updates and that many
of these conflicts will be easy to resolve. These are known as optimistic protocols.
They follow the same philosophy as the available copies protocol and trade
data consistency for inexpensive reads and high availability. The second class of
protocols take the approach that data consistency carries a much more important
weight than data availability. These protocols are said to be pessimistic. They
rely on quorum mechanisms to prevent conflicting updates and provide lower
data availabilities than optimistic protocols. For instance, we need five replicas
managed by the best pessimistic protocol to achieve the same level of data
availability as two replicas managed by the available copy protocol [17].

Another limitation of pessimistic protocols is the fact that they disallow
simultaneous updates in disjoint partitions. Consider for instance a replicated
file system like Coda [21] where each user workstation maintains a local copy
of the files it currently accesses in addition to the copies maintained by the
Coda servers. Some of these workstations are likely to be notebooks and we
may expect the owners of these notebooks to disconnect them from time to time
from the network. A pessimistic protocol would either disallow all writes to
the Coda files stored on the notebook or disallow all accesses to the replicas
maintained by the Coda servers.



Observation 3. Witnesses can reduce the storage costs of pessimistic protocols.

Pessimistic protocols require at least three replicas to implement a robust con-
sensus and improve upon the availability of unreplicated data. However one of
these replicas can be replaced by a much smaller witness without significantly
affecting the availability of the replicated data [16].

Witnesses are very small entities that hold no data but maintain enough
information to identify the replicas that contain what it believes to be the most
recent version of the data. Conceptually this information could be a timestamp
containing the time of the latest update. Since it is quite hard to keep clocks
synchronized, this timestamp is normally replaced by a version number, which
is an integer incremented each time the data are updated. Each witness carries
a specific number of votes and is allowed to participate in all read and write
quorums like a conventional replica.

The small size of witnesses offers twoadditional advantages. First, witnesses,
unlike conventional replicas, can be brought up to date without any significant
delay. There is thus no incentive to update witnesses that are not part of a write
quorum. As a result, a replicated file consisting of two replicas and one witness
will never require more than two replica updates per write while a replicated file
consisting of three conventional replica normally requires three replica updates
per write. Second, witnesses can be quickly regenerated every time they become
unavailable [20, 19].

Witnesses are an integral part of the Echo [11] and Harp [14] file systems.

Observation 4. Dynamic voting can improve the availability of replicated data man-
aged by quorum-consensus protocols.

Dynamic voting protocols adjust read and write quorums whenever they
detect a change in the number of available replicas [5, 12]. Central to all dy-
namic voting protocols, is the notion that replicas known to be unreachable
should be excluded from all quorum computations. All dynamic voting proto-
cols maintain some record of the set of replicas that are allowed to participate
in elections. Because of the distributed nature of the protocol, multiple copies of
this set, called the majority block, must be maintained. These copies are normally
associated with the replicas. Whenever the protocol detects that some replicas
in the majority block have become unreachable it checks first that a majority of
the replicas in the current majority block can be reached. If this is the case, the
unreachable replicas are excluded from the majority block and a new majority
block is formed. Otherwise the replicated data remain unavailable until some
of the unreachable replicas can be reached again. Finally, the excluded replicas
are prevented from participating in voting until they are formally reintegrated
into the current majority block.

It has long been known that the best dynamic voting protocol, namely
dynamic-linear voting [12], provided much better data availabilities than the
best static voting protocols whenever there were more than three replicas. It
was also widely assumed that dynamic-linear voting did not perform much



better than static voting when there were only three replicas. This author has
shown more recently that this conclusion does not hold when communication
failures are taken into account as static voting provides lower availabilities than
dynamic-linear voting even when there are only three replicas [18]. Hence the
small overhead of maintaining majority block membership information on each
node holding a replica is a very reasonable price to pay for the much better data
availabilities afforded by dynamic-linear voting.

Observation 5. There are protocols that can manage efficiently large numbers of repli-
cas.

The recent years have seen the development of several replication control
protocols specially tailored for the management of replicated data that have
many replicas. These protocols have as objective to reduce the number of replicas
that need to be accessed to reach a read or a write quorum while distributing
these accesses as evenly as possible among the N replicas.

We shall only mention Maekawa’s original algorithm [15] because it was the
first algorithm to require only 3

p
N messages per access and the triangular lattice

protocol because it provides a much better data availability than Maekawa’s
algorithm while keeping the quorum size ofO(

p
N ) [23].

There are also some wide-area applications, such as the Archie FTP location
service [8] or the Refdbms bibliographic database system [9] , whose users can
be distributed at hundreds or thousands of sites around the world. These appli-
cations often maintain a very large number of local replicas in order to provide
a fast response time and minimize communication costs. Even protocols with
O(
p
N ) quorums would be too expensive. The only solution is then to relax con-

sistency requirements. Less costly protocols, among which epidemic protocols
[6, 10], can then be used.

3 Unresolved Issues

Observation 6. We lack a proper consistency model providing for disconnected—or
quasi-disconnected—operation of user workstations.

Conventional network file systems assume that user workstations are per-
manently connected to their servers. This assumption is becoming false because
of the increasing importance of portable workstations. These portable worksta-
tions have enough secondary storage to be fully autonomous and are equally
likely to be operated in stand alone mode as to be connected to the network.
As we mentioned earlier, pessimistic replication protocols are inadequate be-
cause they would unduly restrict the access of data. The Coda file system solves
the problem by implementing an optimistic replication control protocol and
guaranteeing that the user always sees the most recent accessible version of
its data [21]. This solution has the disadvantage of shifting too much burden
on the users’ shoulders as they become at least partially responsible for the



consistency of their data. We need to develop consistency models that provide
the users with a more faithful abstraction of the way the replicas are actually
managed. We need to take also into account the emergence of new technologies
providing portable workstations with more or less reliable low-bandwidth ra-
dio links. These links could be used for the exchange of tokens, for the update
of witnesses or for the transmission of incremental updates.

Observation 7. We need to develop better methodologies for specifying weak consis-
tency criteria and implementing them.

Weak consistency protocols allow replicas to diverge temporarily from one
another but guarantee that they will eventually reach a single consistent state.
Weak consistency protocols incur much lower communication overheads than
conventional replication control protocols. They constitute the only practical
way to manage very large numbers of replicas scattered over a wide-area net-
work. Unfortunately managing weakly consistent data is a difficult task because
it is very data dependent. Hence object-oriented methodologies appear to be
the most promising approach [10].

Observation 8. We need to develop tools measuring more accurately the actual per-
formance of replication control protocols.

Too many studies of replication control protocols still neglect network parti-
tions and assume a perfect coverage of all node failures. These studies provide
overoptimistic evaluations of the actual availabilities of the replicated data. As
we mentioned earlier, they also fail to notice some behaviors that only occur
in the presence of network partitions. The fault-tolerant computing community
has an important part to play because of its impressive collective expertise in
reliability and availability analysis.

4 Final Remarks

This brief inventory of the current state of the art in the field of replicated data
management has neglected many interesting problems, among which the opti-
mal allocation of weights to replicas, and failed to discuss many good protocols
such as the tree protocol, hierarchical voting, and voting with ghosts to mention
only a few ones.

We have also failed to mention the ever growing difference between repli-
cated files and replicated databases. A replicated file is normally a relatively
small object often under the control of a single user. As it is in the case for
unreplicated files, this owner is quite likely to place a higher priority on faster
access times and higher data availability than on data consistency. Hence opti-
mistic replication control protocols are indicated. Replicated databases, on the
other hand, need to rely on some formal model of data consistency because they
are typically accessed in parallel by many users. As a result, even unreplicated
databases require a formal transaction mechanism to guarantee that all updates
will leave the data base in a consistent state. Hence temporary inconsistencies
can only be tolerated if there are formal mechanisms to reconcile them.



References

1. Alonso, R., Barbara, D., Garcia-Molina, H.: Quasi-copies: efficient data sharing for
information retrieval systems. Proc. of the Int. Conf. on Extending Data Base Tech-
nology, Lecture Notes in Computer Science # 303, Springer Verlag (1988).

2. Bernstein, P.A., Goodman, N.: An Algorithm for concurrency control and recovery
in replicated distributed databases. ACM Trans. on Database Systems, 9, 4 (1984)
596–615.

3. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures. ACM
Trans. on Computer Systems, 5, 1 (1987) 47–76.

4. Cheriton, D.R., Zwaenepoel, W.: Distributed process groups in the V kernel. ACM
Trans. on Computer Systems, 3, 2 (1985) 77–107.

5. Davcev, D., Burkhard, W.A.: Consistency and recovery control for replicated files.
Proc. 10th ACM Symp. on Operating System Principles, (1985) pp. 87–96.

6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
Operating Systems Review, 22, 1, (1988) 8–32.

7. Gifford, D. K.: Weighted voting for replicated data. Proc. 7th ACM Symp. on Oper-
ating System Principles, (1979) pp. 150–161.

8. Emtage, A., Deutsch, P.: Archie, an electronic directory service for the Internet. Proc.
1992 Winter USENIX Conf., (1992) pp. 93–110

9. Golding, R.A.: Weak-consistency group communication and membership. Ph.D. the-
sis published as Technical Report UCSC–CRL–92–52, Computer and Information
Sciences Board, University of California, Santa Cruz (1992).

10. Golding, R.A.: A Weak-consistency architecture for distributed information services.
Computing Systems, 5, 4 (1992).

11. Hisgen, A., Birrell, A., Mann, T., Schroeder, M., Swart, G.: Availability and consistency
tradeoffs in the Echo distributed file system. Proc. 2nd Workshop on Workstation
Operating Systems, (1989) pp. 49–54.

12. Jajodia, S., Mutchler, D.: Dynamic voting algorithms for maintaining the consistency
of a replicated database. ACM Trans. on Database Systems, 15, 2 (1990) 230–405.

13. Ladin, R., Liskov, B., Shrira, L.: Lazy replication: exploiting the semantics of dis-
tributed services. Proc. 9th ACM Symp. on the Principles of Distributed Computing,
(1990).

14. Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L. Williams, M.: Replication
in the Harp file system. Proc. 13th ACM Symp. on Operating System Principles,
(1991) pp. 226–238.

15. Maekawa, M.: A
p
N algorithm for mutual exclusion in decentralized systems. ACM

Trans. on Computer Systems, 3, 2 (1985) 145–159.
16. Pâris, J.-F.: Voting with witnesses: a consistency scheme for replicated files. Proc. 6th

Int. Conf. on Distributed Computing Systems, (1986) pp. 606–612.
17. Pâris, J.-F., Long, D.D.E.: On the performance of available copy protocols. Perfor-

mance Evaluation, 11 (1990) 9–30.
18. Pâris, J.-F.: Evaluating the impact of network partitions on replicated data availability.

In Dependable Computing for Critical Applications 2 (J.F. Meyer and R.S. Schlichting
eds.), Dependable Computing and Fault-Tolerant Systems #6, Springer Verlag (1992),
pp. 49–65.

19. Pâris, J.-F., Long, D.D.E.: Voting with regenerable volatile witnesses. Proc. 7th Int.
Conf. on Data Engineering, (1991) 112–119.



20. Pu, C., Noe, J.D., Proudfoot, A.B.: Regeneration of replicated objects, a technique
and its Eden implementation. IEEE Trans. on Software Engineering, SE-14, 7 (1988)
936–945.

21. Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E. Siegel, E.H., Steere, D.C.:
Coda: a highly available file system for a workstation environment. IEEE Trans. on
Computers, C-39, 4 (1990) 447–459.

22. Schneider, F. B.: Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Computing Surveys, 22, 4 (1990) 229–319.

23. Wu, C., Belford, G.: The Triangular lattice protocol: a highly fault tolerant and highly
efficient protocol for replicated data. Proc. 11th Symp. on Reliable Distributed Sys-
tems, (1992) 66–73.

This article was processed using the LATEX macro package with LLNCS style


