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Abstract

Camera tamper detection is the ability to detect faults
and operational failures in video surveillance cameras by
analyzing the video. Researchers have increasingly focused
on such techniques attributing to the ubiquitous deployment
of large scale surveillance systems. In this paper, a sig-
nal detection theory approach is proposed to quantitatively
analyze the information being captured by the camera and
to detect tampers. Signal activity is used as a feature to
measure the amount of information in the image. The dis-
tribution of features representing the normal operation of a
camera are modeled as a Gaussian mixture model (GMM).
The GMM is trained using synthetic data. To reduce the
effects of noise, a Kalman filter is used to model changes
in signal activity in the video. Experimental results show
that the proposed approach out performed the state-of-the-
art [13] in detecting tampered images with higher accuracy
while generating lower false alarms.

1. Introduction
Surveillance cameras have become an integral part of

public and private infrastructures in recent years. The avail-
ability of cheap sensors along with their numerous security
benefits have contributed to the deployment of large scale
surveillance systems. Systems ranging from hundreds of
cameras at a school to thousands of cameras at an airport
is a common configuration size. Surveillance systems are
typically deployed over a large physical area with a cen-
tralized control point. Such wide distributions often re-
quire rigorous maintenance and continual review processes
to ensure that each camera within the system is function-
ing as required. Reviewing thousands of cameras manu-
ally to ensure functionality is a tedious task and prone to
human error. Moreover, high-level computer vision algo-
rithms like tracking [17], re-identification [18] and motion
prediction [16, 19] are designed with an implicit assump-
tion of properly functioning cameras. Non-functionalities
in cameras generally lead to erroneous results in these high-

level algorithms. Hence, automatic camera tamper detec-
tion is a critical low-level task to ensure uninterrupted oper-
ation of surveillance systems and to ensure public safety.

Camera tamper detection can be defined as persistent de-
viation in the image quality or expected scene information
captured by a camera’s video. Such deviations could be a
result of natural events (like strong winds in outdoor cam-
eras) or due to intentional malicious activity (like a perpe-
trator changing the view of the camera). Camera tampers in
existing literature has typically been classified as: a) Cov-
ered, b) Defocused and c) Moved. Covered tamper occurs
when the view of the camera is blocked using an opaque
object. Defocused tamper occurs when a camera lens is out
of focus resulting in a blurred image. Finally moved tamper
occurs when the viewing direction of the camera is changed.

We propose a signal detection theory approach for cam-
era tamper detection. A signal is a function that conveys
information about the behavior and attributes of some phe-
nomenon [20]. We leverage the idea that a properly func-
tioning camera captures a certain amount of discernible and
useful information. A tamper alert can be triggered when
there is a considerable decrease or change in the amount of
information being captured. In most cases of a covered tam-
per, certain region of pixels change to uniform intensity, and
in defocused tampers, the pixel representation is blurred and
the individual objects cannot be discerned. In either case, a
sharp decrease in the amount of information captured is no-
ticed. In most cases of a moved tamper, there is a persistent
change in the characteristics of the information being cap-
tured. We leverage these variation for detecting tamper in
cameras. The contributions of this paper can be summarized
as:

1. Using signal activity [31] as a feature to represent the
measure of information in an image and estimate it us-
ing Kalman filtering.

2. Modeling the distribution of signal activity of normal
operating view of the camera as a Gaussian mixture
model trained over synthetic images.

3. A signal detection theory approach for camera tam-
per detection.
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2. Related Work
Camera tamper detection techniques have gained a fair

share of attention over the last decade [13, 12, 25, 5]. It can
be considered as a sub problem of video change detection,
where the objective is to detect changes in the scene as video
progresses. More recently with the ubiquitous deployment
of low cost cameras for surveillance, research has been ded-
icated for robust automatic detection of camera tampers.

Existing literature has classified camera tampers under
three categories [7]: a) Covered, b) Defocused, and c)
Moved. Majority of the solutions proposed to detect cam-
era tamper, have addressed each of the tampers individu-
ally, while very few have developed a unified algorithm to
detect all three tampers at the same time. Unified tamper
detection algorithms can have considerably low complexity
at the expense of the inability to classify the type of tam-
per. Independent tamper detection algorithms are designed
to detect each individual tamper. However, the algorithms
might have common preprocessing and training stages. The
choice of one over the other can be driven by the applica-
tion and computational resources available. In this paper,
we propose a unified approach for camera tamper detection.

Taking inspiration from research in image quality assess-
ment, Wang et al. [30] categorized tamper detection meth-
ods as full-reference, reduced-reference and no-reference
techniques. Full-reference methods usually assume that a
normal (untampered) image of the camera is available and
can be used to perform a pixel-wise comparison. The dif-
ference between the reference image and incoming image
is assessed to detect tampers. Reduced-reference techniques
map images into a lower dimension feature space and learns
a model representation for normal operating view of the
camera. An estimate of the likeliness of the incoming im-
age belonging to the learned reference model is used to de-
tect tampers. Finally, no-reference techniques do not have a
reference image or model to compare with. An inference is
made based on the characteristics of incoming video frames.
In this paper, we propose a reduced reference method for
camera tamper detection.

Covered tamper detection algorithms in general iden-
tify the stable regions in an image and constantly checks
for loss in density or distribution in these regions due to
occlusions. Some methods have chosen to model the back-
ground to establish stable regions. In order to compute or
identify large deviation, Jimenez et al. [7] and Ellwart et
al. [4] computed the entropy and compared it to the in-
coming frames. Another common approach is to com-
pute the histogram of the background [2, 23, 14, 26, 1]
and compare it to the incoming image. Tung et al. com-
puted a codebook model for the background for covered
tamper detection [27]. Some methods have proposed to
compute key point features like Scale Invariant Feature
Transform (SIFT) [33, 15] and Speeded Up Robust Fea-

tures (SURF) [9] and track changes amongst these points
to detect covered tamper. Wang et al. [30, 29] proposed a
set of reduced-reference features, namely pixel based edge
entropy for covered tamper detection. While no-reference
methods are not so common, Jiao et al. [10] proposed an
application specific method to detect occlusions from ban-
ners using corner detection and line fitting techniques.

Defocused tamper detection methods can also be or-
ganized under full, reduced and no-reference techniques.
Distinct edges and corners are the most commonly used
indicators to detect defocussing. Defocussing results in a
degradation of the edge content. Key features extracted in-
clude stable edges [15] and SURF [9] features, which are
used as a reference to detect defocussing. Another com-
mon method is to conduct an analysis in the frequency do-
main. A degradation in the edges would result in a loss
of high frequency components. Image transformations like
Fourier transform [23], discrete cosine transform [1], and
wavelet transform [2] are used to analyze edge details. Gai-
boti et al. [5] used average norm of the gradient as a mea-
sure to detect defocussing. Wang et al. [30, 29] proposed
a reduced-reference technique for covered tamper detection
which was also used for detecting defocused tampers. Gan-
guli et al. [6] proposed a no-reference technique for defo-
cused tamper detection using a blur metric that quantifies
the extent of blurring.

Moved tamper detection methods can also be organized
similar to the other two tamper detection methods. Most
methods have leveraged a form of image spatial matching
algorithm to estimate translations so as to detect moved
tampers. Commonly used algorithms include block match-
ing, background pixel matching and static object matching.
Saglem et al. [23] proposed a method using corresponding
pixel matching. If the number of matching pixels between
the reference and incoming image falls below a threshold,
a moved tampers is detected. Block matching between the
reference frame and incoming frame was conducted to de-
tect large displacements [8, 7, 4, 14, 1] and histogram dif-
ference was used as a measure to detect moved tampers.
Spatial location of static objects was also used as a refer-
ence to detect moved tampers. Raghavan et al. [21] used
traffic signals as static objects for detecting moved tampers
in traffic cameras.

As this paper proposes a unified method for camera tam-
per detection, we review these methods in detail. Ribnik et
al. [22] proposed a unified method by measuring dissim-
ilarity between the reference and incoming images. Three
different measures were calculated (histogram chromaticity,
histogram L1R difference and histogram gradient). These
dissimilarity measures were individually thresholded to de-
tect tampers. Shih et al. [24] proposed a two stage scene
matching algorithm for tamper detection. The first stage is
used to detect tampers and the second stage to reduce false



alarms. Stable edges were obtained using Sobel operator
and Otsu’s voting method by counting the frequency of the
edge points. The obtained stable edge pixels were mod-
eled as a GMM. The portion of non-background points are
measured, and later thresholded to detect tampers. Lee et
al. [13] proposed a unified tamper detection approach based
on edge information. Tamper events were detected by mea-
suring the difference between the edges of background and
current frame. The background frame was generated using
a GMM and the edges were extracted using Canny edge de-
tector. Edge change rate of the current frame compared to
the background is used as a measure. The average change
rate computed over a series of frames was thresholded to de-
tect a tamper. Lee et al. [12] later used a similar approach by
quantifying the edge disappearance rate. However, they ac-
counted for the foreground objects and excluded them from
the edge comparison for robust detection.

Our proposed approach is a reduced-reference unified
method for camera tamper detection. Images are discretized
2D signals, and we take inspiration from signal detection
theory to model the characteristics of the image. We pro-
pose to use signal activity as a measure of information in the
image. Signal activity is a image quality measure that can
quantify the extent and type of image degradation and cor-
relates closely with human perception of image quality. Ob-
jective image quality measures that are consistent with per-
ceptual image quality can reliably predict perceived qual-
ity. Many objective image quality measures have been pro-
posed [3]. We build on the signal activity measure proposed
in [31]. Camera tamper detection techniques suffer heavily
from false positives. Most literature has identified false pos-
itives to arise from either sudden illumination changes or
due to a large object passing in front of the camera. Ribnick
et al. [22] showed that 80% of the false alarms were a result
of sudden illumination changes in their dataset. This can be
attributed to the sudden change in measurement that occur
in the two scenarios. Existing work has handled these using
temporal suppression in the post processing stages [2, 23].
We propose to use Kalman filter to estimate signal activity
to reduce false alarms due to illumination changes.

3. Framework
Figure 1 describes the framework for proposed camera

tamper detection approach. The process involves two stages
beginning with a training phase and then followed by a
detection phase. The training phase captures a reference
model to represent the view of the normal operation (not
tampered) of the camera. The training phase begins by gen-
erating synthetic data that is required for training. The syn-
thesis captures variations in the view of the camera due to
illumination changes, which otherwise are tedious to collect
manually. The feature extraction phase captures the charac-
teristics of the training images in a reduced feature space.

Figure 1. Camera Tamper Detection Framework

Then a reference model is created using the features to rep-
resent the normal operating view of camera. The second
phase leverages the reference model from the training phase
to detect tamper in the incoming images from the camera.
The images from the camera are transformed to the lower
feature space similar to the one in training phase. The ref-
erence model is leveraged to initialize a filter. The features
undergo filtering to reduce the effects of noise due to illu-
mination changes. Finally in the tamper detection step, the
estimated features using the filter are compared to the refer-
ence model to detect tampers.

4. Methodology
4.1. Problem Formulation

We propose a signal detection theory approach for cam-
era tamper detection. In the field of electronics, signal de-
tection theory is a means to quantify the ability to discern
information bearing patterns from random patterns that dis-
tract from the signal [32]. Images obtained from the cam-
era is a signal representing the information being captured.
Normal images (not-tampered images) can be considered
as information bearing patterns and tampered images (cov-
ered, blocked and moved) can be considered as random and
noise induced patterns in signals. Let y be an observation
of the signal, a representation of the amount of information
in the image. Let Htamp be the hypothesis that the observa-
tion y is tampered and Hnor that the image is normal. Fol-
lowing a Maximum-a-Posterior approach,Hnor is chosen if
p(Hnor|y) > p(Htamp|y) and Htamp is chosen otherwise,
where p(.) is a probability function. Using Bayes’ theorem,
the posteriors can be expressed as:

p(y|Hnor)p(Hnor)

p(y)
>
p(y|Htamp)p(Htamp)

p(y)

=⇒ p(y|Hnor)πnor > p(y|Htamp)πtamp

(1)

where p(y|Hi), i = {nor, tamp} are the likelihood
probabilities and πi are the priors. p(y) = Σip(y|Hi)p(Hi)
is the total probability of the observation y. Assuming that
the image belongs to one of the two hypothesis we have
p(y|Hnor) = 1− p(y|Htamp), therefore

p(y|Hnor)πnor > (1−p(y|Hnor))πtamp =⇒

p(y|Hnor) >
πtamp

πnor + πtamp
=⇒ ln p(y|Hnor) > δ.

(2)



We define an image y to be normal if the log likelihood,
ln p(y|Hnor), is above a threshold δ, or alternatively to be
tampered if it falls below the threshold. In the following
subsection 4.2, we describe signal activity as a measure
of information in the image. We describe our approach to
learn a reduced reference likelihood model for p(y|Hnor),
representing the normal operating view of a camera. We
describe our method for estimating signal activity of an in-
coming image and detecting tampers.

4.2. Proposed Methods

Feature Extraction {Signal Activity as a Measure of In-
formation in the Image}: We represent the information
in the image using Signal Activity as defined in [31]. If
the image is represented by I(i, j), where i, j denotes a
particular pixel position, then signal activity is given by
A = Ah+Av

2 : where,
Ah =

1

m(n− 1)

m∑
i=1

n−1∑
j=1

|dh(i, j)|

Av =
1

(m− 1)n

m−1∑
i=1

n∑
j=1

|dv(i, j)|

(3)

where, dh = I(i, j + 1) − I(i, j), and dv = I(i + 1, j) −
I(i, j). Signal Activity can be computed over the entire im-
age or sub regions of the image. An image I can be repre-
sented in a reduced feature space YI = {A1

I , ...A
n
I } where

An
I is the signal activity of the region n in image I .

Filtering {Estimating Signal Activty using Kalman Fil-
ter:}: We propose to use linear quadratic estimator like
the Kalman filter to estimate signal activity of the images
over time for a robust representation of the scenario. Let
Xt−1 = {At−1} be the internal state of the image, where
At−1 is the signal activity. The signal activity is estimated
recursively as a prediction and correction step using Kalman
filter. Let the estimated signal activity of an image or region
I at time t − 1 be X̂t−1. An estimate of signal activity for
next step X̂t is estimated using Kalman filter as:
Predict− step :

X̂t|t1 = FtX̂t1|t1 +Btut

Pt|t1 = FtPt1|t1F
T
t +Qt

Correct− step :

X̂t|t = X̂t|t1 +Kt(ytHtX̂t|t1

Kt = Pt|t1H
T
t (HtPt|t1H

T
t +Rt)

−1

Pt|t = (IKtHt)Pt|t1

(4)

Where, X̂ is the estimated state, F is the state transition ma-
trix (i.e., transition between states), u are the control vari-
ables, B is the control matrix (i.e., mapping control to state
variables), P is the state variance matrix (i.e., error of es-
timation), Q is the process variance matrix (i.e., error due

to process), y is the measurement variables, H is the mea-
surement matrix (i.e., mapping measurements onto state),
K is the Kalman gain, and R is the measurement variance
matrix (i.e., error from measurements). The subscripts t|t
is the current time period, t1|t1 is the previous time period,
and t|t1 are intermediate steps. Kalman filter provides a
robust estimate of the signal activity for the images being
captured by the camera.
Reference Model{Modeling Likelihood Probabilities as
a Mixture of Gaussian:}: The distribution of signal ac-
tivity is modeled as a GMM. The likelihood, p(y|Hi) =∑n

j=0 ω
j
i η

j
i (µj

i , σ
j
i ), where η(µj

i , σ
j
i ) represents Gaussian

distributions corresponding to different scenarios. In case
of Hnor, {η1nor, η2nor...} corresponds to different naturally
occurring illumination variations like day, night and over-
cast sky among normal images and ωj

i are the weights cor-
responding to each scenario such that

∑
j ω

j
i = 1.

Tamper Detection{Abnormality Detection using a Mov-
ing Average of Log-Likelihood:}: One could follow a
simplistic approach and detect tampers using the estimated
value from the Kalman filter. A tamper could be detected if
X̂t ± σ does not fall within a confidence interval. How-
ever, this simple approach could result in a large num-
ber of false positives. We follow a similar approach to
Knorn et al. [11] by thresholding a moving average of log-
likelihood of the estimated values over time. The likeli-
hood of an estimated value X̂t can be readily calculated
as p(X̂t|Hnor) =

∑n
j=0 ω

j
norη

j
nor(µj

nor, σ
j
nor). Similar

to [11], we use a moving average (or low pass) filter on
the log likelihoods of past measurements. This can provide
a significantly robust tamper detector.

zt = αzzt−1 + (1− αz) log p(X̂t|Hnor) (5)

Where, αz is a smoothing factor. A suitable threshold for zt
is used to detect tamper at step t.

5. Experiments

5.1. Implementation

Synthetic Data Generation{Learning Model Parame-
ters from Synthetically Generated Image Variants:}: Pa-
rameter estimation of the likelihood distributions require a
dataset consisting of samples representing natural illumi-
nation variations in p(y|Hnor). Capturing such variations
from actual observations is a time consuming and arduous
task. We propose to initially model these variations syn-
thetically from a limited number of observations of a nor-
mal image. Natural illumination variations were modeled
by inducing variation in the brightness and contrast of the
image (Figure 2). The illumination varied images (I

′
) were

created from the original image (I) by applying linear trans-
formations ( I

′
= α ∗ I +β ). To induce contrast variations

α = {.75, .80, .85, .90, .95, 1., 1.05, 1.1, 1.15, 1.2, 1.25}



values were used, and to induce brightness variations β =
{−60,−40,−20, 0, 20, 40, 60} were used.

These image variants were used to estimate the param-
eters for the Gaussians ηnor(µnor, σnor), where µnor =
mean(A(I ′)) and σnor = stdev(A(I ′)), where I ′ were
the synthetic images generated for the natural illumination
variants and A(I ′) was the signal activity of image I ′.

(a) (b) (c)
Figure 2. Synthetic image variants (a) normal image; (b) bright-
ness intensity lowered by 60; (c) contrast increased by 0.25.

Kalman Filter{Implementation Details:} A static
Kalman filter model was used to estimate signal activity.
Therefore, we have xt+1 = xt, and signal activity (A = 0)
and Ft = 1, for any t ≥ 0. Control variables B and u
were not used. The computed signal activity was used as a
measurement yt = At. Kalman Filter was initialized using
the mean(µnor) of the sufficient statistics calculated using
synthetically generated images. The estimated error was
initialized to σnor.
Tamper Detection{Implementation Details:} The image
was subdivided into a 3X2 grid and signal activity was cal-
culated for each region. A Kalman filter was initialized for
each region and the signal activities were estimated individ-
ually. The threshold δ was set to ln(0.1), i.e. a tamper was
detected if the p(y|Hnor) < 0.1. If for at least three regions
zt fell below the threshold (δ) simultaneously, a tamper was
detected at t.

5.2. Evaluations

Two sets of real world video data are used in the evalua-
tion of the proposed camera tamper detection approach.

Change Detection Dataset [28]: This dataset is aimed
at understanding the performance with respect to a variety
of scenarios that are likely to generate false positives. This
dataset does not contain any tampered images. We use the
change detection dataset [28] that represent a wide variety
of scenarios that are ambiguous and more likely to generate
false positives. The algorithm is evaluated over hundred
thousand frames consisting of scenarios from bad weather,
night video, turbulence, baseline, and others.

Surveillance Video Dataset: This dataset is aimed at
understanding the performance with respect to tampered
images and the detection of true positives. This dataset is
captured from various indoor and outdoor surveillance cam-
eras located within our infrastructure. Covered tamper is
created by blocking the camera view with a rigid object.
Defocused tamper is obtained from cameras that have nat-
urally gone out of focus over time. Scenarios include day

Dataset Lee et al. [13] Proposed
Accuracy FPR Accuracy FPR

Bad weather 0.3910 0.6089 0.9932 0.0067
Baseline 0.3436 0.6563 0.6539 0.3460
Camera Jitter 0.4917 0.5082 0.7685 0.2314
Dynamic Background 0.9226 0.0773 0.9107 0.0892
Intermittent Object Motion 0.3619 0.6380 0.8464 0.1535
Low Frame rate 0.4034 0.5965 0.6577 0.3422
Night Videos 0.5197 0.4802 0.9902 0.0097
Shadow 0.4310 0.5689 0.8899 0.1100
Turbulence 0.4096 0.5903 0.8064 0.1935
Average 0.4936 0.5063 0.8532 0.1467

Table 1. Change detection dataset
Dataset Lee et al. [13] Proposed

Accuracy TPR FPR Accuracy TPR FPR
Covered 0.5266 0.7201 0.4764 0.9003 0.7236 0.0329
Defocused 0.7378 0.5550 0.1541 0.7338 0.7249 0.0
Moved 0.5077 0.4985 0.4727 0.6447 0.7202 0.5082
Average 0.5735 0.6096 0.3947 0.7789 0.7299 0.1732

Table 2. Video surveillance dataset

and night videos from outdoor cameras and over-saturated
images due to sunlight. A total of 25,000 frames consisting
of 9,500 tampered images were used in the evaluation.

The proposed method is evaluated and compared against
the state-of-the-art unified tamper detection method pro-
posed in [13]. Accuracy ( TP+TN

TP+FP+TN+FN ), true positive
rate (TPR = TP

TP+FN ) and false positive rate (FPR =
FP

FP+TN ) are measured to compare the performance of the
two methods, where TP are true positives, FP are false posi-
tives, TN are true negatives and FN are false negatives. TPR
is not measured for the change detection dataset as it does
not have any tampered images.

The evaluation results for change detection dataset are
shown in table 1 and the evaluation results for surveillance
dataset are shown in table 2. With respect to change de-
tection dataset, the proposed method out performed [13] in
all the scenarios except for dynamic background. Lee et
al. [13] performed with higher accuracy in scenarios with
dynamic background. The proposed method performed
slightly poorly in scenarios with low frame rate. Overall
the proposed method generated 15% false positive as op-
posed to [13], which produced 50% false alarms. With
respect to video surveillance dataset, the proposed method
detected all three types of tampers with a higher accuracy
while generating considerably low false alarms. The pro-
posed method detected covered tampers with 90% accuracy,
followed by defocused tampers with 73% accuracy and fi-
nally moved tampers with 65% accuracy . However, [13]
generated lower false alarms with respect to moved tampers
than the proposed method. Overall with respect to video
surveillance dataset, the proposed method generated 17%
false positive as opposed to [13], which produced 40% false
alarms.

6. Conclusion
We have proposed a signal detection theory approach

for detecting tampers in video surveillance cameras. Sig-
nal activity was used as a feature to measure the amount
of information in the image. The distribution of signal ac-
tivity representing the normal operation of a camera were



modeled as a Gaussian mixture model, and trained using
synthetically generated data. A Kalman filter was used to
estimate the signal activity of the images, to reduce the ef-
fects of sudden illumination changes. We have compared
the proposed method with state-of-the-art unified tamper
detection method [13] over a change detection dataset and a
video surveillance dataset. Experimental results show that
the proposed approach out performed the state-of-the-art in
detecting tampered images with higher accuracy while gen-
erating lower false alarms.
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Detection for Surveillance Systems.

[5] A. Gaibotti, C. Marchisio, A. Sentinelli, and G. Boracchi.
Tampering Detection in Low-Power Smart Cameras.

[6] A. Ganguli, A. Raghavan, V. Kozitsky, and A. Burry. Au-
tomated fault detection in violation enforcement cameras
within electronic toll collection systems. In ITSC 2013.
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