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ABSTRACT
A human trajectory is the likely path a human subject would
take to get to a destination. Human trajectory forecasting
algorithms try to estimate or predict this path. Such algo-
rithms have wide applications in robotics, computer vision
and video surveillance. Understanding the human behav-
ior can provide useful information towards the design of
these algorithms. Human trajectory forecasting algorithm
is an interesting problem because the outcome is influenced
by many factors, of which we believe that the geometry of
the environment plays a significant role. In addressing this
problem, we have built a model to estimate the occupancy
behavior of humans based on the geometry and behavioral
norms. We also develop a trajectory forecasting algorithm
that understands this occupancy and leverages it for trajec-
tory forecasting in previously unseen geometries. We per-
form experiments to quantify the error between our predic-
tion model and the trajectories obtained from real world
human subjects and compare them to state of the art mod-
els. Results obtained suggests a significant enhancement in
the accuracy of trajectory forecasting by incorporating the
occupancy behavior model.

Keywords
Trajectory forecasting, human occupancy behavior, 3D ge-
ometric context

1. INTRODUCTION
Given a human subject and their destination, trajectory

forecasting deals with predicting or estimating the likely
path a subject will take to reach the destination. Trajec-
tory forecasting has a variety of applications. In robotics,
it can be used for robot motion planning, in surveillance it
can be used for predicting the future location of subjects
and could also be used to improve the accuracy of computer
vision algorithms for tracking, re-acquisition, etc.
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Networked cameras are widely used for monitoring hu-
man activity in public areas. Camera networks spanning
from hundreds to thousands of cameras per network is a
common occurrence in busy public locations like airports.
Most of these cameras might have non-overlapping fields of
view. A holistic automated surveillance system cannot infer
a semantic understanding of the scenario without a model
for linking the observed actions from individual cameras.
The surveillance system should have an understanding of
the 3D geometry of the environment it is present in, along
with an understanding of the relation between the cameras.
Considerable effort is focused on automatic generation of 3D
models for outdoor and indoor environments [5, 6, 17, 28,
7]. Furthermore, reasonable attempts have been made in
understanding the camera topography [8, 22, 11, 31] for ap-
plications like tracking [16, 27] and re-identification [24, 21,
20]. In these cases, it is very essential to predict the trajec-
tories of humans based on the geometry of the environment.
For example consider a re-identification problem, where a
human is observed in two different cameras in the same net-
work. Estimate of the trajectory starting from the obser-
vation in the first camera to the destination in the second
can impart an approximate spatial and temporal knowledge
of the human’s actions. This can assist in designing robust
re-identification algorithms. Similarly, human motion and
estimation of trajectories is critical in urban planning where
the design of new public spaces and their geometries will be
influenced by simulations of expected human occupancy and
their movements [3, 14].

Figure 1: Shortest path Vs. likely path

Human motion is influenced by a multitude of factors,
many of which are driven by perception. It is well under-
stood that 3D geometry and the physical world imposes
specific constraints on human motion. In many cases, in-
teraction of humans with the surrounding geometry is not
explicitly modeled. In general, we can agree that the tra-
jectory that a human subject would take is motivated by
the target destination they are trying to reach, but it is not



necessary that they would always take the shortest path de-
fined by the geometry. Though the human subject’s main
motivation is to reach the destination in the shortest time,
they may still subconsciously follow some behavioral norms.
For example if we are trying to reach a door that is on the
left hand side at the far end of a hallway, we would walk in
the center or close to the center of the hallway almost all
the way until we get close to the door as shown in Figure 1.
In this case, the shortest distance is to stay as close to the
left wall of the hallway as it is physically possible, but we
rarely see such behavior. So we believe that this behavior of
ours, though at a subconscious level, is being influenced by
the surrounding 3D geometry and behavioral norms. Our
continuous interaction with different geometries in various
environments over time may have led to the evolution of
this behavior. In this paper we mainly deal with indoor en-
vironments whose 3D geometry is available and static. If we
consider a scenario with a starting point and a destination
that are located at either ends of the hallway, and we ob-
serve the trajectories followed by a large number of human
subjects, we can assume that certain points on the floor in
the hallway are accessed more often then other points on the
floor when the human subjects are traveling the hallway. So
there might be a certain distribution or a occupancy map
to the floor. This occupancy map can be very helpful in
forecasting our trajectory.

In this paper, we choose to model trajectory forecasting
as a Markov model. So the trajectory is defined as a transi-
tion from one point/state on the floor to another. In order
to sample points to form a trajectory, we will need a proba-
bility transition matrix. This transition matrix should have
a higher probability of choosing points that are closer to the
destination, and also have a high frequency in the occupancy
map. If we have an energy function that calculates and as-
signs higher energy to such points, compared to those that
do not, we can create our transition matrix using an energy
maximization framework. We can construct a distance map
for every point on the floor that the energy function can use
to determine how close the point is to the destination. We
can also estimate an occupancy map that the energy func-
tion can use to determine how accessible the point is with
respect to the geometry. These two maps enable us to build
a transition matrix for sampling points to form trajectories.

To construct the occupancy map for a novel geometry,
first we observe the occupancy map of the floor for a known
geometry. For every point on the floor, we can calculate
some geometric features to capture the spatial structure of
the environment surrounding it. Further if we model a re-
lationship between the geometric features and the observed
occupancy map, we can use this model to estimate the occu-
pancy map of the points on any floor based on its geometric
features. In this paper we propose a set of geometric fea-
tures and a linear model to solve this problem. The main
contributions of this paper are:

• We propose a set of novel geometric features that de-
scribe a point on the floor with respect to the geom-
etry of the 3D environment around it considering the
perception of the geometry within the context of be-
havioral norms.
• Given the geometry of an environment, we propose a

method to estimate the human occupancy map.
• Given the geometry of an environment, the location

of start and destination of a subject, we propose a

model to forecast the trajectory of the human subject
by leveraging this developed human occupancy map.

2. RELATED WORK
Trajectory forecasting is a widely researched field. A com-

plete survey was done by Morris and Trivedi [25]. Tradi-
tional models for forecasting have followed a two stage ap-
proach, a data-driven learning and then a prediction stage.
In the learning stage, the trajectory patterns are observed
for the scenario and a model is learned. In the predic-
tion stage, the initial information about the trajectory is
used along with the learned model to predict future actions.
Junejo et al. [18] used minimum graph cuts with edges
weighted by Hausdorff distance for training and a combina-
tion of spatial, velocity and curvature features for trajectory
prediction of real world outdoor pedestrians. Vasquez and
Fraichard [32] used pairwise clustering to learn trajectory
models of human subjects within indoor scenarios, and the
prediction is done using the mean and the variance of the
clusters. Weiming et al. [15] learnt the trajectory model of
real world pedestrians and toy cars in a model scene using
fuzzy self organizing neural networks. Markov model was
used to model the piecewise trajectories of vehicles by Paki
and Martial [9]. A bank of previously observed switched
dynamic models were used for predicting the trajectories
of humans in indoor scenarios by Nascimento et al. [26].
Vasquez and Fraichard [33] used a hidden Markov model
based on growing neural gas algorithm for trajectory fore-
casting within indoor scenarios. Saleemi et al. [29] mod-
eled the trajectory patterns of real world pedestrians using
a kernel density estimator and a unified Monte Carlo Markov
Chain framework was used for predicting the likely trajec-
tories. All of the above models work at a pixel level on the
2D images and does not explicitly model the effect of the
environment on the humans that may influence the shaping
of their trajectory. Moreover, the models are scene depen-
dent and cannot be transfered to a new geometry. So, even a
small change in the environment like introducing a new ob-
ject in the scene would require a complete new set of training
data.

Recently proposed prediction models employ a model-driven
approach that accounts for the environment. Bhattacharya
et al. hypothesized the trajectories around obstacles for
robot motion planning in an environment by forming ho-
motopy classes [12, 4]. Ziebart et al. [35] used maximum
entropy inverse optimal control for prediction of human tra-
jectories in outdoor scenarios, and also took the environment
into consideration. Kitani et al. [19] model the environment
using semantic scene labeling and perform prediction using
inverse optimal control. More recently in [34] a visual pre-
diction of motion was also generated along with trajectory
forecasting. While [19] is closely related to our approach,
the effect of the environment modeled on the formation of
the human trajectory is limited to a small set of scene la-
bels. The scene understanding is at an image level. In our
method, we build and use the actual 3D model of the entire
geometry, and the amount of training required is minimal
and only done once. This is because, we are trying to learn
the human behavior around the 3D geometry in general,
rather than trying to learn the human behavior for a spe-
cific scene. Once we understand this behavior, the human
behavior for any new geometry can be estimated without
training as long as the new geometry is available. To the



best of our knowledge, this is the first work that accounts
for the 3D geometry for trajectory forecasting. Our method
is not scene or geometry dependent and explicitly models
the effect of the 3D geometry on humans to predict their
likely trajectory.

3. APPROACH
Given the 3D geometry of the environment like the floors,

walls, hallways, etc. along with the starting point and the
destination of a trajectory, we propose a trajectory forecast-
ing algorithm as a Markov chain model. Let P = {p1, p2, p3...}
be set of all points on the floor like the centroids of triangles
in a triangle mesh as shown in Figure 2. The motion from
a starting point to a destination point is depicted as a tra-
jectory T formed by transitions from one point to another.
T = {S1, S2, S3...} where S1, S2, S3 are the states at times
{t1, t2, t3...}, and Si ∈ P . As in a Markov chain model, the
decision of which point to transition next depends only on
the current state of the subject and can be denoted by:

Figure 2: Trajectory modeled as a Markov chain
model.

P (Sn|Sn−1, Sn−1|Sn−2...) = P (Sn|Sn−1)P (Sn−1|Sn−2)...
(1)

The Scenario in Figure 2 can be model as a Morkov Chain

model:
P (S7 = P26|S6 = P22, ..., S1 = P1)
= P (S7 = P26|S6 = P22)...P (S2 = P6|S1 = P1)
= P (S7 = P26|S6 = P22)

The problem is to create a transition matrix P (Sn|Sn−1)
for our Markov model that we can use to sample points to
form trajectories that travel from the start to destination
and also conform with behavioral norms.

The steps involved in our trajectory forecasting model are
(1) estimate the occupancy map of the new geometry (2)
create the distance map based on the destination (3) com-
bine the occupancy map and the distance map to create the
energy function (4) define a transition matrix based on an
energy maximization framework (5) and then sample points
using the transition matrix to form a trajectory. Given
the geometry, the occupancy map is estimated first. Later
given the destination, the distance map, the energy function
and consequently the transition matrix are estimated. The
methodology is described in two steps (a) Section 3.1 de-
scribes estimating the occupancy map and (b) Section 3.2
describes trajectory forecasting. The flowchart in Figure 3
showcases the entire framework.

3.1 Occupancy Map Estimation
To estimate the occupancy map for our geometry, we be-

gin by observing the occupancy map for a known geometry.
Then we compute the geometric features for the points on

Figure 3: Flowchart illustrating the trajectory fore-
casting framework.

the floor with respect to the surrounding geometry. Later
we propose a model to establish a relationship between the
occupancy of the point and its computed features using lin-
ear regression. We leverage this relationship to estimate the
occupancy map for any new geometry.

Observing the human occupancy map: In our geom-
etry, we model the floor as a uniform triangle mesh. Let the
centroids of the triangles on the floor mesh be represented
by a set of points P . We take the video from a calibrated
camera for a prolonged period of time, and perform human
detection [10], that outputs the bounding box for each de-
tected human. For every detected human, we re-project
the bottom of the bounding box onto the floor in our 3D
model. We find the triangle in which this re-projected point
falls and increase its occupancy accordingly. The occupancy
map observed in a hallway over a period of 5 days is shown
in Figure 4.

Figure 4: Observed occupancy map of a hallway in
a building from a video observed over 5 days.

Geometric features: The features fi of any point pi on
the floor in the 3D model are represented as a set of numbers
{di1, di2, di3...}, which are its distances from the walls and
objects surrounding the point pi. The richest description is
obtained by taking distances from the point on the floor to
every other point in the geometry surrounding it. However,
such amounts of data is redundant, computationally infea-
sible and will likely result in over training. We would like to
use a feature set that gives us sufficient information to esti-
mate the occupancy of that point. When traversing indoors,
our immediate decision of movement is influenced by the ob-
jects in our path in the hallway and the surrounding walls.
For example the way we navigate around tables and chairs
when moving from one corner of a classroom to the opposite
corner. So, to build our features we measure distances to



walls or objects in the hallway along vectors pointing at a
certain inclination from the floor. In this paper, we use 30
- 60 degrees, considering this is sufficient to capture objects
present in the hallway. Pointing vectors at regular interval
spanning an entire circle with its tail fixed at the point pi
as shown in Figure 5. There are two issues concerning these
features. First, if the closest wall or an object in a certain
direction is very far away like in the case of an object at
the far end of a hallway like the point A in Figure 4 with
respect to the object, the local motion or occupancy deci-
sions of a human subject is indifferent to an object at such
great distance. Second, if we take two points on the floor
that are close to the walls in a hallway but on either end
of the hallway like the points B and C in Figure 4, these
points in essence are the same and are likely to have the
same occupancy, yet the features representing these points
are different. If for example we want to take the distances
surrounding the point in clockwise direction starting from
the first direction being upwards, the features of B would
start with a small number and increase before decreasing.
However for C, the features would start with a much larger
value and then increase before decreasing to a smaller value
following the convention for computing distances. So the
features would require some preprocessing as we would like
to make the features scale and rotational invariant.

Scale invariance can be achieved by thresholding the dis-
tances to a hemisphere with its center at the location of the
human subject’s feet as shown in Figure 5. The radius r
of this hemisphere is inferred from the theory of Proxemics
[13]. This is a theory based on observation that defines how
human beings unintentionally make use of physical space
around them. Proxemics classifies the space close to a hu-
man subject into four broad regions, Intimate, Personal, So-
cial and Public distance. For our purpose, we consider the
interaction between human subjects in closed hallways to
take place within the social distance, which is 7-12 ft. (80-
140 in.). The radius of the hemisphere is defined by this
distance (fi = {di1, di2, di3...}, dij = r∀dij ≥ r, 80 ≤ r ≤
140). To make the features rotationally invariant, we mea-
sure the features always starting with the smallest distance
(fi = {di1, di2, di3...}, di1 ≤ dij , 2 ≤ j ≤ n) and take mea-
surements following a certain convention (either clockwise
or anti-clockwise direction), in which case, the points B and
C in Figure 4 will have similar features. The features are not
arranged in ascending order, but are only measured starting
from the smallest value keeping the order unchanged.

Figure 5: Geometric features.

Modeling relationship between occupancy map and
geometric features: Now we know the geometry and know
how humans occupy this specific geometry. Let fi = {di1, di2,
di3...} be the features of the points pi with occupancy oi.

Given the dataset {oi, di1, di2, ...din}, we choose to model
the relation between the dependent variable oi and the inde-
pendent variables, vectors of fi, using a linear relationship.
Let εi be the error term. Then we have

oi =β1di1 + β2di2 + ...+ βndin + εi = FT
iβ + εi

o = Fβ + ε
(2)

o =


o1
o2
.
.
.

; F =


f1
f2
.
.
.

 =


d11 ... d1n
d21 ... d2n
. ... .
. ... .
. ... .

;

β =


β1
β2
.
.
.

; ε =


ε1
ε2
.
.
.


To estimate the values of β we minimize the sum of squares

of the error term ε, which would give us β = (FTF )−1FT o.
To determine the occupancy of any point on the floor in any
new geometry, all we need is to compute the geometric fea-
tures of that point. We can use the estimated β to calculate
the occupancy at that point. Figure 6 depicts the occupancy
for two different geometries in a building. We can see how
the occupancy of the points in the center of the hallway are
higher than those along the edges. The rotational invari-
ance of the features allow for the expected estimation of the
occupancy even along curved hallways as seen in Figure 6
(a).

3.2 Trajectory Forecasting
Now that we have the occupancy map, given the destina-

tion we create a distance map and then combine the occu-
pancy and distance maps to construct the energy function.
Then finally we use a energy maximization framework to
create the transition matrix for our trajectory forecasting.

(a)

(b)

Figure 6: Estimated occupancy maps: Red being
most accessible and blue being the least. (a) geom-
etry A; (b) geometry B.

Destination map: Given a destination, we can create
a distance map from every other point on the floor, to the
destination. In general, hallways are complex polygons with
areas that are inaccessible. Using Euclidean distance can po-
tentially be erroneous. So we make use of Geodesic distance
[23] instead. Euclidean distance between two points is not



altered by the presence of inaccessible areas, but geodesic
distance is measured around the inaccessible areas along the
hallway and gives a more accurate sense of distance for hu-
man navigation. The geodesic distances from all the points
is calculated to the destination ahead of time. This needs to
be done only once for the entire geometry. A rendering of
the distance map for geometry A with a given destination is
shown in Figure 7 (a).

The energy function: We use a combination of the
distance map and the occupancy map to create our energy
function. Let O be the occupancy map function and let
D be the distance map function. If pi ∈ P is any point
on the floor. Then the energy of that point is defined by
the function E = −D(pi)/O(pi). The energy function for
geometry A is shown in Figure 7 (b). We can see how the
energy is higher in the center of the hallway than along the
edges, and the energy keeps increasing as we move towards
the destination.

(a)

(b)

Figure 7: Distance map and energy function:(a) Dis-
tance map for geometry A with a given destination;
(b) Energy function for geometry A with a given
destination.

Trajectory sampling: We build our transition probabil-
ity matrix by choosing states that maximize the energy with
higher probability. For every state the subject is present in,
the only possible states of transition are states representing
its neighboring points. Let the current state be St, and this
point has m neighbors St1, St2, ...Stm. The probability of
transition to these m neighboring states is proportional to
the difference in energy. So P (Stm|St) is.

∝
{
E(stm)− E(st) if D(stm)−D(st) ≤ 0

0 otherwise

}
(3)

We are only choosing states that are closer to the destination
(i.e. D(stm) − D(st) ≤ 0), to ensure that the propagation
does not get stuck in a local maximum. The neighboring
states are sampled with a probability that is proportional to
the difference in their energies.

Algorithm 1 summarizes our complete trajectory forecast-
ing methodology. Figure 8 (a) shows the distribution of
simulating the trajectory prediction algorithm 5,000 times
without the use of the occupancy map, but only using dis-
tance minimization. Figure 8 (b) simulates with the help of
the occupancy map in geometry B. We can see how the es-
timated occupancy map complements the geodesic distance

minimization and forms a more desirable trajectory, that
conforms to expected human behavior.

(a)

(b)

Figure 8: A is the starting location and B is the des-
tination (a) Distribution created by simulating tra-
jectory prediction without using occupancy map; (b)
Distribution created by simulating trajectory pre-
diction using occupancy map.

4. EXPERIMENTS

4.1 Implementation
This section explains the implementation of our method-

ology. First, we present how we build our 3D models. Then
we describe a method to embed virtual cameras in the 3D
model that represent the cameras in real world. Finally we
will see how a human subject detected in the image of a
real world camera can be projected onto a point in our 3D
model.

Modeling 3D geometry: We model the 3D geometry
of the environment like floors, walls, hallways, etc. using
Google Sketchup, a 3D modeling tool. Figure 9 depicts the
3D model of a building constructed using existing floor plans
to obtain the measurements and dimensions. We then ex-
port the 3D model using a common digital asset exchange
format [2] called COLLADA file format which we later use
for rendering and understanding the 3D environment. COL-
LADA Document Object Model (DOM) library is used to
load and save this 3D model into an application, and then
we use OpenGL to interact with this 3D data in the appli-
cation.

Figure 9: Model of a building using Google
Sketchup.

Embedding virtual cameras and calibration: An
initial step is to create virtual cameras in our 3D model



which represent the cameras in real world. In order to do
this we first determine the internal camera parameters of the
existing real world camera by using a general calibration ap-
proach using a checkerboard. Once the camera’s internal pa-
rameters are obtained, we can use OpenGL to create virtual
cameras in our model which render perspective projections
of the 3D model that are conceptually equivalent to the real
world cameras. Now in order to determine the location and
orientation of the camera in our 3D model, we take an im-
age from the real world camera and try to manually register
it with the corresponding camera’s perspective projection in
our graphics model, by manually changing the parameters in
the transformation matrix using OpenGL. When the images
register as shown in Figure 10, we extract the transforma-
tion matrix of the camera which gives us the approximate
location and orientation of the camera in the 3D model [30].

Delaunay triangulation of the floor mesh: We choose
to represent the floor using a triangular mesh though other
representation are possible. For our purpose we would like a
rich description of the triangular mesh representing the floor
where human subjects walk. Triangles in the mesh should
have adequate height and base with respect to the normal
human motion characteristics. Assuming that the humans
walk at an average pace of 3 ft/sec and the camera in use
has a frame rate of 30 fps, if we plan to take a sample every
10 seconds or for every feet the human moves, it would be
convenient if the triangles have a height and base that are
at least 1 ft. long. We use Delaunay triangulation to obtain
a mesh that is uniformly spaced as shown in Figure 10. An
implementation of the Delaunay triangulation is available in
the Computational Geometric Algorithms Library (CGAL)
[1].

Figure 10: Manual registration of an image from
a camera with the perspective rendering of the 3D
model to extract the transformation matrix. The
floor is represented by a uniform triangle mesh ob-
tained by Delauney triangulation.

4.2 Experiments
First the training data for estimating the occupancy map

was obtained from the hallway shown in Figure 10. Five days

worth of video was used to create the training data and the
observed occupancy map is shown in Figure 4. This data
was used to estimate the β values through linear regression
as describe in Section 3.1. We take real world trajectories
from three different scenarios, one from geometry A and two
from geometry B as shown in Figure 11. A sample size of
14 videos from scenario 1, 12 videos from scenario 2 and 11
videos from scenario 3 (37 different human subjects) were
used to evaluate our trajectory forecasting model. None of
these scenario’s geometries were used in estimating the β
values during linear regression in Section 3.1. The human
test subjects were given information regarding the destina-
tion only. An object was placed at the destination and all
they were instructed was to walk to the destination, pick up
the object and come back. The test subjects were not made
aware that the purpose of the experiment was to observe
their trajectories. To form a trajectory, we take a video of
the test subject, run it through the human detection algo-
rithm [10], and the detection are then projected back into
the 3D Model. The consecutive detections are then con-
nected to form the subject’s trajectory. We evaluate our
model using two different metrics. First, we calculate the
modified Hausdorff distance of the real world trajectory to
predicted trajectories. Second, we determine the negative
log likelihood of the real world trajectory from the distribu-
tion created by the trajectories from the proposed model.
In order to quantify the performance of our model, we com-
pare the distribution of trajectories predicted by our model
with a state-of-the-art approach (activity forecasting [19])
and a baseline algorithm. The work of Kitani et al. [19] is
more extensive as the destination was also forecasted before
the trajectory prediction was performed unlike the proposed
method where the destination is assumed to be known. From
a trajectory forecasting stand point, both the models require
the destination to be known before trajectory forecasting
and are defined manually during the experiments. In the
baseline algorithm, all the points are assumed to have equal
occupancy hence allowing us to evaluate the impact of our
model of human behavior. In activity forecasting [19], for
each scenario the images are given semantic labels manu-
ally. To evaluate this approach on our dataset, the walls are
labeled as building and the floor as sidewalk. The weights
for the features/labels are learned from a different geometry
and are then transfered and used for forecasting the trajec-
tory distribution in the new geometry. Figure 12 compares
the distribution of trajectories generated for scenario 1 using
baseline, activity forecasting and proposed method.

(a) (b) (c)

Figure 11: Experimental scenarios with a sample
trajectory, red - actual trajectory, green - predicted
trajectory; (a) scenario 1 (geometry A); (b) scenario
2 (geometry B); (c) scenario 3 (geometry B);.

Modified Hausdorff distance: Let To = {So1, So2, So3..}
be the observed trajectory and Tq = {Sq1, Sq2, Sq3..} pre-
dicted trajectory, where Si ∈ P are points on the floor. The
Hausdorff distance DH(To, Tp) between the two trajectories



(a) (b) (c)

Figure 12: Trajectory distribution around the cor-
ner for scenario 1 in geometry A; (a) Baseline; (b)
Activity Forecasting; (c) Proposed Method;.

Scenario Baseline Activity Forecasting [19] Proposed

1 23.802 22.993 9.259
2 15.677 26.713 8.473
3 18.658 35.116 9.449

Table 1: Hausdorff distance of real world trajecto-
ries compared with simulated trajectories. The dis-
tances are measured in inches.

is defined as max{D(To, Tq), D(Tq, To)}, where

D(To, Tq) =
1

No

∑
a∈To

d(a, Tq)

d(a, Tq) = min
b∈Tq

d(a, b) = min
b∈Tq

|a− b|
(4)

d(a, b) is the Euclidean distance between the points a and b,
and No is the number of points in the trajectory To. This
essentially is a metric for quantifying the difference between
the trajectories To and Tq. Each trajectory is compared with
500 simulations of the predicted trajectory from our model
to calculate the average modified Hausdorff distance. The
average modified Hausdorff distance over the real world tra-
jectories for the three geometries are shown in the Table 1.
We can see in all the three geometries, the error in predic-
tions is decreased by using the distribution from our model.

Negative log likelihood: To directly compare our ap-
proach to the method in [19], given a starting point and
a destination point, we simulate our model multiple times
and try to build a transition probability matrix. If Tq =
{Sq1, Sq2, Sq3..} be the the simulated trajectory, using mul-
tiple simulations, we build a NXN transition matrix, where
N is the total number of states or points on the floor. Let
To = {So1, So2, So3...} be the observed trajectory. We es-
timate the probability of sampling the observed trajectory
from the distribution created by the predicted trajectories
as described in Activity Forecasting [19]. We use 2500 pre-
dictions to create the transition probability matrix for the
prediction model. For an observed trajectory To, the error
is estimated as

L(To) ∝ − ln
∏
i

P (S(i)o|S(i−1)o), (5)

where S(i−1)o, S(i)o ∈ To and P (S(i)o|S(i−1)o) is the prob-
ability of transition from state S(i−1)o (current triangle) to
S(i)o (next triangle). This measure is normalized by divid-
ing it with the length of the trajectory. The results in the
Table 2 show the average negative log likelihood for each
geometry. The results demonstrate how the energy function
decreases the error in forecasting the trajectory.

Scenario Baseline Activity Forecasting [19] Proposed

1 2.209 2.529 1.927
2 2.218 1.907 1.550
3 2.259 1.943 1.739

Table 2: Negative log likelihood of real world tra-
jectories compared to simulated trajectories.

5. CONCLUSION
We have modeled a set of geometric features that describe

a point on the floor with respect to the structure of the sur-
rounding geometry. We have proposed a method to esti-
mate the occupancy map using the geometric features for
any new geometry without the need for training data. We
have developed an algorithm to forecast human motion tra-
jectories using this estimated human behavior model. It is
observed that incorporating the estimated occupancy map
in the trajectory prediction can improve the accuracy of pre-
diction significantly. The decrease in the log likelihood and
the modified Hausdorff distance with the incorporation of
the energy function supports the accuracy of this method.
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