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Abstract. We present a disk array organization that adapts itself to successive 

disk failures. When all disks are operational, all data are mirrored on two disks.  

Whenever a disk fails, the array reorganizes itself, by selecting a disk containing 

redundant data and replacing these data by their exclusive or (XOR) with the 

other copy of the data contained on the disk that failed.  This will protect the 

array against any single disk failure until the failed disk gets replaced and the 
array can revert to its original condition.  Hence data will remain protected 

against the successive failures of up to one half of the original number of disks, 

provided that no critical disk failure happens while the array is reorganizing 

itself.  As a result, our scheme achieves the same access times as a mirrored 

organization under normal operational conditions while having a much lower 

likelihood of loosing data under abnormal conditions.   In addition it tolerates 
much longer repair times than mirrored disk arrays. 

Keywords: fault-tolerant systems, storage systems, repairable systems, k-out-

of-n systems. 

1   Introduction 

Today’s disks have mean time to failures of more than ten years, which means that 

a given disk has a less than ten percent probability of failing during any given year of 

its useful lifetime.  While this reliability level is acceptable for all the applications that 

only require the storage of a few hundreds of gigabytes of non-critical information 

over relatively short time intervals, it does not satisfy the needs of applications having 

to store terabytes of data over many years. 

Backups have been the traditional way of protecting data against equipment 

failures.  Unfortunately, they suffer from several important limitations.  First, they do 

not scale well; indeed the amount of time required to make a copy of a large data set 
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can exceed the interval between daily backups. Second, the process is not as 

trustworthy as it should be due to both human error and the frailty of most recording 

media.  Finally, backup technologies are subject to technical obsolescence, which 

means that saved data risk becoming unreadable after only ten to twenty years.  A 

much better solution is to introduce redundancy into our storage systems 

The two primary ways of introducing that redundancy are mirroring and m-out-of-n 

codes.  Both techniques have their advantages and disadvantages.  Mirroring offers 

the two main advantages of reducing read access times and having a reasonable 

update overhead.  Identifying failed disks can always be done by detecting which 

replicas have become unavailable.  On the other hand, m-out-of-n codes provide much 

higher data survivability.  Consider, for instance, the case of a small disk array 

consisting of eight disks.  A mirrored organization that maintains two copies of each 

file on separate disks would protect data against all single disk failures and most 

double disk failures.  A simultaneous failure of three disks would have a bigger 

impact as it would result in data loss in 43 percent of the cases.  This is much worse 

than an optimal 4-out-of-8 code that protects data in the presence of up to four 

arbitrary disk failures.  In fact, this is such an improbable event that erasure codes that 

tolerate more than two simultaneous failures are never used in actual storage systems.  

We propose a self-adaptive disk array organization that combines most of 

advantages of mirroring and erasure coding.  As long as most disks are operational, it 

will provide the same read and write access times as a mirrored organization.  

Whenever a disk fails, it will reorganize itself and quickly return to a state where data 

are again protected against a single failure.  As a result, data will remain protected 

against the consecutive failures of up to one half of the original number of disks, 

provided that no critical disk failure happens while the array is reorganizing itself.  

This is a rather unlikely event as the reorganization process will normally take less 

than a few hours.  

The remainder of this paper is organized as follows.  Section 2 will introduce our 

self-adaptive disk array organizations.  Section 3 will compare the mean times to data 

loss (MTTDL) achieved by self-adaptive arrays with those achieved by mirrored disk 

arrays.  Section 4 will review previous work and Section 5 will have our conclusions. 

2   Our Approach 

Consider the small disk array displayed on Fig. 1.  It consists of four pairs of disks 

with data replicated on each pair of disks.  For instance, disks A1 and A2 contain the 

same data set A.  Assume now that disk B1 fails.  As a result, only one remaining copy 

of data set B remains and the array will become vulnerable to a failure of disk B2.  

Waiting for the replacement of disk B1 is not an attractive option as the process make 

take several days.  To adapt itself to the failure, the array will immediately locate a 

disk containing data that are replicated elsewhere, say, disk A1, and replace its 

contents by the exclusive or (XOR) of data sets A and B thus making the array 

immune to a single disk failure.  Fig. 2 displays the outcome of that reconfiguration.   
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Fig. 1. A small disk array consisting of four pairs of disks with data replicated on each pair of 

disks.  
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Fig. 2. The same disk array after disk B1 has failed and the array is reconfigured.  
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Fig. 3. The same disk array after disk D1 has failed and the array is reconfigured. 

The array can again tolerate any single disk failure.  The sole drawback of the 

process is that accesses to data sets A and B will now be slightly slower.  In particular, 

updates to these two data sets will be significantly slower as each update will now 

require one additional read operation.  This condition is only temporary as the array 

will revert to its original condition as soon as the failed disk is replaced. 

Consider now what would happen if a second disk failed, say, disk D1, before disk 

B1 was repaired.  This second failure would remove one of the two copies of data set 

D and make the array vulnerable to a failure of disk D2.  To return to a safer state, the 

array will locate a disk containing data that are replicated elsewhere, say, disk C2, and 

replace its contents by the exclusive or (XOR) of data sets C and D.  Fig. 3 displays 

the outcome of this reorganization.  

Under most circumstances, the two failing disks will be replaced before a third 

failure could occur. Delays in the repair process and accelerated disk failures resulting 
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Fig. 4. The same disk array after disk D2 has failed. 
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Fig. 5.  The same disk array after disk B2 has failed. 

from environmental conditions could however produce the occurrence of a third disk 

failure before disks B1 and D1 are replaced.  Let us assume that disk D2 fails this time.  

Observe that this failure destroys the last copy of data set D.  The fastest way to 

reconstitute this data set is to send the contents of disk C1 to the disk that now 

contains C ⊕ D and to XOR the contents of these two disks in situ.  While doing that, 

the array will also send the old contents of the parity disk, that is, C ⊕ D, to the disk 

that contains A ⊕ B in order to obtain there A ⊕ B ⊕ C ⊕ D.  As seen on Fig. 4, the 

disk array now consists of four disks holding data and one parity disk.  

Let us now consider for the sake of completeness the rather improbable case of a 

fourth disk failure occurring before any of the three failed disks can be replaced.  

Assume that disk B2 fails this time.  As Fig. 5 indicates, the sole option left is to 

reconstitute the contents of the failed disk by XORing the contents of the parity disk 

(A ⊕ B ⊕ C ⊕ D) with those of disks A2, C1 and D and store these contents on the 

former parity disk.  This would keep all four data sets available but would leave all of 

them vulnerable to a single disk failure. 

In its essence, our proposal is to let the array adapt itself to the temporary loss of 

disks by switching to more compact data representations and selecting when possible 

a configuration that protects the data against a single disk failure.  That process will 

involve introducing parity disks, merging them and sometimes using them to 

reconstitute lost data. 

Figs. 6 and 7 give a more formal description of our scheme.  The first algorithm 

describes how the array reacts to the loss of a data disk.  Two main cases have to be 

considered,  depending on  whether the contents of the failed disk D  can be found on 
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Assumptions: 

disk D is failed data disk 

Algorithm: 
begin 

 find disk E  having same contents as disk D 

 if found then 

  find a disk F whose contents are replicated on another disk G 

  if found then 

   replace contents (F) by contents (E) XOR contents(F) 

  else 

   find parity disk Z whose contents are XORed contents of fewest 

   data disks  

   if found then 

    replace contents (Z) by contents (E) XOR contents(Z) 

   else  

    do nothing 

   endif 

  endif 

 else 

  find sufficient set S of disks to reconstitute contents (D) 

  if found then 

   reconstitute contents (D) on a parity disk X in S 

   replace parity disk X 

  else 

   declare failure 

  endif 

 endif 

end 

Fig. 6. Replacing a failed data disk 

another disk E.  When this is the case, the array will protect the contents of disk E 

against of a failure of that disk by storing on some disk F the XOR of the contents of 

E and the contents of one or more disks.  To select this disk F, the array will first 

search for disks whose contents are replicated on some other disk.  If it cannot find 

one, it will then select the parity disk Z whose contents are the XORed contents of the 

fewest data disks.  The second case is somewhat more complex.  When the contents 

of the failed disk D cannot be found on another disk, the array will attempt to find a 

sufficient set S of disks to reconstitute the contents of the lost disk.  If this set exists, it  

will reconstitute the contents of the lost data disk D on a parity disk X in S.  Once this 

is done, the array will try to remedy the loss of the parity data on disk X by calling the 

second algorithm. 

Our second algorithm describes how the array reacts to the loss of a parity disk X.  

This loss can either be the direct result of a disk failure or a side-effect of the recovery 

of the contents of a data disk D.  In either case, the array checks first if it can 

reconstitute the contents of the failed parity disk X.  This will be normally possible 

unless the array has experienced  two  simultaneous disk failures.   If the contents of X  
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Assumptions: 
disk X is failed parity disk 

Algorithm: 
begin 

 find sufficient set S of disks to reconstitute contents(X) 

 if found then 

  find a disk F whose contents are mirrored on another disk G 

  if found then 

   replace contents (F) by contents (E) XOR contents (F) 

  else 

   find parity disk Z whose contents are XORed contents of fewest 

   data disks  

   if found then 

    replace contents (Z) by contents(Z) XOR contents(X) 

   else  

    do nothing 

   endif 

 else 

  declare failure 

 endif 

end 

Fig. 7. Replacing a failed parity disk. 

can be reconstituted, the array will try to XOR them with the contents of a data disk 

that was replicated elsewhere.  If no such data disk exists, the array will XOR the 

reconstituted contents of X with the contents of the parity disk Z whose contents are 

the XORed contents of the fewest data disks. 

Space considerations prevent us from discussing in detail how the array will handle 

disk repairs.  In essence, it will attempt to return to its original configuration, first by 

splitting the parity disks whose contents are the XORed contents of the largest 

number of parity disks then by replacing the remaining parity disks by pairs of data 

disks.  A more interesting issue is how the self-adapting array would react to the loss 

of a disk involved in a reconfiguration step.  Let us return to our previous example 

and consider what would happen if disk B2 failed after disk B1 failed but before the 

contents of disk A1 could be completely replaced by the XOR of the contents of disks 

A1 and B2.  Assuming that we do this replacement track by track, disk A1 would be left 

in a state where it would contain some of its original tracks and some tracks 

containing the XOR of the corresponding tracks of disks A1 and B2.  This means that 

some but not all the contents of disk B2 would be recoverable and that some but not 

all contents of disk A1 would have become vulnerable to a single disk failure. 
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3   Reliability Analysis 

Self-adaptive disk arrays occupy a place between mirrored disk organizations and 

organizations using erasure coding.  As long as most disks are operational, they 

provide the same read and write access times as static mirrored organizations.  In 

addition, they are more resilient to disk failures.  We propose to evaluate this 

resilience and to compare it with that of mirrored disk organizations. 

Estimating the reliability of a storage system means estimating the probability R(t) 

that the system will operate correctly over the time interval [0, t] given that it operated 

correctly at time t = 0.  Computing that function requires solving a system of linear 

differential equations, a task that becomes quickly unmanageable as the complexity of 

the system grows.  A simpler option is to focus on the mean time to data loss 

(MTTDL) of the storage system.  This is the approach we will take here.   

Our system model consists of a disk array with independent failure modes for each 

disk.  When a disk fails, a repair process is immediately initiated for that disk.  Should 

several disks fail, the repair process will be performed in parallel on those disks.  We 

assume that disk failures are independent events exponentially distributed with rate λ, 

and that repairs are exponentially distributed with rate µ.   
The MTTDL for data replicated on two disks is [9] 
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Consider an array consisting of n disks with all data replicated on exactly two 

disks.  Since each pair of disk fails in an independent fashion, the global failure rate 

L(n) of the array will be n/2 times the failure rate L of a single pair of disks 
2

( )
2 3

n n
L n L

λ

λ µ
= =

+
 

and the global mean time to data loss MTTDL(n) will be 
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Fig. 8 shows the state transition diagram for a very small self-adaptive array 

consisting of two pairs of disks with each pair storing two identical replicas of the 

same data set.  Assume that disks A1 and A2 contain identical copies of data set A 

while disks B1 and B2 store identical copies of data set B.  State <2, 2> represents the 

normal state of the array when its four disks are all operational.  A failure of any of 

these disks, say disk A1 would bring the array to state <2, 1>.  This state is a less than 
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Fig. 8.  State transition diagram for a self-adaptive disk array consisting of two pairs of 

mirrored disks. 
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Fig. 9. Modified state transition diagram for the same disk array.  The two dotted gray arcs 

returning the array to state <2, 2> represent data losses. 

desirable state because the array has now a single copy of data set A on disk A2.  

Hence a failure of that disk would result in a data loss. 

To return to a more resilient state, the array will immediately start replacing the 

contents of either disk B1 or disk B2 with the XOR of data sets A and B, thus bringing 

the system from state <2, 1> to state <1, 1, X>.  We assume that the duration of this 

self-adaptive process will be exponentially distributed with rate κ. 
Once this reorganization is completed, the array will have single copies of both 

data sets A and B on two of the three surviving disks as well as their XOR on the third 

disk.  A failure of either of the two redundant disks present in state <2, 1> or a failure 

of any of the three disks in state <1, 1, X> would leave the array in state <1, 1>, 

incapable of tolerating any additional disk failure. 
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Fig. 10. Mean times to data loss achieved by a self-adaptive disk array consisting of two pairs 

of mirrored disks. 

Recovery transitions correspond to the repair of one of the disks that failed.  They 

would bring the array first from state <1, 1> to state <1, 1, X> and then from state 

<1, 1, X> to state <2, 2>.  A third recovery transition would bring the array from state 

<2, 1> to state <2, 2>.  It corresponds to situations where the failed disk was replaced 

before the self-adaptive process can be completed. 

Since data losses are essentially irrecoverable, the state corresponding to such a 

loss is an absorbing state.  Hence a steady state analysis of the array would provide no 

insight on its performance.   

Let us now consider the state transition diagram displayed in Fig, 9.  It has the 

same states and the same transitions as that of Fig. 8 but for the two transitions 

leading to a data loss, which are now redirected to state <2, 2>.  This diagram 

represents what would happen if the array went through continuous cycles during 

which it would first operate correctly then lose its data and get instantly repaired and 

reloaded with new data [7].  The corresponding system of equations is 

22 21 11 21 11

21 22

11 21 11

11 11 21

4 ( ) 2

(3 ) 4

(3 ) , 2

(2 2 ) 3 2

X

X

X

p p p p p

p p

p p p

p p p

λ µ λ λ

λ µ κ λ

λ µ κ µ

λ µ λ λ

= + + +

+ + =

+ = +

+ = +

 (1) 

together with the condition that p22 + p21 + p11X + p11= 1, where pij represents the 

steady-state probability of the system being in state <i, j>.  In addition, the rate at 

which the array will fail before returning to its normal state is 
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Fig. 11.  State transition diagram for a self-adaptive disk array consisting of three pairs of 

mirrored disks.  The four dotted gray arcs returning the array to state <2, 2, 2> represent data 

losses. 
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The mean time to data loss of our disk array (MTTDL) is then 
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Fig. 10 displays on a logarithmic scale the MTTDLs achieved by the self–adaptive 

array for selected values of κ and repair times varying between half a day and seven 

days.  We assumed that the disk failure rate λ was one failure every one hundred 
thousand hours, that is, slightly less than one failure every eleven years and 

conservative relative to the values quoted by disk manufacturers.  Disk repair times 

are expressed in days and MTTDLs expressed in years. 

Fig. 11 displays the state transition diagram for a self-adaptive disk array 

consisting of three pairs of mirrored disks.  Assume that disks A1 and A2 contain 

identical copies of data set A, disks B1 and B2 store identical copies of data set B and 

disks C1 and C2 have identical copies of data set C.  State <2, 2, 2> represents the 

normal state of the array when its six disks are all operational.  A failure of any of 

these six disks, say disk A1, would leave the system in state <2, 2, 1>.  This state is a 

less than desirable state as the array is left with only one copy of data set A.  To return 

to a more resilient state, the array will immediately start replacing the contents of one 

of the four redundant disks, say, disks B1, with the XOR of data sets A and B, thus 

bringing the system from state <2, 2, 1> to state <2, 1, 1, X> with the XOR of data 
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sets A and B on disk B1. Failure of a second disk would bring the array to either state 

<2, 1, 1> or state <1, 1, 1, X>.  Both states are less than desirable states, as they leave  
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Fig. 12.  Mean times to data loss achieved by a self-adaptive disk array consisting of three pairs 

of mirrored disks. 

the array vulnerable to a single disk failure.  To return to a more resilient state, the 

array will bring itself to state <1, 1, 1, Y>, having a single copy of each data set on 

separate disks and their XOR (A ⊕ B ⊕ C) on disk Y. 

Finally, a failure of any of these four disks would bring the array from state 

<1, 1, 1, Y> to state <1, 1, 1>, having survived three successive data losses and being 

unable to tolerate a fourth disk failure.  Less desirable outcomes would result from the 

failure of the critical disk in state <2, 2, 1> and <1, 1, 1, X> or from the failure of 

either of the two critical disks in state <2, 1, 1>.  All these failures would result in 

permanent data loss.  As in Fig. 9, all failure transitions that result in a data loss are 

represented by dotted gray arcs returning to the normal state of the array. 

Using the same techniques as in our previous model, we can compute the steady-

state probabilities of the system of being in any of its seven possible states and derive 

from them the rate L at which the array will fail before returning to its normal state 

221 211 111 111
2 3

X
L p p p pλ λ λ λ= + + +  

and its MTTDL 

221 211 111 111

1 1

2 3
X

MTTDL
L p p p pλ λ λ λ

= =
+ + +

 

The outcome of these computations is a quotient of polynomials that is too large to 

be displayed.  We refer instead the reader to Fig. 12, which displays on a semi-
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logarithmic scale the MTTDLs achieved by the self-adaptive array for selected values 

of κ and repair times varying between half a day and seven days.  

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

0 1 2 3 4 5 6 7

Mean repair time (days)

M
e
a
n
 t
im

e
 t
o
 d

a
ta

 l
o
s
s
 (
y
e
a
rs

)
Erasure Code

Reorganization takes one hour

Reorganization takes two hours

Reorganization takes six hours

No Reorganization

 

Fig. 13.  Mean times to data loss achieved by (a) a self-adaptive disk array consisting of two 

pairs of mirrored disks and (b) a 2-out-of-4 erasure code. 

Let us now see how our technique compares with erasure coding.  Rather than 

storing our data on two pairs of mirrored disks, we could use a 2-out-of-4 erasure 

code that would tolerate the simultaneous loss of two disks.  We can easily derive the 

MTTDLs achieved by these erasure codes by observing they correspond to the limit 

case when the reorganization rate κ goes to infinity.  Hence, we would have 
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Fig. 13 compares the MTTDLs achieved by a 2-out-of-4 erasure code, a pair of self-

adaptive mirrored disks and a pair of conventional mirrored drives.  As we can see, 

the 2-of-out-4 erasure code achieves much higher MTTDLs than a self-adaptive disk 

array with four disks.  These excellent results need however to be qualified in two 

important ways.  First, all our analyses have assumed that disk failures were the only 

causes of data losses.  We did not consider other types of system malfunctions such as 

media errors, human errors, power failures, fires, floods and other acts of God.  As we 

consider solutions minimizing the impact of disk failures, these other malfunctions 

will quickly become the main cause of data losses.  Second, 2-out-of-4 erasure codes 

will result in much costlier write accesses that mirroring or even conventional RAID 

level 5. 
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We can make four main observations from our results.  First, our self-

adaptive array provides much better MTTDLs than a static array that makes no 

attempt at reconfiguring itself after disk failures.  The improvements vary between a 

minimum of 200 percent and a maximum of almost 13,000 percent depending on the 

disk repair rate and the array reorganization rate, with the best results achieved for a 

combination of a slow disk repair rate and a fast array reconfiguration rate.  This is a 

very significant result as we have only considered arrays consisting of two and three 

pairs of mirrored drives.  Larger self-adaptive disk arrays should perform even better 

as they can perform many more corrective actions to protect their data after successive 

disk failures. 

Second, these benefits remain evident even when the reconfiguration process takes 

six hours.  Since the reconfiguration process normally consists of reading the whole 

contents of a disk and XORing these contents with the contents of a second disk, this 

is clearly an upper bound.  In reality we expect most reconfiguration tasks to take 

between one and two hours depending on the disk bandwidths and capacities.  

Third, the MTTDLs achieved by our self-adaptive organization remain nearly 

constant over a wide range of disk repair times.  This is a significant advantage 

because fast repair times require maintaining a local pool of spare disks and having 

maintenance personnel on call 24 hours a day.  Since our self-adaptive organization 

tolerates repair times of up to one week, if not more, it will be cheaper and easier to 

maintain than a static mirrored disk organization with the same number of disks. 

Finally, erasure codes ought to be seriously considered whenever we want to 

provide the highest level of protection to data that are very unlikely to be ever 

updated. 

4   Previous Work 

The idea of creating additional copies of important data in order to increase their 

chances of survival is likely to be as old as the use of symbolic data representations by 

mankind and could well have preceded the discovery of writing.  Erasure coding 

appeared first in RAID organizations as (n – 1)-out-of-n codes [3, 4, 6, 8, 9].  RAID 

level 6 organizations use (n – 2)-out-of-n codes to protect data against double disk 

failures [1]. 

The HP AutoRAID [11] automatically and transparently manages migration of data 

blocks between a replicated storage class and a RAID level 5 storage class as access 

patterns change.  This system differs from our proposal in several important aspects.  

First, its objective is different from ours.  AutoRAID attempts to save disk space 

without compromising system performance by storing data that are frequently 

accessed in a replicated organization while relegating inactive data to a RAID level 5 

organization.  As a result, data migrations between the two organizations are normally 

caused by changes in data access patterns rather than by disk failures.  Self-adaptive 

disk arrays only reconfigure themselves in response to disk failures and repairs.  

Second, AutoRAID actually migrates data between its two storage classes while self-

adaptive disk arrays keeps most data sets in place.  Finally, the sizes of the transfer 

units are quite different.  A self-adaptive disk array manages its resources at the disk 

level.  The transfer units managed by AutoRAID are physical extent groups (PEGs) 
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consisting of at least three physical extents (PEXes) whose typical size is a megabyte.  

Consequently, AutoRAID requires a complex addressing structure to locate these 

PEGs while a self-adaptive array must only keep track of what happened to the 

contents of its original disks.  Assuming that we have n data sets replicated on 2n 

disks, the actual locations of data sets and their parities can be stored in 2n
2
 bits.  In 

addition, this information is fairly static as it is only updated after a disk failure or a 

disk repair. 

Another form of adaptation to disk failure is sparing. Adding a spare disk to a disk 

array provides the replacement disk for the first failure.  Distributed sparing [10] gains 

performance benefits in the initial state and degrades to normal performance after the 

first disk failure. 

5   Conclusions 

We have presented a disk array organization that adapts itself to successive disk 

failures. When all disks are operational, all data are replicated on two disks.  

Whenever a disk fails, the array will immediately reorganize itself and adopt a new 

configuration that will protect all data against any single disk failure until the failed 

disk gets replaced and the array can revert to its original condition.  Hence data will 

remain protected against the successive failures of up to one half of the original 

number of disks, provided that no critical disk failure happens while the array is 

reorganizing itself.  As a result, our scheme achieves the same access times as a 

mirrored disk organization under normal operational conditions while having a much 

lower likelihood of loosing data under abnormal conditions.  Furthermore, the 

MTTDLs achieved by our self-adaptive organization remain nearly constant over a 

wide range of disk repair times. 

More work is still needed to investigate larger disk arrays.  As the number of 

possible reconfiguration steps increases with the size of the array, simulation will 

become an increasingly attractive alternative to Markov models.  We also plan to 

investigate self-adaptive strategies for disk arrays where some data are more critical 

than other and thus deserve a higher level of protection.  This is the case for archival 

storage systems implementing chunking to reduce their storage requirements.  Chunk-

based compression, or chunking, partitions files into variable-size chunks in order to 

identify identical contents that are shared by several files [5].  Chunking can 

significantly reduce the storage requirements of archival file systems. Unfortunately, 

it also makes the archive more vulnerable to the loss of chunks that are shared by 

many files.  As a result, these chunks require a higher level or protection than chunks 

that are only present in a single file [2]. 
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