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Abstract—Person re-identification (re-ID) is the ability to
associate the identity of a person observed at one time and
location with the same subject when acquired at a different
time and location. Trajectory forecasting is the task of pre-
dicting the likely path that a person might take to reach a
destination. Contextual trajectory forecasting (CTF) leverages
the 3D geometric information of the environment along with
observed behavioral norms for human path prediction. Re-ID
involves feature matching to find an identity in the database with
similar features. The features encompass information regarding
appearance of the person like color and texture, or context of the
scenario like the time and location of the human subject. CTF
provides a future estimate of the likely time and spatial location
of previously observed subjects. Embedding this information into
traditional re-ID algorithm significantly boost their performance.
In this paper, re-ID is performed across non-overlapping cameras
with real world human subjects. CTF is embedded into a re-
identification algorithm that uses symmetry driven accumulation
of local features (SDALF) [1] to evaluate the performance. Ex-
periments suggest a significant improvement in re-identification
by embedding CTF.

Keywords—Human trajectory, motion forecasting, re-
identification.

I. INTRODUCTION

Given the observation of an individual from different
cameras, over disparate time and location, automated re-
identification algorithms deal with the task of associating the
identity correctly of the individual across all observations. Re-
ID is an everyday trivial task for human beings. Replicat-
ing such system is a confounding task because of various
difficulties originating from low quality images, occlusion,
changes in illumination, view, and pose across cameras [2].
Furthermore the lack of robust algorithms to infer the topology
of the network and calibrate camera locations for leveraging
contextual information complicates this process.

Networked cameras are widely used for monitoring human
activity in public areas. Camera networks spanning from
hundreds to thousands of cameras per network is a common
occurrence in busy public locations like airports. These camera
networks generate massive quantities of video data. At the time
of need, manually fishing for a single human subject from the
sea of data is a tedious and time consuming task. Re-ID algo-
rithms find a natural place in these scenarios. Given the videos
from these networks, the task of re-ID performed by security
personnels though tedious is still extremely reliable. To design

a re-ID algorithm we take motivation from how these security
personnels might use a combination of appearance features
along with contextual information to identify subjects in the
videos. For example, if a person is observed in a particular
video, the human performing re-ID will notice information
such as the color of clothing, the direction of motion and
their velocity (run or walk). The human performing re-ID has
knowledge regarding the geometry of the environment, the
topology of the camera network. This knowledge can be used
to process the observed information to arrive at an estimate
of the likely future time and location of the observed person.
This estimate will allow the human to only search for a small
window of time in specific locations for a match. Hence using
information regarding the geometry of the environment can be
of vital assistance in re-ID.

This paper showcases a method to perform human trajec-
tory forecasting based on the geometry of the environment and
observed human behavioral norms and then leverages these
predictions to assist in re-ID. We employ data collected from
real world surveillance cameras with non overlapping field of
view to evaluate the performance of this algorithm.

II. RELATED WORK

Considerable amount of research has been performed in
the area of re-ID. Re-ID problems are widely viewed as
recognition problems. A database of known identities is called
a gallery set. Given an observation whose identity is unknown
called a probe, the goal of re-ID algorithm is to rank the
identities in the gallery set based on a similarity score to
the probe. Re-ID approaches can be broadly categorized as
appearance based methods or context based methods. The
former only uses information regarding the appearance like
color and texture to construct features that describe an identity
for matching, while the latter often augments this information
with context like spatial and temporal data to match with the
gallery set. This paper can be categorized under the latter. A
complete survey of re-ID was conducted by Gala and Shah
[2].

Appearance based methods are more commonly consid-
ered than context based methods. This can be attributed to
the unavailability of the environmental geometry and camera
topography for commonly used public datasets. The proposed
method suggests a technique for embedding this information
to build context based re-ID algorithms. A complete survey



of appearance based methods was conducted in [3] by Satta.
A huge body of work exists that employ different appearance
based features like color, texture, gradient and shape for re-
ID, few of which are [4], [5], [6], [7], [8], [9], [10]. Since this
work employs a contextual based method, they are discussed
further in detail. However, the proposed algorithm is used
in conjunction with an appearance based method suggested
by Bazzani et al. in [1], which constructs a symmetry based
description to characterize the human body for re-ID.

The need to associate trajectories across multiple-camera
network for tracking contributed to the genesis of contextual
re-ID algorithms. These methods try to understand the relation-
ship between the cameras in a surveillance network to estimate
the space or time dependency among the observations for re-
ID. Makris et al. in [11] suggested the need for ”network
calibration”, that describes the association among cameras
for tracking across non-overlapping cameras. The network
topology is represented as a graph with nodes representing the
entry/exit zones of the cameras present on the network, and the
edges represented the transition time and probability between
the nodes. Observed trajectories are later used as training data
to learn these transition time probabilities. Javed et al. in [12]
proposed a method for tracking people across non-overlapping
cameras by learning the inter-camera relationship through
exploiting the space-time cues between them. These relations
are learned in the from of probability density functions of space
time parameters using kernel density estimators. In [13] the
camera images are represented as time series data and then
segmented into regions of similar activity. Inter-region time
delay are inferred using Cross Canonical Correlation Analysis.
Loy et al. also followed a similar approach but modeled the
dependency between the regional patterns as Time Delayed
Probabilistic Graphical models in [14]. Mazzon et al. in [15]
proposed Landmark-Based model (LBM) using a rough site
map, made up of the projection of the camera’s field of view,
the unobserved regions, marked entry/exit zones of the cameras
and crossing landmarks. Human trajectories are propagated
along possible paths connecting the located landmarks. Using
the initial observed velocity, an estimate of the time taken for
traversal is calculated and used to filter the gallery set for re-
ID.

In the proposed method, a complete 3D model of the
camera network environment was constructed and the cameras
in the real world were calibrated and then embedded as virtual
cameras in the model. This steps eliminates the need for
training to learn the camera network topography or relationship
between the cameras. Furthermore, the trajectory forecasting
model for propagating humans is based on observed human
behavioral norms in contrast to LBM which employs a purely
random approach.

III. METHOD

Let G = {g1, g2, ..., gm} be the gallery set of m known
identities, and P = {p1, p2, ..., pn} be the probe set of n
unknown identities. For every probe pi ∈ P , the problem is
to rank the gallery set as {gi1, gi2, ..., gim}, gij ∈ G based
on their matching score to the probe pi. Let fx = {cx, ax}
be the features of the identity x ∈ {G ∪ P}, where cx are
the contextual feature and ax are the appearance features. Let
cx = {lx, vx, tx} be the contextual features of x observed at

location lx traveling with velocity vx at time tx. This paper
describes a method for re-ID by leveraging contextual features
to be used in conjunction with an existing appearance based
method and hence ax is described by the chosen method.
The matching function Mij = M(pi, gj) = M(fpi , fgj ) =
M

(
sc(cpi

, cgj ), sa(api
, agj )

)
calculates the matching score

of the probe pi to gallery item gj , where sc and sa are
scores estimated on the contextual and appearance features,
respectively. The gallery items for the probe pi are ranked as
{gi1 , gi2 , ..., gim} such that Mi1j < Mi2j < ... < Mimj .

The core of the paper deals with estimating the score
sc. Let p be the probe with contextual features cp =
{lp, vp, tp} to be compared with gallery item g with fea-
ture cg = {lg, vg, tp}. Assuming that a human subject was
first observed in gallery set and later again in the probe
set, let the trajectory that the subject has taken from the
location lg at time tg to reach the location lp at time tp
be Tgp = {(l1gp, t1gp), (l2gp, t2gp), ..., (lrgp, trgp)} such that
(l1

gp, t1
gp) = (lg, tg), (lr

gp, tr
gp) = (lp, tp). If the trajectory

was known, the probe p can be associated with the correct
gallery item g

′
by traversing it in space and time. It is

not possible to observe the trajectory across non-overlapping
cameras. Hence, given the geometry, the idea is to predict the
trajectory using CTF from the gallery set to the probe, to find
the best match in space and time. CTF provides a prediction for
T

′

gp from which the contextual score sc(p) can be calculated.

A. Contextual Trajectory Forecasting

Given the 3D geometry of the environment and the starting
point and destination of a human, CTF is assembled on two
assumptions. First, the person would follow a path that requires
the shortest time to reach the destination, and second, the
person would adhere to certain behavioral norms that are
observed when walking. Let L = {l1, l2, l3...} be set of all
points on the ground plane on which the trajectory forecasting
is being performed. Given (lg, lp) ∈ L the starting and
destination points, CTF assigns probabilities to li ∈ L, such
that consecutive points can be sampled from lg to lp, to form
a trajectory that represents the shortest path while conforming
to observed behavioral norms.

1) Distance Map: The CTF algorithm takes as input a
distance map to find points that are closer to the destination
lp. This map calculates the distance to the destination lp from
every other point on the floor. Euclidean distance between two
points is not altered by the presence of inaccessible areas in
the path. Hence using Euclidean distance can potentially be
erroneous. Martinez et al. defined geodesic distances in [16],

Fig. 1. Distance map for geometry A with a given destination.

which is used instead. Geodesic distance is measured around
the inaccessible areas along the ground plane and gives a more
accurate sense of distance for human navigation. A rendering



of the distance map for geometry A with a given destination
is shown in Fig. 1.

Fig. 2. Observed occupancy map of a hallway in a building from a video
observed over 5 days.

2) Human Occupancy Map: CTF also takes a human
occupancy map as a second input. Hypothetically, if a large
number of trajectories followed by human subjects from lg to
lp are observed, it is possible that certain points on the ground
plane are accessed more often then other points. This might
imply the existence of a certain distribution or an occupancy
map to the points on the ground plane. Estimating this map can
assist the CTF in choosing points that are accessed often by
complying with behavioral norms. Human motion is influenced
by a multitude of factors, many of which are driven by
perception. CTF specifically focuses on modeling this human
motion by taking into account the constraints imposed by
3D geometry and the physical world. When traversing on
the ground plane, the immediate decision of movement is
influenced by the objects in the path and the surrounding
geometry like walls. For example, the way humans navigate
around tables and chairs when moving from one corner of a
classroom to the opposite corner. Since the human behavior
is assumed to be influenced by the 3D geometry, the aim is
to model the relationship between them. This model would
provide a means to estimate the human behavior or occupancy
map for any novel location based on its 3D geometry.

This relationship between them was modeled based on
empirical data. The model first represents a point on the ground
plane using a set of geometric features that capture the 3D
geometry of the environment surrounding that point. Then
establishes a linear relationship between geometric features of
the point and its observed occupancy. Initially, the occupancy
map of a known geometry was observed. Consider a dataset
of humans traversing the ground plane whose surrounding
3D geometry is known. The occupancy of the point li is
proportional to the number of times the humans in the dataset
has accessed that point. The observed occupancy map in a
hallway over a period of 5 days is shown in Fig. 2. Since CTF
assumes that the occupancy of a point on the ground plane is
influenced by the 3D geometry surrounding it, the geometric
features gf i of any point li on the ground plane in the 3D
model are represented as a set of numbers {di1, di2, di3...},
which are its distances from the walls and objects surrounding.
So, to obtain the geometric features the distances are measured
to walls or objects in the hallway along vectors pointing at a
certain inclination from the ground plane at regular interval
spanning an entire circle with its tail fixed at the point li
as shown in Fig. 3. The distances are measured consistently
in either clockwise or anti-clockwise direction always starting
from the closet object or wall. In order to confine the effect
to only objects with in the close vicinity of the point, the
distances are thresholded by a hemisphere as shown in Fig. 3.

Fig. 3. Geometric features.

The radius of this hemisphere is inferred from the Theory
of Proxemics [17]. This is a theory based on observation
that defines how human beings unintentionally make use of
physical space around them. Proxemics classifies the space
close to a human subject into four broad regions, intimate,
personal, social and public distance. It is assumed that the
interaction between human subjects in closed hallways take
place within the social distance.

We assume a linear relationship between the geometric
features gf i = {di1, di2, di3...} of the point li and its observed
occupancy oi and can be modeled as

oi =β1di1 + β2di2 + ...+ βndin + εi = GFT
iβ + εi

O = GFβ + ε
(1)

To estimate the values of β we minimize the sum of squares
of the error term ε, which would give us.

β = (GFTGF )−1GFTO (2)

To determine the occupancy of any point on the ground

Fig. 4. Estimated occupancy map.

plane in a new geometry, first the geometric features of that
point are computed and then the estimated β values are used
to estimate occupancy using Equation 1. Fig. 4 depicts the
estimated occupancy.

It can be observed how the occupancy of the points in
the center of the hallway is higher than those along the edges.
The rotational invariance of the features allow for the expected
estimation of the occupancy even along curved hallways.

3) Trajectory Forecasting: CTF combines these two maps
and assigns an energy value to every point on the ground plane.
Let O be the occupancy map function and let D be the distance
map function. Then the energy of the point li is defined by
the function E as:



E(li) = −D(li)/O(li) (3)

Fig. 5. Energy map.

The energy function for geometry A is shown in Fig. 5.
The energy is higher in the center of the hallway than along the
edges, and the energy increases as the points get closer to the
destination. To forecast the trajectory from the starting point lg
to destination point lp, points are sampled consecutively with
a probability defined by the energy map. If the current state
is lc, the point li is chosen if and only if it is closer to the
destination, that is D(li) <= D(lc). This ensures the trajectory
propagation, without getting stuck in local maximums. The
points closer to the destination are sampled with a probability
which is proportional to the difference in there energies. So
P (li|lc) is

∝
{
E(li)− E(lc) if D(li)−D(lc) ≤ 0

0 otherwise

}
(4)

Let the points predicted by CTF from lg to lp be
{lg, l2, ..., lp}. Assuming that the human subject moves at a
constant velocity vg , the time ti taken to reach location li
from lg can be estimated as ti = tg +

d(li,lg)
vg

, where d(li, lg)
is the length of the trajectory from lg to li. CTF predicts
an estimate of the trajectory from gallery g to probe p as
T

′

gp = {(lg, tg), (l
′

2, t
′

2), ..., (lp, t
′

r)}. The contextual score of
the probe p and gallery g are defined as

sc(p) = tp; sc(g) = t
′

r (5)

4) Re-Identification using SDALF and CTF: SDALF is a
symmetry based description of the human body. In SDALF,
the asymmetry principles allows the segregation of meaningful
body parts (head, upper body and lower body). The symmetry
criteria helps in extracting the actual appearance features.
SDALF uses three different appearance features. First a HSV
histogram is used to capture the global chromatic content,
second, Maximally Stable Color Regions (MSCR) is used to
capture the pre-region color displacement and finally Recurrent
Highly Structured Patches (RHSP) are estimated by a per-
patch similarity analysis. Let sa = {sWHSV

a , sMSCR
a , sRHSP

a }
be the appearance score values. If {dWHSV , dMSCR, dRHSP }
be the distance functions that calculate the HSV, MSCR and
RHSP distance between the probe and gallery items, then
SDALF matching distance is defined as convex combination
of these features.

d(p, g) = γWHSV · dWHSV (s
WHSV
a (p), sWHSV

a (g))+

γMSCR · dMSCR(s
MSCR
a (p), sMSCR

a (g))+

γRHSP · dRHSP (s
RHSP
a (p), sRHSP

a (g))

(6)

Where γ are the weighting parameters. The con-
textual distance function is defined as dCTF (p, g) =
dCTF (sc(p), sc(g)) = |tp − t

′

r|, t
′

r and tp are as defined in
Equation 5. The CTF distances were normalized such that
dCTF ∈ {0, 1}. The CTF score is embedded in Equation 6
as:

d(p, g) = γWHSV · dWHSV (s
WHSV
a (p), sWHSV

a (g))+

γMSCR · dMSCR(s
MSCR
a (p), sMSCR

a (g))+

γRHSP · dRHSP (s
RHSP
a (p), sRHSP

a (g))+

γCTF · dCTF (sc(p), sc(g))

(7)

In our experiments, we fix the values of the parameters
as follows: γWHSV = 0.03, γMSCR = 0.03, γRHSP =
0.03, γCTF = 0.9. These values seems to provide the best
performance. The high value of γCTF compared to other
parameters allows for temporally constraining the data and
then trying to find the best match using SDALF within the
temporally constrained data. The matching function ranks the
gallery items for probe p as {gp1

, gp2
, ..., gpm

} such that
Mg1p < Mg2p < ... < Mgmp ≡ d(p, g1) < d(p, g2) < ... <
d(p, gm) .

IV. EXPERIMENTS

A. Implementation

This section describes how a complete 3D model of the
environment can be constructed, and furthermore how cameras
in the real world are calibrated and then embedded as virtual
cameras in the model.

1) Modeling 3D environment: The 3D geometry of the
environment like floors, walls, hallways, etc. are modeled using
Google Sketchup, a 3D modeling tool. Figure 6 depicts the 3D
model of a building constructed using existing floor plans to

Fig. 6. Model of a building using Google Sketchup.

obtain the measurements and dimensions. The 3D model is
then exported using a common digital asset exchange format
[18] called COLLADA file format. COLLADA Document
Object Model (DOM) library is used to load and save this
3D model into an application, and then OpenGL is used to
interact with this 3D data in the application.

2) Embedding virtual cameras and calibration: To create
virtual cameras in the 3D model that represent cameras in real
world. First the internal camera parameters of the existing real
world camera are determined by using a general calibration
approach with a checkerboard. These parameters are used to
create virtual cameras which render perspective projections of



the 3D model that are conceptually equivalent to the real world
cameras. Now in order to determine the location and orienta-
tion of the camera in the 3D model, the image from the real
world camera and manually registered with the corresponding
camera’s perspective projection in the 3D model, by manually
changing the parameters in the transformation matrix using
OpenGL. When the images register as shown in Figure 7, the
transformation matrix of the camera is extracted which gives
us the approximate location and orientation of the camera in
the 3D model [19].

Fig. 7. Manual registration of an image from a camera with the perspective
rendering of the 3D model to extract the transformation matrix. The floor is
represented by a uniform triangle mesh obtained by Delauney triangulation.

3) Delaunay triangulation of the floor mesh: The ground
plane is represented as a triangular mesh though other repre-
sentation are possible. Delaunay triangulation is used to obtain
a uniform triangular mesh as shown in Figure 7. An imple-
mentation of the Delaunay triangulation is available in the
Computational Geometric Algorithms Library (CGAL) [20].
The centroids of the triangles are considered as points on the
ground plane.

4) Projecting points on the image into the 3D geometric
model: Human subjects captured from videos are projected
into the ground plane in the 3D model, to obtain their global
position. The location and orientation of the camera is available
in the transformation matrix. The point on the image where the
humans feet touches the ground plane is located and using the
cameras parameters are projected on the ground plane.

B. Experiments

Over the years many datasets like CAVIAR [21] and
VIPeR [6] have been used for evaluating re-ID algorithms,
but none of these datasets are equipped with the environments
geometry and camera calibration. To evaluate the performance
of the proposed method, real world data was collected from
two different geometries. Each geometry consisted of three
cameras with non-overlapping views in a hallway as shown
in Fig. 8 (geometry A) and 9 (geometry B). Human subjects

were allowed to walk down the hallway starting from camera
1 and are allowed to randomly choose between making either
a left or right to show up in either camera 2 or 3 respectively.
The images from camera 1 were used to create the gallery
set and camera 2 and 3 were used to create the probe set. To
simulate a real world environment, groups of subjects were
allowed to start walking at the same time from camera 1. The
evaluation was performed on 38 subjects, 26 of which were
used in geometry A and 12 in geometry B. In geometry A, 10
groups containing two subjects started at the same time and
the rest started individually, and in geometry B, 2 groups of
4 subjects and 1 group of 3 subjects started at the same time
and the rest individually. In both the geometries, half of them
were captured in camera 2 and the other half in camera 3 to
create the probe set. For each ID, 5 shots were captured in all
cameras. So the gallery set in geometry A consisted of 130
images and geometry B consisted of 60 images.

To perform re-identification for a given probe, we perform
CTF from every image in the gallery. The starting position is
determined by the position of the subject in the gallery and
the end being determined by the position of the subject in the
probe. These points are re reprojected into the 3D model as
described in IV-A.

Camera 1 Camera 2 Camera 3

Gallery Probe 1 Probe2

Fig. 8. Geometry A experimental setup.

Camera 1 Camera 2 Camera 3

Gallery Probe 1 Probe2

Fig. 9. Geometry B experimental setup.

Experiments were performed in four different modes based
on the number of shots used for calculating the scores. In



single-shot vs single-shot (SvsS), each image in a set repre-
sented a different ID, in single-shot vs multiple-shot (SvsM),
each image in gallery set is different ID but in the probe set, the
scores from multiple shots of the same id were average out. In
multiple-shot vs single-shot (MvsS), every shot in probe was
compare to multiple shots belonging to the same ID in the
gallery and the scores were averaged out, finally in multiple-
shot vs multiple-shot (MvsM) multiple shots were used in
both the gallery and probe set for matching. The results are
presented in the form of recognition rate using Cumulative
Matching Characteristic (CMC) curves.

(a) (b)

(c) (d)

Fig. 10. CMC curves: Geometry A

(a) (b)

(c) (d)

Fig. 11. CMC curves: Geometry B

In geometry A at most two subjects were allowed to
start at the same time and hence a 100% recognition was
obtained within the first two ranks in all the modes. Similarly
in geometry B at most four subjects were allowed to start
at the same time and hence a 95-100% recognition was
obtained within the first four ranks in all the modes. In all
the cases, in was observed that using CTF alone generated a
significant boost in recognition over SDALF, and embedding
CTF in SDALF generated a further enhancement in recognition
performance over CTF.

V. CONCLUSION

We have implemented a model to construct 3D geometry of
the environment and embed virtual cameras for the purpose of
surveillance. We have implemented a methodology to predict
the future position of human subjects using contextual trajec-
tory forecasting. Finally we have successfully embedded the

CTF into a traditional appearance based re-identification algo-
rithm. Preliminary results show that using the 3D geometry and
contextual trajectory forecasting can enhance re-identification
performance significantly. A Large scale study will be taken
into consideration in the future.
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