
Proc. 8
th
 International Symposium on Stabilization, Safety and Securiity of Distributed Systems

(SSS 2006), Dallas, TX, Nov. 2006, to appear

1

Self-Adaptive Disk Arrays

Jehan-François Pâris1*, Thomas J. E. Schwarz
2
, and Darrell D. E. Long

3*

1 Dept. Of Computer Science, University of Houston

Houston, TX 77204-3010

paris@cs.uh.edu
2 Dept. of Computer Engineering, Santa Clara University

Santa Clara, CA 95053

tjschwarz@scu.edu
3 Dept. of Computer Science, University of California

Santa Cruz, CA 95064

darrell@cs.ucsc.edu

Abstract. We present a disk array organization that adapts itself to successive

disk failures. When all disks are operational, all data are mirrored on two disks.

Whenever a disk fails, the array reorganizes itself, by selecting a disk containing

redundant data and replacing these data by their exclusive or (XOR) with the

other copy of the data contained on the disk that failed. This will protect the

array against any single disk failure until the failed disk gets replaced and the
array can revert to its original condition. Hence data will remain protected

against the successive failures of up to one half of the original number of disks,

provided that no critical disk failure happens while the array is reorganizing

itself. As a result, our scheme achieves the same access times as a mirrored

organization under normal operational conditions while having a much lower

likelihood of loosing data under abnormal conditions. In addition it tolerates
much longer repair times than mirrored disk arrays.

Keywords: fault-tolerant systems, storage systems, repairable systems, k-out-

of-n systems.

1 Introduction

Today’s disks have mean time to failures of more than ten years, which means that

a given disk has a less than ten percent probability of failing during any given year of

its useful lifetime. While this reliability level is acceptable for all the applications that

only require the storage of a few hundreds of gigabytes of non-critical information

over relatively short time intervals, it does not satisfy the needs of applications having

to store terabytes of data over many years.

Backups have been the traditional way of protecting data against equipment

failures. Unfortunately, they suffer from several important limitations. First, they do

not scale well; indeed the amount of time required to make a copy of a large data set

* Supported in part by the National Science Foundation under award CCR-0204358.

2

can exceed the interval between daily backups. Second, the process is not as

trustworthy as it should be due to both human error and the frailty of most recording

media. Finally, backup technologies are subject to technical obsolescence, which

means that saved data risk becoming unreadable after only ten to twenty years. A

much better solution is to introduce redundancy into our storage systems

The two primary ways of introducing that redundancy are mirroring and m-out-of-n

codes. Both techniques have their advantages and disadvantages. Mirroring offers

the two main advantages of reducing read access times and having a reasonable

update overhead. Identifying failed disks can always be done by detecting which

replicas have become unavailable. On the other hand, m-out-of-n codes provide much

higher data survivability. Consider, for instance, the case of a small disk array

consisting of eight disks. A mirrored organization that maintains two copies of each

file on separate disks would protect data against all single disk failures and most

double disk failures. A simultaneous failure of three disks would have a bigger

impact as it would result in data loss in 43 percent of the cases. This is much worse

than an optimal 4-out-of-8 code that protects data in the presence of up to four

arbitrary disk failures. In fact, this is such an improbable event that erasure codes that

tolerate more than two simultaneous failures are never used in actual storage systems.

We propose a self-adaptive disk array organization that combines most of

advantages of mirroring and erasure coding. As long as most disks are operational, it

will provide the same read and write access times as a mirrored organization.

Whenever a disk fails, it will reorganize itself and quickly return to a state where data

are again protected against a single failure. As a result, data will remain protected

against the consecutive failures of up to one half of the original number of disks,

provided that no critical disk failure happens while the array is reorganizing itself.

This is a rather unlikely event as the reorganization process will normally take less

than a few hours.

The remainder of this paper is organized as follows. Section 2 will introduce our

self-adaptive disk array organizations. Section 3 will compare the mean times to data

loss (MTTDL) achieved by self-adaptive arrays with those achieved by mirrored disk

arrays. Section 4 will review previous work and Section 5 will have our conclusions.

2 Our Approach

Consider the small disk array displayed on Fig. 1. It consists of four pairs of disks

with data replicated on each pair of disks. For instance, disks A1 and A2 contain the

same data set A. Assume now that disk B1 fails. As a result, only one remaining copy

of data set B remains and the array will become vulnerable to a failure of disk B2.

Waiting for the replacement of disk B1 is not an attractive option as the process make

take several days. To adapt itself to the failure, the array will immediately locate a

disk containing data that are replicated elsewhere, say, disk A1, and replace its

contents by the exclusive or (XOR) of data sets A and B thus making the array

immune to a single disk failure. Fig. 2 displays the outcome of that reconfiguration.

3

A1

A2

B1

B2

C1

C2

D1

D2

Fig. 1. A small disk array consisting of four pairs of disks with data replicated on each pair of

disks.

A⊕⊕⊕⊕B

A2

B1

B2

C1 D1

D2

X

C2

Fig. 2. The same disk array after disk B1 has failed and the array is reconfigured.

A⊕⊕⊕⊕B

A2

B1

B2

C1 D1

D2

X X

C⊕⊕⊕⊕D

Fig. 3. The same disk array after disk D1 has failed and the array is reconfigured.

The array can again tolerate any single disk failure. The sole drawback of the

process is that accesses to data sets A and B will now be slightly slower. In particular,

updates to these two data sets will be significantly slower as each update will now

require one additional read operation. This condition is only temporary as the array

will revert to its original condition as soon as the failed disk is replaced.

Consider now what would happen if a second disk failed, say, disk D1, before disk

B1 was repaired. This second failure would remove one of the two copies of data set

D and make the array vulnerable to a failure of disk D2. To return to a safer state, the

array will locate a disk containing data that are replicated elsewhere, say, disk C2, and

replace its contents by the exclusive or (XOR) of data sets C and D. Fig. 3 displays

the outcome of this reorganization.

Under most circumstances, the two failing disks will be replaced before a third

failure could occur. Delays in the repair process and accelerated disk failures resulting

4

A2

B1

B2

C1 D1

D2

X X

D X

A⊕⊕⊕⊕B⊕⊕⊕⊕C⊕⊕⊕⊕D

Fig. 4. The same disk array after disk D2 has failed.

A2

B1

B2

C1 D1

D2

X X

D X

B

X

Fig. 5. The same disk array after disk B2 has failed.

from environmental conditions could however produce the occurrence of a third disk

failure before disks B1 and D1 are replaced. Let us assume that disk D2 fails this time.

Observe that this failure destroys the last copy of data set D. The fastest way to

reconstitute this data set is to send the contents of disk C1 to the disk that now

contains C ⊕ D and to XOR the contents of these two disks in situ. While doing that,

the array will also send the old contents of the parity disk, that is, C ⊕ D, to the disk

that contains A ⊕ B in order to obtain there A ⊕ B ⊕ C ⊕ D. As seen on Fig. 4, the

disk array now consists of four disks holding data and one parity disk.

Let us now consider for the sake of completeness the rather improbable case of a

fourth disk failure occurring before any of the three failed disks can be replaced.

Assume that disk B2 fails this time. As Fig. 5 indicates, the sole option left is to

reconstitute the contents of the failed disk by XORing the contents of the parity disk

(A ⊕ B ⊕ C ⊕ D) with those of disks A2, C1 and D and store these contents on the

former parity disk. This would keep all four data sets available but would leave all of

them vulnerable to a single disk failure.

In its essence, our proposal is to let the array adapt itself to the temporary loss of

disks by switching to more compact data representations and selecting when possible

a configuration that protects the data against a single disk failure. That process will

involve introducing parity disks, merging them and sometimes using them to

reconstitute lost data.

Figs. 6 and 7 give a more formal description of our scheme. The first algorithm

describes how the array reacts to the loss of a data disk. Two main cases have to be

considered, depending on whether the contents of the failed disk D can be found on

5

Assumptions:

disk D is failed data disk

Algorithm:
begin

 find disk E having same contents as disk D

 if found then

 find a disk F whose contents are replicated on another disk G

 if found then

 replace contents (F) by contents (E) XOR contents(F)

 else

 find parity disk Z whose contents are XORed contents of fewest

 data disks

 if found then

 replace contents (Z) by contents (E) XOR contents(Z)

 else

 do nothing

 endif

 endif

 else

 find sufficient set S of disks to reconstitute contents (D)

 if found then

 reconstitute contents (D) on a parity disk X in S

 replace parity disk X

 else

 declare failure

 endif

 endif

end

Fig. 6. Replacing a failed data disk

another disk E. When this is the case, the array will protect the contents of disk E

against of a failure of that disk by storing on some disk F the XOR of the contents of

E and the contents of one or more disks. To select this disk F, the array will first

search for disks whose contents are replicated on some other disk. If it cannot find

one, it will then select the parity disk Z whose contents are the XORed contents of the

fewest data disks. The second case is somewhat more complex. When the contents

of the failed disk D cannot be found on another disk, the array will attempt to find a

sufficient set S of disks to reconstitute the contents of the lost disk. If this set exists, it

will reconstitute the contents of the lost data disk D on a parity disk X in S. Once this

is done, the array will try to remedy the loss of the parity data on disk X by calling the

second algorithm.

Our second algorithm describes how the array reacts to the loss of a parity disk X.

This loss can either be the direct result of a disk failure or a side-effect of the recovery

of the contents of a data disk D. In either case, the array checks first if it can

reconstitute the contents of the failed parity disk X. This will be normally possible

unless the array has experienced two simultaneous disk failures. If the contents of X

6

Assumptions:
disk X is failed parity disk

Algorithm:
begin

 find sufficient set S of disks to reconstitute contents(X)

 if found then

 find a disk F whose contents are mirrored on another disk G

 if found then

 replace contents (F) by contents (E) XOR contents (F)

 else

 find parity disk Z whose contents are XORed contents of fewest

 data disks

 if found then

 replace contents (Z) by contents(Z) XOR contents(X)

 else

 do nothing

 endif

 else

 declare failure

 endif

end

Fig. 7. Replacing a failed parity disk.

can be reconstituted, the array will try to XOR them with the contents of a data disk

that was replicated elsewhere. If no such data disk exists, the array will XOR the

reconstituted contents of X with the contents of the parity disk Z whose contents are

the XORed contents of the fewest data disks.

Space considerations prevent us from discussing in detail how the array will handle

disk repairs. In essence, it will attempt to return to its original configuration, first by

splitting the parity disks whose contents are the XORed contents of the largest

number of parity disks then by replacing the remaining parity disks by pairs of data

disks. A more interesting issue is how the self-adapting array would react to the loss

of a disk involved in a reconfiguration step. Let us return to our previous example

and consider what would happen if disk B2 failed after disk B1 failed but before the

contents of disk A1 could be completely replaced by the XOR of the contents of disks

A1 and B2. Assuming that we do this replacement track by track, disk A1 would be left

in a state where it would contain some of its original tracks and some tracks

containing the XOR of the corresponding tracks of disks A1 and B2. This means that

some but not all the contents of disk B2 would be recoverable and that some but not

all contents of disk A1 would have become vulnerable to a single disk failure.

7

3 Reliability Analysis

Self-adaptive disk arrays occupy a place between mirrored disk organizations and

organizations using erasure coding. As long as most disks are operational, they

provide the same read and write access times as static mirrored organizations. In

addition, they are more resilient to disk failures. We propose to evaluate this

resilience and to compare it with that of mirrored disk organizations.

Estimating the reliability of a storage system means estimating the probability R(t)

that the system will operate correctly over the time interval [0, t] given that it operated

correctly at time t = 0. Computing that function requires solving a system of linear

differential equations, a task that becomes quickly unmanageable as the complexity of

the system grows. A simpler option is to focus on the mean time to data loss

(MTTDL) of the storage system. This is the approach we will take here.

Our system model consists of a disk array with independent failure modes for each

disk. When a disk fails, a repair process is immediately initiated for that disk. Should

several disks fail, the repair process will be performed in parallel on those disks. We

assume that disk failures are independent events exponentially distributed with rate λ,

and that repairs are exponentially distributed with rate µ.
The MTTDL for data replicated on two disks is [9]

2

3

2
MTTDL

λ µ

λ

+
=

and the corresponding failure rate L is
2

2

3
L

λ

λ µ
=

+
.

Consider an array consisting of n disks with all data replicated on exactly two

disks. Since each pair of disk fails in an independent fashion, the global failure rate

L(n) of the array will be n/2 times the failure rate L of a single pair of disks
2

()
2 3

n n
L n L

λ

λ µ
= =

+

and the global mean time to data loss MTTDL(n) will be

2

1 3
()

()
MTTDL n

L n n

λ µ

λ

+
= = .

Fig. 8 shows the state transition diagram for a very small self-adaptive array

consisting of two pairs of disks with each pair storing two identical replicas of the

same data set. Assume that disks A1 and A2 contain identical copies of data set A

while disks B1 and B2 store identical copies of data set B. State <2, 2> represents the

normal state of the array when its four disks are all operational. A failure of any of

these disks, say disk A1 would bring the array to state <2, 1>. This state is a less than

8

22 21

4λ

µ

11X 11

3λ

2µ

λ

κ 2λ2λ

Data loss

µ

Fig. 8. State transition diagram for a self-adaptive disk array consisting of two pairs of

mirrored disks.

22 21

4λ

µ

11X 11

3λ

2µ

κ

2λ

2λ

λ

µ

Fig. 9. Modified state transition diagram for the same disk array. The two dotted gray arcs

returning the array to state <2, 2> represent data losses.

desirable state because the array has now a single copy of data set A on disk A2.

Hence a failure of that disk would result in a data loss.

To return to a more resilient state, the array will immediately start replacing the

contents of either disk B1 or disk B2 with the XOR of data sets A and B, thus bringing

the system from state <2, 1> to state <1, 1, X>. We assume that the duration of this

self-adaptive process will be exponentially distributed with rate κ.
Once this reorganization is completed, the array will have single copies of both

data sets A and B on two of the three surviving disks as well as their XOR on the third

disk. A failure of either of the two redundant disks present in state <2, 1> or a failure

of any of the three disks in state <1, 1, X> would leave the array in state <1, 1>,

incapable of tolerating any additional disk failure.

9

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7

Mean disk repair time (days)

M
e
a
n
 t
im

e
 t
o
 d

a
ta

 l
o
s
s
 (
y
e
a
rs

)

Reorganization takes one hour

Reorganization takes two hours

Reorganization takes six hours

No Reorganization

Fig. 10. Mean times to data loss achieved by a self-adaptive disk array consisting of two pairs

of mirrored disks.

Recovery transitions correspond to the repair of one of the disks that failed. They

would bring the array first from state <1, 1> to state <1, 1, X> and then from state

<1, 1, X> to state <2, 2>. A third recovery transition would bring the array from state

<2, 1> to state <2, 2>. It corresponds to situations where the failed disk was replaced

before the self-adaptive process can be completed.

Since data losses are essentially irrecoverable, the state corresponding to such a

loss is an absorbing state. Hence a steady state analysis of the array would provide no

insight on its performance.

Let us now consider the state transition diagram displayed in Fig, 9. It has the

same states and the same transitions as that of Fig. 8 but for the two transitions

leading to a data loss, which are now redirected to state <2, 2>. This diagram

represents what would happen if the array went through continuous cycles during

which it would first operate correctly then lose its data and get instantly repaired and

reloaded with new data [7]. The corresponding system of equations is

22 21 11 21 11

21 22

11 21 11

11 11 21

4 () 2

(3) 4

(3) , 2

(2 2) 3 2

X

X

X

p p p p p

p p

p p p

p p p

λ µ λ λ

λ µ κ λ

λ µ κ µ

λ µ λ λ

= + + +

+ + =

+ = +

+ = +

 (1)

together with the condition that p22 + p21 + p11X + p11= 1, where pij represents the

steady-state probability of the system being in state <i, j>. In addition, the rate at

which the array will fail before returning to its normal state is

10

222

221

211

111

211X

111Y 111X
κ

µ

2µ

κ

κ

3λ

2µ 2µ

6λ

2λ
4λ

3µ

4λ

3λ 2λ

µ

3λ
2λ

λ

λ

Fig. 11. State transition diagram for a self-adaptive disk array consisting of three pairs of

mirrored disks. The four dotted gray arcs returning the array to state <2, 2, 2> represent data

losses.

21 11
2L p pλ λ= +

Solving system (1), we obtain
2 2 2

3 2 2 2 3

4 (9 3 3)

33 13 5 8
L

λ λ κλ λµ µ

λ κλ κλµ λµ κµ µ

+ + +
=

+ + + + +
.

The mean time to data loss of our disk array (MTTDL) is then
3 2 2 2 3

2 2 2

1 33 13 5 8

4 (9 3 3)
MTTDL

L

λ κλ κλµ λµ κµ µ

λ λ κλ λµ µ

+ + + + +
= =

+ + +
.

Fig. 10 displays on a logarithmic scale the MTTDLs achieved by the self–adaptive

array for selected values of κ and repair times varying between half a day and seven

days. We assumed that the disk failure rate λ was one failure every one hundred
thousand hours, that is, slightly less than one failure every eleven years and

conservative relative to the values quoted by disk manufacturers. Disk repair times

are expressed in days and MTTDLs expressed in years.

Fig. 11 displays the state transition diagram for a self-adaptive disk array

consisting of three pairs of mirrored disks. Assume that disks A1 and A2 contain

identical copies of data set A, disks B1 and B2 store identical copies of data set B and

disks C1 and C2 have identical copies of data set C. State <2, 2, 2> represents the

normal state of the array when its six disks are all operational. A failure of any of

these six disks, say disk A1, would leave the system in state <2, 2, 1>. This state is a

less than desirable state as the array is left with only one copy of data set A. To return

to a more resilient state, the array will immediately start replacing the contents of one

of the four redundant disks, say, disks B1, with the XOR of data sets A and B, thus

bringing the system from state <2, 2, 1> to state <2, 1, 1, X> with the XOR of data

11

sets A and B on disk B1. Failure of a second disk would bring the array to either state

<2, 1, 1> or state <1, 1, 1, X>. Both states are less than desirable states, as they leave

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7

Mean disk repair time (days)

M
e
a
n
 t
im

e
 t
o
 d

a
ta

 l
o
s
s
 (
y
e
a
rs

)

Reorganization takes one hour

Reorganization takes two hours

Reorganization takes six hours

No reorganization

Fig. 12. Mean times to data loss achieved by a self-adaptive disk array consisting of three pairs

of mirrored disks.

the array vulnerable to a single disk failure. To return to a more resilient state, the

array will bring itself to state <1, 1, 1, Y>, having a single copy of each data set on

separate disks and their XOR (A ⊕ B ⊕ C) on disk Y.

Finally, a failure of any of these four disks would bring the array from state

<1, 1, 1, Y> to state <1, 1, 1>, having survived three successive data losses and being

unable to tolerate a fourth disk failure. Less desirable outcomes would result from the

failure of the critical disk in state <2, 2, 1> and <1, 1, 1, X> or from the failure of

either of the two critical disks in state <2, 1, 1>. All these failures would result in

permanent data loss. As in Fig. 9, all failure transitions that result in a data loss are

represented by dotted gray arcs returning to the normal state of the array.

Using the same techniques as in our previous model, we can compute the steady-

state probabilities of the system of being in any of its seven possible states and derive

from them the rate L at which the array will fail before returning to its normal state

221 211 111 111
2 3

X
L p p p pλ λ λ λ= + + +

and its MTTDL

221 211 111 111

1 1

2 3
X

MTTDL
L p p p pλ λ λ λ

= =
+ + +

The outcome of these computations is a quotient of polynomials that is too large to

be displayed. We refer instead the reader to Fig. 12, which displays on a semi-

12

logarithmic scale the MTTDLs achieved by the self-adaptive array for selected values

of κ and repair times varying between half a day and seven days.

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

0 1 2 3 4 5 6 7

Mean repair time (days)

M
e
a
n
 t
im

e
 t
o
 d

a
ta

 l
o
s
s
 (
y
e
a
rs

)
Erasure Code

Reorganization takes one hour

Reorganization takes two hours

Reorganization takes six hours

No Reorganization

Fig. 13. Mean times to data loss achieved by (a) a self-adaptive disk array consisting of two

pairs of mirrored disks and (b) a 2-out-of-4 erasure code.

Let us now see how our technique compares with erasure coding. Rather than

storing our data on two pairs of mirrored disks, we could use a 2-out-of-4 erasure

code that would tolerate the simultaneous loss of two disks. We can easily derive the

MTTDLs achieved by these erasure codes by observing they correspond to the limit

case when the reorganization rate κ goes to infinity. Hence, we would have

3

22

222

32223

4ofout2

12

513

)339(4

851333
lim

λ

µλµλ

µλµκλλλ

µκµλµκλµκλλ
κ

++
=

+++

+++++
= ∞→−−−MTTDL

.

Fig. 13 compares the MTTDLs achieved by a 2-out-of-4 erasure code, a pair of self-

adaptive mirrored disks and a pair of conventional mirrored drives. As we can see,

the 2-of-out-4 erasure code achieves much higher MTTDLs than a self-adaptive disk

array with four disks. These excellent results need however to be qualified in two

important ways. First, all our analyses have assumed that disk failures were the only

causes of data losses. We did not consider other types of system malfunctions such as

media errors, human errors, power failures, fires, floods and other acts of God. As we

consider solutions minimizing the impact of disk failures, these other malfunctions

will quickly become the main cause of data losses. Second, 2-out-of-4 erasure codes

will result in much costlier write accesses that mirroring or even conventional RAID

level 5.

13

We can make four main observations from our results. First, our self-

adaptive array provides much better MTTDLs than a static array that makes no

attempt at reconfiguring itself after disk failures. The improvements vary between a

minimum of 200 percent and a maximum of almost 13,000 percent depending on the

disk repair rate and the array reorganization rate, with the best results achieved for a

combination of a slow disk repair rate and a fast array reconfiguration rate. This is a

very significant result as we have only considered arrays consisting of two and three

pairs of mirrored drives. Larger self-adaptive disk arrays should perform even better

as they can perform many more corrective actions to protect their data after successive

disk failures.

Second, these benefits remain evident even when the reconfiguration process takes

six hours. Since the reconfiguration process normally consists of reading the whole

contents of a disk and XORing these contents with the contents of a second disk, this

is clearly an upper bound. In reality we expect most reconfiguration tasks to take

between one and two hours depending on the disk bandwidths and capacities.

Third, the MTTDLs achieved by our self-adaptive organization remain nearly

constant over a wide range of disk repair times. This is a significant advantage

because fast repair times require maintaining a local pool of spare disks and having

maintenance personnel on call 24 hours a day. Since our self-adaptive organization

tolerates repair times of up to one week, if not more, it will be cheaper and easier to

maintain than a static mirrored disk organization with the same number of disks.

Finally, erasure codes ought to be seriously considered whenever we want to

provide the highest level of protection to data that are very unlikely to be ever

updated.

4 Previous Work

The idea of creating additional copies of important data in order to increase their

chances of survival is likely to be as old as the use of symbolic data representations by

mankind and could well have preceded the discovery of writing. Erasure coding

appeared first in RAID organizations as (n – 1)-out-of-n codes [3, 4, 6, 8, 9]. RAID

level 6 organizations use (n – 2)-out-of-n codes to protect data against double disk

failures [1].

The HP AutoRAID [11] automatically and transparently manages migration of data

blocks between a replicated storage class and a RAID level 5 storage class as access

patterns change. This system differs from our proposal in several important aspects.

First, its objective is different from ours. AutoRAID attempts to save disk space

without compromising system performance by storing data that are frequently

accessed in a replicated organization while relegating inactive data to a RAID level 5

organization. As a result, data migrations between the two organizations are normally

caused by changes in data access patterns rather than by disk failures. Self-adaptive

disk arrays only reconfigure themselves in response to disk failures and repairs.

Second, AutoRAID actually migrates data between its two storage classes while self-

adaptive disk arrays keeps most data sets in place. Finally, the sizes of the transfer

units are quite different. A self-adaptive disk array manages its resources at the disk

level. The transfer units managed by AutoRAID are physical extent groups (PEGs)

14

consisting of at least three physical extents (PEXes) whose typical size is a megabyte.

Consequently, AutoRAID requires a complex addressing structure to locate these

PEGs while a self-adaptive array must only keep track of what happened to the

contents of its original disks. Assuming that we have n data sets replicated on 2n

disks, the actual locations of data sets and their parities can be stored in 2n
2
 bits. In

addition, this information is fairly static as it is only updated after a disk failure or a

disk repair.

Another form of adaptation to disk failure is sparing. Adding a spare disk to a disk

array provides the replacement disk for the first failure. Distributed sparing [10] gains

performance benefits in the initial state and degrades to normal performance after the

first disk failure.

5 Conclusions

We have presented a disk array organization that adapts itself to successive disk

failures. When all disks are operational, all data are replicated on two disks.

Whenever a disk fails, the array will immediately reorganize itself and adopt a new

configuration that will protect all data against any single disk failure until the failed

disk gets replaced and the array can revert to its original condition. Hence data will

remain protected against the successive failures of up to one half of the original

number of disks, provided that no critical disk failure happens while the array is

reorganizing itself. As a result, our scheme achieves the same access times as a

mirrored disk organization under normal operational conditions while having a much

lower likelihood of loosing data under abnormal conditions. Furthermore, the

MTTDLs achieved by our self-adaptive organization remain nearly constant over a

wide range of disk repair times.

More work is still needed to investigate larger disk arrays. As the number of

possible reconfiguration steps increases with the size of the array, simulation will

become an increasingly attractive alternative to Markov models. We also plan to

investigate self-adaptive strategies for disk arrays where some data are more critical

than other and thus deserve a higher level of protection. This is the case for archival

storage systems implementing chunking to reduce their storage requirements. Chunk-

based compression, or chunking, partitions files into variable-size chunks in order to

identify identical contents that are shared by several files [5]. Chunking can

significantly reduce the storage requirements of archival file systems. Unfortunately,

it also makes the archive more vulnerable to the loss of chunks that are shared by

many files. As a result, these chunks require a higher level or protection than chunks

that are only present in a single file [2].

References

1. Burkhard, W. and J. Menon: Disk Array Storage System Reliability. Proc. 23rd

International Symposium on Fault-Tolerant Computing (FTCS-23), pp. 432-441, 1993.

15

2. Bhagwat, D., K. Pollack, D. D. E. Long, E. L. Miller, T. J. Schwarz and J.-F. Pâris:

Providing High Reliability in a Minimum Redundancy Archival Storage System. Proc.

14th International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, to appear, Sep. 2006.

3. Chen, P. M., E. K. Lee, G. A. Gibson, R. Katz, and D. Patterson: RAID, High-

Performance, Reliable Secondary Storage. ACM Computing Surveys, Vol. 26, No. 2, pp.

145–185, 1994.

4. Ganger, G., B. Worthington, R. Hou, Y. Patt: Disk arrays: High-performance, high-

reliability storage subsystems. IEEE Computer vol. 27(3), p. 30–36. 1994.

5. Muthitacharoen, A., B. Chen, and D. Mazieres: A Low-Bandwidth Network File System.

Proc. 18th Symposium on Operating Systems Principles, pp. 174-187, 2001.

6. Patterson, D. A., G. A. Gibson, and R. H. Katz: A Case For Redundant Arrays Of

Inexpensive Disks (RAID). Proc. SIGMOD 1988 International Conference on Data

Management, pp. 109–116, June 1988.

7. Pâris, J.-F., T. J. E. Schwarz and D. D. E. Long: Evaluating the Reliability of Storage

Systems. Technical Report UH-CS-06-08, Department of Computer Science, University of

Houston, June 2006.

8. Schwarz, T. J. E., and W. A. Burkhard: RAID Organization and Performance. Proc. 12th

International Conference on Distributed Computing Systems, pp. 318–325, June 1992.

9. Schulze, M., G. Gibson, R. Katz and D. Patterson: How Reliable is a RAID? Proc. Spring

COMPCON ‘89 Conference, pp. 118–123, March 1989.

10. Thomasian, A. and J. Menon: RAID 5 Performance with Distributed Sparing. IEEE

Transactions on Parallel and Distributed Systems, Vol. 8(6), pp. 640–657, June 1997.

11. J. Wilkes, R. Golding, C. Stealin, C. and T. Sullivan: The HP AutoRAID hierarchical

storage system. ACM Transactions on Computer Systems, Vol. 14(1), pp. 1–29, Feb.

1996.

