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Basic Linear Algebra

Spaces: Rn,Cn, R
n×n,Cn×n, R

m×n,Cm×n

(by default, Rn = R
n×1, Cn = C

n×1)

(Real: R
n,Rn×n,Rm×n; Complex: C

n,Cn×n,Cm×n)
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Basic Linear Algebra

Spaces: Rn,Cn, R
n×n,Cn×n, R

m×n,Cm×n

(by default, Rn = R
n×1, Cn = C

n×1)

(Real: R
n,Rn×n,Rm×n; Complex: C

n,Cn×n,Cm×n)

Vectors:
v ∈ R

n (length-n column real vector)
v ∈ C

n (length-n column complex vector)
w ∈ R

1×n (length-n row real vector)
w ∈ C

1×n (length-n row complex vector)

(We use column vector as the default, so a vector means a
column vector)
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Basic Linear Algebra

Spaces: Rn,Cn, R
n×n,Cn×n, R

m×n,Cm×n

(by default, Rn = R
n×1, Cn = C

n×1)

(Real: R
n,Rn×n,Rm×n; Complex: C

n,Cn×n,Cm×n)

Vectors:
v ∈ R

n (length-n column real vector)
v ∈ C

n (length-n column complex vector)
w ∈ R

1×n (length-n row real vector)
w ∈ C

1×n (length-n row complex vector)

(We use column vector as the default, so a vector means a
column vector)

Special vectors:
Length-n basis vector: ei

ei : (all elements equal to 0 except the i-th element equals to 1)

Length-n vector of all-ones: 1 = [1,1, · · · ,1]T
︸ ︷︷ ︸

n

=
n∑

i=1

ei
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Basic Linear Algebra

Matrices: (element-wise)
An m × n matrix A ∈ R

m×n (or A ∈ C
m×n)

A =
[
ai,j
]

where ai,j ∈ R (or C), i = 1,2, . . . ,m, j = 1,2, . . . ,n.
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Basic Linear Algebra

Matrices: (element-wise)
An m × n matrix A ∈ R

m×n (or A ∈ C
m×n)

A =
[
ai,j
]

where ai,j ∈ R (or C), i = 1,2, . . . ,m, j = 1,2, . . . ,n.

Matrices: (vector-wise)
An m × n matrix A ∈ R

m×n (or A ∈ C
m×n)

A =
[
a1,a2, · · · ,an

]

where ai ∈ R
m (or Cm), i = 1,2, . . . ,n.
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Basic Linear Algebra

Transpose:
A = [ai,j ]m×n ⇐⇒ AT = [aj,i ]n×m

Example:

A =





a11 a12

a21 a22

a31 a32



 ⇐⇒ AT =

[
a11 a21 a31

a12 a22 a32

]
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Basic Linear Algebra

Transpose:
A = [ai,j ]m×n ⇐⇒ AT = [aj,i ]n×m

Example:

A =





a11 a12

a21 a22

a31 a32



 ⇐⇒ AT =

[
a11 a21 a31

a12 a22 a32

]

Adjoint (conjugate transpose) :

A = [ai,j ]m×n ⇐⇒ AH = A∗ = [āj,i ]n×m

Example:

A =





a11 a12

a21 a22

a31 a32



 ⇐⇒ AH =

[
ā11 ā21 ā31

ā12 ā22 ā32

]
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Basic Linear Algebra

A is symmetric: if A = AT

(usually it refers to “real” symmetric,
it can also be “complex” symmetric)

A is hermitian: if A = AH (or A = A∗)

Vector-wise notation:

a ∈ C
m ⇐⇒ aT ∈ C

1×m

A =
[
a1,a2, · · · ,an

]
∈ C

m×n ⇐⇒ AT =








aT
1

aT
2
...

aT
n







∈ C

n×m
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Basic Linear Algebra

Let b = (bi) ∈ R
m, A = (ai,j) ∈ R

m×n, x = (xi) ∈ R
n

Matrix-vector product b = Ax

Element-wise bi =
n
∑

j=1

ai,jxj , i = 1, 2, . . . ,m

Vector-wise b =

n
∑

j=1

ajxj

Any A ∈ C
m×n is a linear mapping from C

n to C
m, meaning that

A(x + y) = Ax + Ay , ∀ x , y ∈ C
n

A(αx) = αAx , ∀ α ∈ C

Conversely, any linear mapping in finite dimensional space can
be expressed as a matrix-vector product
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Basic Linear Algebra

Let b = (bi) ∈ R
m, A = (aj) ∈ R

m×n, x = (xi) ∈ R
n

Matrix-vector product b = Ax

Vector-wise

b =
n
∑

j=1

ajxj

= x1[a1] + x2[a2] + · · · xn[an]

b is a linear combination of the columns of A
Any column of A can be picked out by choosing a specific x , e.g.

aj = A(:, j) = Aej

Any row of of A can be picked out by matrix-vector product, e.g.

A(i , :) = eT
i A
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Basic Linear Algebra

Let A = (aj) ∈ R
m×n, B = (bj) ∈ R

n×k , C = (cj) ∈ R
m×k

Matrix-matrix product C = AB

Vector-wise (compare columns in C = AB)

[c1, c2, . . . , ck ] = A[b1, b2, . . . , bk ]

=⇒ cj = Abj =
n
∑

k=1

ak bk,j

Each cj is a linear combination of the columns of A
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Basic Linear Algebra Subroutines (BLAS)

– Standardized interface for simple vector and matrix operations
– The building block of LAPACK (as the one used in Matlab)
– Optimized implementations for specific machines provided by
manufacturers

History:
– BLAS1 (1970s) Vector operations: β = xTy , y = βx + y
– BLAS2 (mid 1980s) Matrix-vector operations: y = Ax + y
– BLAS3 (late 1980s) Matrix-matrix operations: C = AB + C

Careful cache-aware implementations give close to peak
performance for BLAS3 operations

High level algorithms (Gaussian elimination, etc) use BLAS but
no other machine dependent code
– Performance and portability
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Memory Hierarchy and (BLAS)

Modern computers use a memory hierarchy:
From fast/expensive to cheap/slow:

Registers, L1 cache, L2 cache, (L3 cache ...)
local memory, remote memory, secondary memory

Fast algorithms perform many operations on each memory block
to minimize memory access (cache reuse)

Only BLAS3 has potential for very high performance

BLAS Memory Refs Flops Flops/Memory Ref
Level 1 (y = βx + y) 3n 2n 2/3
Level 2 (y = Ax + y) n2 2n2 2
Level 3 (C = AB + C) 4n2 2n3 n/2

Flop — floating points operations, here each +,−, ∗, /,√ counts as one flop, with no distinction between real and complex.
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BLAS implementations

Vendor provided:
— Intel Math Kernel Library (MKL)
— AMD Core Math Library (ACML)
— Sun Performance Library
— SGI Scientific Computing Software Library

Automatically Tuned Linear Algebra Software (ATLAS)
— Analyzes hardware to produce BLAS libraries for any platform
— Used in MATLAB, precompiled libraries freely available
— Sometimes outperforms vendor libraries

GOTO BLAS (mainly for Intel processors)
— Manually optimized assembly code,

(fastest implementation for Intel processors)

Y. Zhou Math-6316/CS-7366, SMU 12/209



Basic Linear Algebra

Examples of matrix-matrix product:

Outer product: (rank-1)
For a = (ai) ∈ C

m, b = (bi) ∈ C
n, (ai ,bi ∈ C)

abH = [ab̄1,ab̄2, · · · ,ab̄n] = (aibj) ∈ C
m×n

Outer product: (rank ≤ k)
For U = [uj ] ∈ C

m×k , V = [vj ] ∈ C
n×k , (uj ∈ C

m, vj ∈ C
n)

UV H = [u1,u2, · · · ,uk ]








vH
1

vH
2
...

vH
k







=

k∑

j=1

ujvH
j ∈ C

m×n

Rank-k SVD is a representative rank-k outer product.

A = UΣV H =
∑k

j=1 σjujvH
j
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Basic Linear Algebra

Examples of matrix-matrix product: A ∈ C
m×n

Right multiply by an upper triangular matrix: B = AR
Let R = (rij) ∈ C

n×n be upper triangular,

B = AR = [a1,a2, · · · ,an]






r11 · · · r1n

. . .
...

rnn




 =⇒ bj =

j
∑

ℓ=1

aℓrℓj

(bj is a linear combination of only the first j columns of A)

Right multiply by a lower triangular matrix: B = AL,L ∈ C
n×n

(bj is a linear combination of only the last n− j+ 1 columns of A

Left multiply by an upper triangular matrix: B = RA,R ∈ C
m×m

(i-th row of B is a linear combination of last m− i+ 1 rows of A)

Left multiply by a lower triangular matrix: B = LA,L ∈ C
m×m

(i-th row of B is a linear combination of only the first i rows of A)
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Basic Linear Algebra: Range, Nullspace

The range or column space of A = [a1,a2, . . . ,an] ∈ C
m×n:

range(A) = span{a1,a2, . . . ,an}
= All linear combinations of the columns of A

= {Ax | ∀ x ∈ C
n}

The nullspace of A ∈ C
m×n: (also written as kernel space ker(A))

null(A) = {x | Ax = 0}

Relation between range(AH) and null(A)

null(A) = (range(AH))⊥

Equivalently,

Rank-nullity theorem: rank(A) + dim(null(A)) = n

Y. Zhou Math-6316/CS-7366, SMU 15/209



Basic Linear Algebra: Rank

The column rank of A = [a1,a2, . . . ,an] ∈ C
m×n is the dimension

of range(A), it is the same as the number of linearly independent
columns in [a1,a2, . . . ,an].

Similar definition for row rank

For any m × n matrix A :

rank(A) = column rank of A = row rank of A

Question: How to determine the rank of a given A?

Theorem
An m × n matrix A (m ≥ n) is full rank iff null(A) = {0}.

In other words, a full rank matrix never maps two different vectors to a
same vector.
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Basic Linear Algebra: Rank

Theorem: Let A ∈ C
m×n, (assume operation compatibility)

rank(A) ≤ min(m,n); rank(A) = dim(range(A))

rank(AB) ≤ min(rank(A), rank(B))

rank(AB) = rank(A) if B has full row-rank

rank(CA) = rank(A) if C has full column-rank

Subadditivity: rank(A + B) ≤ rank(A) + rank(B)
(Implication: A rank-k matrix can be the sum of k rank-1
matrices, but not fewer)

rank(AHA) = rank(AAH) = rank(A) = rank(AH) = rank(AT)

Rank-nullity theorem: rank(A) + dim(null(A)) = n

Frobenius’ rank-inequality:
rank(AB) + rank(BC) ≤ rank(B) + rank(ABC)

Special case (Sylvester’s rank-inequality):
rank(A) + rank(B) ≤ n + rank(AB)
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Basic Linear Algebra: Inverse

A square (size-n) matrix A is called nonsingular (or invertible or
non-degenerate) if ∃B s.t. AB = BA = In,
in this case B is called the inverse of A: A-1 = B
If A is nonsingular, then

(

A-1
)-1

= A

(AT)-1 = (A-1)T , (AH)-1 = (A-1)H

(AB)-1 = B-1A-1

det(A-1) = det(A)-1

Change of basis (view):

x = A-1b ⇐⇒ x is the solution to Ax = b

x is the linear combination of the columns of A-1 with coefficients b
x is the vector of coefficients of the expansion of b in the basis of
columns of A
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Basic Linear Algebra: Inverse

Theorem: For A ∈ C
n×n, the following statements are equivalent:

A is invertible

rank (A) = n

ker (A) = {0} (or, Ax = b has a unique solution)

range (A) = C
n

det (A) 6= 0

Eigenvalues of A are all non-zero

Singular values of A are all non-zero

The linear mapping x 7→ Ax is a bijection from C
n → C

n

A can be expressed as a product of a finite number of
elementary matrices
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Basic Linear Algebra: Elementary matrices

An elementary matrix is a matrix obtained by only one row operation
(permutation, scaling, addition) of the identity matrix.
There are three types of elementary matrices.

(I) Permutation: E(i , j) exchanges the i-th row with the j-th row of In,

E(i , j) =
















1
. . .

0 1
. . .

1 0
. . .

1
















= In − eieT
i − ejeT

j + eieT
j + ejeT

i .

Properties and applications:

[E(i , j)]-1 = E(i , j) (self-inverse)
E(i , j)A exchanges the i-th row with the j-th row of A
AE(i , j) exchanges the i-th column with the j-th column of A
det (E(i , j)) ≡ −1, det (E(i , j)A) = det (AE(i , j)) = −det (A)
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Basic Linear Algebra: Elementary matrices

(II) Scaling: Es(i , c) scales the i-th row of In by c,

Es(i , c) =















1
. . .

1
c

1
. . .

1















= In + (c − 1)eieT
i .

Properties and applications:

If c 6= 0, then Es(i , c)-1 = Es(i , 1
c )

Es(i , c)A scales only the i-th row of A by c

AEs(i , c) scales only the i-th column of A by c

det (Es(i , c)) = c, det (Es(i , c)A) = det (AEs(i , c)) = cdet (A)
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Basic Linear Algebra: Elementary matrices

(III) Addition: Ea(i , j , c) scales the i-th row of In by c, and adds it to
the j-th row of In,

Ea(i , j , c) =
















1
. . .

1
. . .

c 1
. . .

1
















= In + cejeT
i .

Properties and applications:

[Ea(i , j , c)]-1 = Ea(i , j ,−c)

Ea(i , j , c)A scales i-th row of A by c, and adds it to j-th row

AEa(i , j , c) scales i-th column of A by c, and adds it to j-th
column

det (Ea(i , j , c)) ≡ 1, det (Ea(i , j , c)A) = det (AEa(i , j , c)) = det (A)
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Basic Linear Algebra: Elementary matrices

A general definition of size-n elementary matrices:
Size-n matrices of the form In − uvT, where u, v ∈ R

n with vTu 6= 1,
are called elementary matrices.

It is easy to select u and v for the E ,Es,Ea just discussed. E.g.,

For E(i , j), u = v = ei − ej

For Es(i , c), u = (1− c)ei , v = ei

For Ea(i , j , c), u = cej , v = −ei

Theorem:
An elementary matrix I − uvT is always invertible, its inverse is

(I − uvT)-1 = I − uvT

vTu − 1
,

which is also an elementary matrix.
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Inverse (block-wise elementary matrix operation)

Triangular nonsingular block matrix:
[
A11 0
A21 A22

]

and
[
A11 A12

0 A22

]

[
A11 0
A21 A22

]-1

=

[
A-1

11 0
−A-1

22A21A-1
11 A-1

22

]

[
A11 A12

0 A22

]-1

=

[
A-1

11 −A-1
11A12A-1

22
0 A-1

22

]

In particular,

[
I 0

A21 I

]-1

=

[
I 0
−A21 I

]

,

[
I A12

0 I

]-1

=

[
I −A12

0 I

]
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Inverse (block-wise view)

General block matrix: A =

[
A11 A12

A21 A22

]

If A11 is invertible,
[
A11 A12

A21 A22

]

=

[
I 0

A21A-1
11 I

] [
A11 0
0 S

] [

I A-1
11A12

0 I

]

S = A22 − A21A-1
11A12 is called the Schur complement of A11 in A.

If A22 is invertible,
[
A11 A12

A21 A22

]

=

[

I A12A-1
22

0 I

] [

Ŝ 0
0 A22

] [
I 0

A-1
22A21 I

]

Ŝ = A11 − A12A-1
22A21 is called the Schur complement of A22 in A.

The above decompositions prove a Theorem:
A is nonsingular iff its Schur complement is nonsingular.
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Inverse (block-wise view)

If A is nonsingular, then
[
A11 A12

A21 A22

]-1

=

[

I −A-1
11A12

0 I

] [
A-1

11 0
0 S-1

] [
I 0

−A21A-1
11 I

]

=

[
A-1

11 + A-1
11A12S-1A21A-1

11 −A-1
11A12S-1

−S-1A21A-1
11 S-1

]

Similarly,
[
A11 A12

A21 A22

]-1

=

[
I 0

−A-1
22A21 I

] [
Ŝ-1 0
0 A-1

22

] [

I −A12A-1
22

0 I

]

=

[

Ŝ-1 −Ŝ-1A12A-1
22

−A-1
22A21Ŝ-1 A-1

22 + A-1
22A21Ŝ-1A12A-1

22

]

Comparing the 1-1 block of A-1 =⇒ Ŝ-1 = A-1
11 + A-1

11A12S-1A21A-1
11,

the Binomial Inverse Theorem:
(

A11 − A12A-1
22A21

)-1
= A-1

11 + A-1
11A12

(

A22 − A21A-1
11A12

)-1
A21A-1

11
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Sherman-Morrison-Woodbury (SMW) formula

Binomial Inverse Theorem: (or SMW)
(
A + UCV H

)-1
= A-1 − A-1U

(

C-1 + V HA-1U
)-1

V HA-1,

where A,U,C,V are matrices with compatible dimensions, A and
(

C-1 + V HA-1U
)

are nonsingular.

Special cases:

(Sherman-Morrison) If A is nonsingular, u, v ∈ C
n, and

1 + vHA-1u 6= 0, then

(
A + uvH

)-1
= A-1 − A-1uvHA-1

1 + vHA-1u

(Sherman-Morrison-Woodbury) If A is nonsingular, U,V ∈ C
n×k ,

and Ik + V HA-1U is invertible, then
(
A + UV H

)-1
= A-1 − A-1U

(

I + V HA-1U
)-1

V HA-1

Y. Zhou Math-6316/CS-7366, SMU 27/209



Basic Linear Algebra: Vector Norms

Definition:
A vector norm ‖·‖ on a vector space X is a real-valued function on X,
which satisfies the following three conditions:

1. ‖x‖ ≥ 0, ∀ x ∈ X, and ‖x‖ = 0 iff x = 0.

2. ‖αx‖ = |α|‖x‖, ∀ x ∈ X, ∀α ∈ C.

3. (Triangle inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀ x , y ∈ X.

Common vector norms on C
n

‖x‖1 := |x1|+ |x2|+ · · ·+ |xn|. (Manhattan norm or taxicab norm)

‖x‖2 =
(
|x1|2 + |x2|2 + · · ·+ |xn|2

)1/2
. (Euclidean norm)

‖x‖∞ = maxi=1,...,n |xi |. (Chebyshev norm or maximum norm)

All these three norms are special cases of the Lp norm

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

, p ≥ 1. (if p < 1, does ‖x‖p define a norm?)
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Verification of Norm Conditions

Example 1: Show that ‖x‖∞ = max
i=1,...,n

|xi | defines a norm.
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Verification of Norm Conditions

Example 1: Show that ‖x‖∞ = max
i=1,...,n

|xi | defines a norm.

1. ‖x‖∞ = max
i=1,...,n

|xi | ≥ 0, and ‖x‖∞ = 0 iff x = 0

2. ‖αx‖∞ = max
i=1,...,n

|αxi | = |α| max
i=1,...,n

|xi | = |α‖x‖∞

3. ‖x+y‖∞ = max
i=1,...,n

|xi+yi | ≤ max
i=1,...,n

|xi |+ max
i=1,...,n

|yi | = ‖x‖∞+‖y‖∞
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Verification of Norm Conditions

Example 1: Show that ‖x‖∞ = max
i=1,...,n

|xi | defines a norm.

1. ‖x‖∞ = max
i=1,...,n

|xi | ≥ 0, and ‖x‖∞ = 0 iff x = 0

2. ‖αx‖∞ = max
i=1,...,n

|αxi | = |α| max
i=1,...,n

|xi | = |α‖x‖∞

3. ‖x+y‖∞ = max
i=1,...,n

|xi+yi | ≤ max
i=1,...,n

|xi |+ max
i=1,...,n

|yi | = ‖x‖∞+‖y‖∞

Example 2: Show that ‖x‖M =
√

xHMx , where M is (hermitian) PD,
defines a norm on C

n. (This is called a weighted 2-norm.)
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Verification of Norm Conditions

Example 1: Show that ‖x‖∞ = max
i=1,...,n

|xi | defines a norm.

1. ‖x‖∞ = max
i=1,...,n

|xi | ≥ 0, and ‖x‖∞ = 0 iff x = 0

2. ‖αx‖∞ = max
i=1,...,n

|αxi | = |α| max
i=1,...,n

|xi | = |α‖x‖∞

3. ‖x+y‖∞ = max
i=1,...,n

|xi+yi | ≤ max
i=1,...,n

|xi |+ max
i=1,...,n

|yi | = ‖x‖∞+‖y‖∞

Example 2: Show that ‖x‖M =
√

xHMx , where M is (hermitian) PD,
defines a norm on C

n. (This is called a weighted 2-norm.)

1. Since M is PD, ‖x‖M =
√

xHMx ≥ 0, and ‖x‖M = 0 iff x = 0

2. ‖αx‖M =
√
ᾱxHMαx = |α|‖x‖M

3. ‖x + y‖2
M = (x + y)HM(x + y) = xHMx + xHMy + yHMx + yHMy ,

Since M is PD, let M = W HW for some W nonsingular, then
xHMy + yHMx = (Wx)H(Wy) + (Wy)H(Wx) ≤ 2 ‖Wx‖2 ‖Wy‖2 =
2‖x‖M‖y‖M , therefore ‖x + y‖2

M ≤ (‖x‖M + ‖y‖M)2.
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Basic Linear Algebra: Matrix norms

A matrix norm (‖·‖) is a vector norm on F
m×n (where F = R or C).

That is,

‖A‖ ≥ 0, and ‖A‖ = 0 iff A = 0

‖αA‖ = |α|‖A‖, ∀ α ∈ F and ∀A ∈ F
m×n

(Triangle inequality) ‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀ A,B ∈ F
m×n

In the case of square matrices, if ‖·‖ also satisfies
‖AB‖ ≤ ‖A‖‖B‖, ∀ A,B ∈ F

n×n,
then ‖·‖ is called a sub-multiplicative norm (also called a
consistent norm)

Example: Show that ‖A‖ = max
ij
|aij | defines a matrix norm. (This is

called the max-norm.) Is it sub-multiplicative ?
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Induced Matrix norms

Consider A ∈ F
m×n as an operator from F

n → F
m. Define the

subordinate matrix norm on F
m×n induced by ‖ · ‖α on F

n and ‖ · ‖β
on F

m as:

‖A‖α,β = max
x 6=0

‖Ax‖β
‖x‖α

= max
‖x‖α=1

‖Ax‖β .

When α = β, it defines the induced matrix norm by vector norm ‖·‖α,
this norm is also called the operator norm,

‖A‖α = max
x 6=0

‖Ax‖α
‖x‖α

= max
‖x‖α=1

‖Ax‖α .

Clearly,
‖Ax‖α ≤ ‖A‖α ‖x‖α .

Property: Every induced matrix norm is sub-multiplicative.

Proof: For any compatible A,B and an induced matrix norm ‖·‖α,

‖AB‖α = max
‖x‖α=1

‖ABx‖α ≤ max
‖x‖α=1

‖A‖α ‖Bx‖α ≤ ‖A‖α ‖B‖α .
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Examples of induced matrix norms

1-norm:

‖A‖1 = max
x 6=0

‖Ax‖1

‖x‖1
= max

1≤j≤n

m∑

i=1

|aij |

2-norm:

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2
=
√

λmax(AHA) = σmax(A)

(2-norm is also called the spectral norm)

∞-norm:

‖A‖∞ = max
x 6=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤m

n∑

j=1

|aij |.
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Frobenius norm

For A ∈ F
m×n, treat A as a length mn vector and define the Lp vector

norm: (p ≥ 1)

‖A‖Lp =





m∑

i=1

n∑

j=1

|aij |p




1/p

.

p = 2 gives the Frobenius norm

‖A‖F =
(
∑m

i=1

∑n
j=1 |aij |2

)1/2
=
√

trace (A∗A) =
√

trace (AA∗)

Frobenius norm is sub-multiplicative, but it is not an induced
norm (why?)
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Frobenius norm

For A ∈ F
m×n, treat A as a length mn vector and define the Lp vector

norm: (p ≥ 1)

‖A‖Lp =





m∑

i=1

n∑

j=1

|aij |p




1/p

.

p = 2 gives the Frobenius norm

‖A‖F =
(
∑m

i=1

∑n
j=1 |aij |2

)1/2
=
√

trace (A∗A) =
√

trace (AA∗)

Frobenius norm is sub-multiplicative, but it is not an induced
norm (why?) (if it is induced, one would have ‖I‖F = 1)
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Frobenius norm

For A ∈ F
m×n, treat A as a length mn vector and define the Lp vector

norm: (p ≥ 1)

‖A‖Lp =





m∑

i=1

n∑

j=1

|aij |p




1/p

.

p = 2 gives the Frobenius norm

‖A‖F =
(
∑m

i=1

∑n
j=1 |aij |2

)1/2
=
√

trace (A∗A) =
√

trace (AA∗)

Frobenius norm is sub-multiplicative, but it is not an induced
norm (why?) (if it is induced, one would have ‖I‖F = 1)
Both 2-norm and Frobenius norm are unitarily invariant: Given
A ∈ C

m×n, then for any unitary Qm ∈ C
m×m,Qn ∈ C

n×n, (later)

‖A‖γ = ‖QmA‖γ = ‖AQn‖γ = ‖QmAQn‖γ where γ = 2,F .

p =∞ yields the max-norm
(

max
ij
|aij |
)

, also called the uniform

norm.
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Matrix norms defined by singular values

Let X ∈ C
m×n with m ≥ n, denote the singular values of X as

{σi(X )}, i = 1, . . . ,n. The Schatten p-norm (p ≥ 1) of X is defined as

‖X‖Sp :=

(
n∑

i=1

σi(X )p

)1/p

.

Special cases:

Nuclear norm (p = 1), also called the trace norm or Ky-Fan norm:

‖X‖∗ = ‖X‖tr :=

n∑

i=1

σi(X )

Frobenius norm (p = 2): ‖X‖F = ‖X‖S2 .

Spectral norm (p =∞): ‖X‖2 = ‖X‖S∞ .
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Basic Linear Algebra: Inner Products

For x , y ∈ R
n,
〈x , y〉 := yTx = xTy =

∑n
i=1 xiyi

For x , y ∈ C
n,
〈x , y〉 := yHx = xHy =

∑n
i=1 xi ȳi

(An important property) Given A ∈ C
m×n,

〈Ax , y〉 =
〈
x , AHy

〉
, ∀ x ∈ C

n, y ∈ C
m

〈x , x〉 ≥ 0 ∀ x

Cauchy inequality: (Cauchy-Bunyakowski-Schwarz)

〈x , y〉 ≤ ‖x‖2 ‖y‖2

Let α be the angle between two vectors x , y ∈ C
n, then

cos(α) =
〈x , y〉
‖x‖2 ‖y‖2
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Inner Product (general definition)

Definition: (inner product on a linear space V)
A mapping 〈· , ·〉 : V × V → F (F = R or C) is called an inner
product if it satisfies

1. Positive-definiteness:
〈u , u〉 ≥ 0, ∀ u ∈ V ; 〈u , u〉 = 0 if and only if u = 0,

2. Conjugate symmetry:

〈u , v〉 = 〈v , u〉, ∀ u, v ∈ V

3. Linearity in the first argument:
I.e., the mapping u → 〈u , v〉 is linear for each v ∈ V :

〈αu , v〉 = α 〈u , v〉 , ∀α ∈ F

〈u1 + u2 , v〉 = 〈u1 , v〉+ 〈u2 , v〉 , ∀u1,u2, v ∈ V

If F = R, then the conjugate symmetry reduces to symmetry.
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Examples of matrix inner products

A very common inner product on the vector space R
n×n is defined as

〈X , Y 〉 = trace
(
X TY

)
= trace

(
Y TX

)
, ∀ X ,Y ∈ R

n×n.

The corresponding inner product on C
n×n is defined as

〈X , Y 〉 = trace
(
Y HX

)
, ∀ X ,Y ∈ C

n×n.

The above defined 〈· , ·〉 is known as the Hilbert-Schmidt inner
product.

Frobenius norm is the same as the Hilbert-Schmidt norm:
‖A‖F =

√

〈X , X 〉 =
√

trace (X HX ) .
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Orthogonality; Orthonormality

Two vectors x , y in an inner product space (say R
n or Cn) are

orthogonal if
〈x , y〉 = 0

Two sets of vectors X ,Y are orthogonal if

〈x , y〉 = 0, ∀x ∈ X , ∀y ∈ Y

Pairwise orthogonal set of vectors S is defined as a set of
nonzero vectors orthogonal to each other. I.e.,

〈x , y〉 = 0, ∀x , y ∈ S, x 6= y

Pairwise orthonormal set of vectors S is defined as a set of unit
length (in 2-norm) vectors orthogonal to each other.
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Orthogonal matrices; Unitary matrices

A matrix Q ∈ R
n×n is orthogonal if

Q-1 = QT

A matrix Q ∈ C
n×n is unitary if

Q-1 = QH

A set of column vectors of a unitary (or orthogonal) matrix is
pairwise orthonormal

A set of row vectors of a unitary (or orthogonal) matrix is pairwise
orthonormal

Inverse reduced to (conjugate) transpose !

Qx = b ⇐⇒ x = QHb

Important class of normal matrices (defined as A∗A = AA∗)
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Preservation of length and angle

QHQ = QQH = I =⇒ |det (Q) | = 1 , det (Q) = ±1 when Q is
real
Preserves inner product

〈Qx , Qy〉 =
〈
x , QHQy

〉
= 〈x , y〉

Therefore, unitary matrix multiplication preserves length of vector
(‖Qx‖2 = ‖x‖2) and angle between vectors

cos∠(Qx ,Qy) = cos∠(x , y)

A (real) orthogonal Q can only be a rigid rotation (det (Q) = 1) or
reflection (det (Q) = −1)

u
vQu

Qv
Rotation

u
v

Qu
Qv

Reflection
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Givens rotation in 2-D

Rotating
−→
OA anti-clockwise by θ to

−→
OÃ. Denote L = ‖−→OA‖ = ‖

−→
OÃ‖.

O

A(x , y)

Ã(x̃ , ỹ)

θ
α

x = L cos(α), y = L sin(α);

x̃ = L cos(α+ θ)

= x cos(θ)− y sin(θ),

ỹ = L sin(α+ θ)

= y cos(θ) + x sin(θ).

=⇒
[
x̃
ỹ

]

= G(θ)

[
x
y

]

:=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]

If rotate clockwise by θ, then the Givens rotation matrix is

G(−θ) =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

.
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Givens rotation in 2-D

Rotating
−→
OA anti-clockwise by θ to

−→
OÃ. Denote L = ‖−→OA‖ = ‖

−→
OÃ‖.

O

A(x , y)

Ã(x̃ , ỹ)

θ
α

x = L cos(α), y = L sin(α);

x̃ = L cos(α+ θ)

= x cos(θ)− y sin(θ),

ỹ = L sin(α+ θ)

= y cos(θ) + x sin(θ).

=⇒
[
x̃
ỹ

]

= G(θ)

[
x
y

]

:=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]

If rotate clockwise by θ, then the Givens rotation matrix is

G(−θ) =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

. G-1(θ) = G(−θ)
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Givens rotation to zero out an element

[
x̃
ỹ

]

= G(θ)

[
x
y

]

:=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]

=

[
x cos(θ)− y sin(θ)
y cos(θ) + x sin(θ)

]

To zero out the 2nd element in
[
x
y

]

, simply choose a θ s.t. ỹ = 0,

i.e., cot(θ) = −x
y

There are more numerically stable ways to compute the
sin(θ), cos(θ) from x , y

To selectively zero out k elements in a length-n vector, apply
corresponding Givens rotation k times sequentially
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Givens rotation in n-D

G(i , j , θ) =
















1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · − sin(θ) · · · 0
...

...
. . .

...
...

0 · · · sin(θ) · · · cos(θ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1
















That is, G(i , j , θ) = In except at the ii , jj , ij , ji positions.

Effect: G(i , j , θ)x rotates x counterclockwise in (i , j) plane by θ

Main use: To introduce zeros in vectors or matrices. E.g.,
for computing QR decompositions

Advantage: Stable (it is unitary!)
Lower operation count for very sparse matrices (only need to
zero out a few nonzero elements)
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Householder reflection

Givens rotation targets to introduce one zero per rotation.
Householder reflection introduces n− 1 zeros to a length-n vector per
reflection: by requiring at that the reflected vector has only one
nonzero (i.e., parallel only to some ei ).

Let x ∈ C
n×n, denote the Householder reflector as H, want Hx to be

parallel to some ei , say e1:

Hx = αe1

H is unitary =⇒ ‖Hx‖2 = ‖αe1‖2 = |α| = ‖x‖2

Question: How to construct H, which clearly only depends on x , s.t.
the above two requirements are met ?

Essentially there is only one requirement: Construct H to be unitary
such that Hx = αe1. (The |α| = ‖x‖2 will hold automatically.)
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Constructing a Householder reflector

The hyper-plane to reflect on should be orthogonal to w = Hx − x .

Hx = αe1

x

w = Hx − x

Orthogonal projection of x on w is

w(wHx)
wHw

.

From x , need to go twice the length
of this projection to reach Hx :

Hx = x − 2
wwHx
wHw

The desired Householder reflector is

H = I − 2
wwH

wHw

where w = αe1 − x , |α| = ‖x‖2. Choose the sign of α s.t. least
cancellation of αe1 − x is involved (i.e., α = −sign(x1) ‖x‖2)
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More on Householder reflector

H can be compactly written as

H = I − 2vvH, where ‖v‖2 = 1 .

Question: What is det (H)? What are the eigenvalues of H?

Exercise: For a given nonzero v ∈ C
n, construct an H such that

Hv = ‖v‖2 en. Use the constructed H to directly calculate Hv and
verify that it indeed equals to ‖v‖2 en.
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Summary of six major matrix decompositions:

LU decomposition
A = LU

where L is unit lower triangular, U is upper triangular

Cholesky decomposition (for hermitian PSD matrices) :

A = RHR = LDLH

where R is upper triangular, and L is unit upper triangular

QR decomposition (for A ∈ C
m×n,m ≥ n)

A = Q̃
[
R
0

]

:= [Q,Q⊥]
[
R
0

]

= QR,

where R ∈ C
n×n is upper triangular, Q ∈ C

m×n, and
Q̃ = [Q,Q⊥] ∈ C

m×m is unitary
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Summary of six major matrix decompositions:

Spectral decomposition (for diagonalizable A ∈ C
n×n)

A = XΛX -1, Λ = diag(λ1, · · · , λn),

where X contains the eigenvectors.
If A is symmetric/hermitian, then

A = QΛQH ,

where Q is unitary and contains the eigenvectors.

Schur decomposition (for A ∈ C
n×n)

A = USUH,

where U is unitary, and S is upper triangular. (Questions: What
are on the diag(S)? Can one choose the order of the diagonal
elements?)

Singular value decomposition (SVD) — next few slides
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Some history of SVD

Originally developed independently by differential geometers:
Eugenio Beltrami (1873), Camille Jordan (1874)

Rediscovered independently: James J. Sylvester (1889)

Analog of singular values for compact integral operators:
Erhard Schmidt (1907), Hermann Weyl (1912)
Émile Picard in 1910 seems the first to use the term singular
values

SVD of complex matrices: Léon Autonne (1913)
SVD of rectangular matrices: Carl Eckart and Gale Young
(1936), L. Mirsky (1960)

Computation: Gene Golub and William Kahan (1965),
Gene Golub and Christian Reinsch (1970)

SVD is also known as principal component analysis (PCA), proper
orthogonal decomposition (POD), Hotelling transform, or (discrete)
Karhunen-Loève (KL) transformation.
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Some applications of SVD

Information retrieval and data mining

Data compression; Noise filtering
(Noises tend to correspond to small singular values)

Solving least squares;
Regularization of ill-conditioned (inverse) problems

Image and signal processing: e.g., Image deblurring;
Seismology; Tomography

Graph partition; graph coloring

Bioinformatics and computational biology: Immunology;
Molecular dynamics; Microarray data analysis

Weather prediction

Quantum information, in which SVD is known as the Schmidt
decomposition
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Geometrical motivation of SVD

Fact : Image of a unit sphere Sn in R
n under any real m × n matrix is

a hyperellipse ASn in R
m.

For example:

S2 =

{

(x1, x2)

∣
∣
∣
∣

x2
1 + x2

2 = 1
}

If A =

[
σ1

σ2

]

, then AS2 =

{

(y1, y2)

∣
∣
∣
∣

y2
1

σ2
1
+

y2
2

σ2
2
= 1

}

is an

ellipse in R
2

If A =
[
a11 a12

a21 a22

]

, then AS2=

{

(y1, y2)

∣
∣
∣
∣

yi =
∑

j aijxj , x2
1 +x2

2 =1
}

is an ellipse in R
2

If A =





a11 a12

a21 a22

a31 a32



, then AS2 is a (reduced) ellipsoid in R
3

(essentially it is still a 2-d ellipse)
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Geometrical interpretation of SVD

Fact : Image of a unit sphere S in R
n under any A ∈ R

m×n is a
hyperellipse AS in R

m.

σ1u1σ2u2
v1v2 A

S AS

Avj = σjuj

AS = UΣV TS

V TS contains rotations/reflections of S, it is still a unit sphere;
Σ(V TS) contains scaling of the new unit sphere, resulting in a
hyperellipse; and U(ΣV TS) contains rotations/reflections of the
hyperellipse, without changing its shape.
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Geometrical interpretation of SVD

Fact : Image of S =

{

x

∣
∣
∣
∣
‖x‖2 = 1, x ∈ R

n

}

under any

A = UΣV T ∈ R
m×n is a hyperellipse AS in R

m.

The σi(A)’s measure how much distortion A applies to S:
UTAS is a hyperellipse in standard position, with k-th semiaxis equal
to σk (A).

Note UTAS =

{

y

∣
∣
∣
∣

y = UTAx , x ∈ S
}

, (assume σi > 0, i = 1, . . . ,n)

y := UTAx = UTUΣV Tx = ΣV Tx , ∀x ∈ S

‖x‖2 =
∥
∥V Tx

∥
∥

2 =
∥
∥
∥Σ-1y

∥
∥
∥

2
= 1, =⇒ y2

1

σ2
1

+
y2

2

σ2
2

+ · · ·+ y2
n

σ2
n
= 1

Since U is unitary, UTAS only applies rotation/reflection to AS without
changing its shape. =⇒ AS is a (reduced) hyperellipse in R

m, with its
k-th semiaxis equal to σk (A).
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Singular value decomposition (main idea)

Let A ∈ C
m×n, assume that m ≥ n.

The idea of SVD may be summarized as to find two sets of
orthonormal bases of A s.t. A appears to be a simple diagonal
matrix:

U = [u1, . . . ,un] for the column space, i.e., range (A) ⊆ span(U)

V = [v1, . . . , vn] for the row space, i.e., range (AH) ⊆ span(V )

such that Avi is in the direction of ui : Avi = σiui (σi ≥ 0)

In matrix notation,

A

[

v1

∣
∣
∣
∣
∣
v2

∣
∣
∣
∣
∣
· · ·
∣
∣
∣
∣
∣
vn

]

=

[

u1

∣
∣
∣
∣
∣
u2

∣
∣
∣
∣
∣
· · ·
∣
∣
∣
∣
∣
un

]







σ1

σ2

. . .
σn








=⇒ AV = UΣ

The σi ’s are called singular values of A and usually ordered
non-increasingly: σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
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Singular value decomposition (main structure)

Singular value decomposition (for A ∈ C
m×n, m ≥ n):

A = Ũ
[
Σ
0

]

V H

where Ũ ∈ C
m×m,V ∈ C

n×n are unitary, Σ is diagonal.

Let Ũ := [U,U⊥],U ∈ C
m×n, then

A = [U,U⊥]
[
Σ
0

]

V H = UΣV H

Furthermore, if Σ =

[
Σk

0

]

with k < n, then

A = UΣV H = [Uk ,Uk⊥]

[
Σk

0

] [
V H

k
(Vk⊥)

H

]

= UkΣk V H
k
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Another proof of the rank-nullity theorem

Rank-nullity theorem: ∀ A ∈ C
m×n, rank (A) + dim (ker (A)) = n.

This result is a corollary of a stronger result:

range (A∗) = ker (A)⊥.

This result is straightforward from SVD: Let A = UΣV H, where

Σ =

[
Σk

0

]

with σk > 0, k ≤ n, U = [Uk ,Uk⊥],V = [Vk ,Vk⊥]. Then

A[Vk ,Vk⊥] = [Uk ,Uk⊥]

[
Σk

0

]

, A∗ = VkΣk U∗k .

Therefore, ker (A) = span(Vk⊥), range (A∗) = span(Vk ), from which it
follows

range (A∗) = ker (A)⊥.
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SVD (main structure)

A U U⊥

Σ

0

V H

=

A U

Σ V H

=

A Uk

Σk V H
k

≈

Full SVD:

A = ŨΣ̃V H

(Thin) SVD:

A = UΣV H

Truncated SVD:
A ≈ UkΣkV H

k
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SVD and the Eigenvalue Decomposition (EVD)

Assume that A is square and diagonalizable, the eigenvalue
decomposition is

A = XΛX−1

EVD uses the same basis X for row and column space;
SVD uses two different bases V ,U

EVD generally does not maintain an orthonormal basis in X ,
unless A is normal;
SVD always has two orthonormal bases

EVD is defined only for square matrices;
SVD exists for all matrices

For hermitian/symmetric positive definite matrices A, EVD and
SVD are the same (assuming same order in Λ and Σ)

For hermitian/symmetric matrices A, EVD and SVD are the same
except that σi = |λi | (assuming same order in Λ and Σ)
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Matrix properties revealed by SVD

For general matrix A ∈ C
m×n,

A = UΣV H =⇒
{

AAHU = UΣ2

AHAV = VΣ2

Nonzero eigenvalues of AHA are nonzero σ2
i , eigenvectors are vi

Nonzero eigenvalues of AAH are nonzero σ2
i , eigenvectors are ui

The rank of A = the number of nonzero singular values

range(A) = 〈u1, . . . ,ur 〉 and null(A) = 〈vr+1, . . . , vn〉,
(r = rank (A))

‖A‖2 = σ1 and ‖A‖F =
√

σ2
1 + σ2

2 + . . .+ σ2
r

If A = AH, then σi = |λi | where λi are eigenvalues of A

For square A, |det(A)| =
∏m

i=1 σi , (compare det(A) =
∏m

i=1 λi )

Condition number of A: cond (A) = σmax
σmin
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Low-Rank Approximations

The SVD of a rank r matrix A ∈ C
m×n (r ≤ min(m,n)) can be written

as a sum of r rank-one matrices

A = UΣV ∗ =
r∑

j=1

σjujv∗j .

Theorem: (Schmidt-Weyl / Eckart-Young-Mirsky)
The best rank k approximation of a rank r A in the 2- and F-norm is

Ak =
∑k

j=1 σjujv∗j .

The errors are ‖A− Ak‖2 = σk+1 and ‖A− Ak‖F =
√

σ2
k+1 + · · ·+ σ2

r .

In other words,

σk+1 = min
rank(B)=k

‖A− B‖2 ,

r∑

i=k+1

σ2
i = min

rank(B)=k
‖A− B‖2

F .
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Proof of the Schmidt-Weyl Theorem

We prove the general result: For any A ∈ C
m×n,

min
B∈Cm×n

rank(B)≤k

‖A− B‖2 = σk+1(A) .

The proof uses a standard technique in linear algebra which may be called
dimensionality argument.

Proof. By contradiction, if ∃B ∈ C
m×n, rank (B) ≤ k s.t.

‖A− B‖2 < σk+1(A). Then ∀w ∈ ker (B),w 6= 0,
‖Aw‖2 = ‖(A− B)w‖2 ≤ ‖A− B‖2 ‖w‖2 < σk+1(A) ‖w‖2.

Note that dim (ker (B)) ≥ n − k , and
dim(span{v1, v2, . . . , vk+1}) = k + 1, therefore
∃w0 ∈ ker (B) ∩ span{v1, v2, . . . , vk+1}, where w0 =

∑k+1
i=1 civi 6= 0, for

which it must be true that
‖Aw0‖2 =

∥
∥
∥
∑k+1

i=1 ciσi(A)ui

∥
∥
∥

2
≥ σk+1(A) ‖w0‖2. A contradiction.
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Another interpretation of SVD

The SVD of a rank r matrix A ∈ C
m×n (r ≤ min(m,n)) can be written

as a sum of r rank-one matrices

A =

r∑

j=1

σjujv∗j =

r∑

j=1

σjZj , where Zj := ujv∗j .

The {Zj}r
j=1 construct part of an orthonormal basis of the C

m×n space:

〈
Zi , Zj

〉
= trace

(

Z ∗j Zi

)

= δij

Therefore, SVD can be considered as a (partial) Fourier expansion of
A in the partial orthonormal basis {Zj}r

j=1,

σj =
〈
A , Zj

〉

can be interpreted as the Fourier coefficient of A in the Zj “direction”.
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Why SVD is so fundamental

Provide fundamental matrix properties:
Numerical Rank of matrix (counting

σj
σ1

’s > tolerance)
Bases for range and nullspace (in U and V )
Define matrix norms (e.g., ‖ · ‖2, ‖ · ‖∗, ‖ · ‖Sp )

U and V are unitary — best numerical stability (best conditioning)

Least squares fitting; Regularization of ill-conditioned problems
U and V unitary/orthogonal provide useful geometric insight
Very stable — small changes in A causes only small changes in the
SVD

Large singular values correspond to the principal components;
Small singular values correspond to noises (can be truncated)

Optimal low-rank approximations (in ‖ · ‖Sp such as ‖ · ‖2, ‖ · ‖F )
conveniently obtained via truncated SVD
In most applications, the principal components are essential and
noise better be discarded
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Why SVD does denoising well

Random noise (non-directional, e.g., Gaussian white noise) exist
almost universally
Non-directional noise distributes more or less uniformly across
each orthonormal basis Zi

Each σiZi contains approximately the same level of noise
Signal-to-noise ratio (SNR) in σiZi improves with larger σi

For σi ’s below some threshold, the noise level basically dominate
the signal level in σiZi (i.e., SNR(σiZi ) is too small). In this case,
truncating σiZi loses only a small amount of signal, but removes
disproportionately large amount of noise.
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Application of SVD in Image Compression

View m × n image as a (real) matrix A, find best rank k
approximation by SVD

Storage k(m + n) instead of mn

(When m,n are really large, more economical methods than SVD
are needed)
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Original (Rank 200)
[ 200 x 320 ] original image
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Rank 1
[ 200 x 320 ] image,   svd rank = 1

Truncation error:  sigma(2)/sigma(1)=2.315e−01
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Rank 2
[ 200 x 320 ] image,   svd rank = 2

Truncation error:  sigma(3)/sigma(1)=2.006e−01
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Rank 3
[ 200 x 320 ] image,   svd rank = 3

Truncation error:  sigma(4)/sigma(1)=1.375e−01
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Rank 5
[ 200 x 320 ] image,   svd rank = 5

Truncation error:  sigma(6)/sigma(1)=1.229e−01
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Rank 10
[ 200 x 320 ] image,   svd rank = 10

Truncation error:  sigma(11)/sigma(1)=6.738e−02
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Rank 15
[ 200 x 320 ] image,   svd rank = 15

Truncation error:  sigma(16)/sigma(1)=5.042e−02
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Rank 25
[ 200 x 320 ] image,   svd rank = 25

Truncation error:  sigma(26)/sigma(1)=3.160e−02
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Rank 50
[ 200 x 320 ] image,   svd rank = 50

Truncation error:  sigma(51)/sigma(1)=1.795e−02
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Singular values of the lena image, the horizontal lines plot the 1st,
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Original (Rank 512)
[ 512 x 512 ] original image
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Rank 3
[ 512 x 512 ] image,   svd rank = 3

Truncation error:  sigma(4)/sigma(1)=9.206e−02
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Rank 5
[ 512 x 512 ] image,   svd rank = 5

Truncation error:  sigma(6)/sigma(1)=7.938e−02
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Rank 10
[ 512 x 512 ] image,   svd rank = 10

Truncation error:  sigma(11)/sigma(1)=3.655e−02
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Rank 15
[ 512 x 512 ] image,   svd rank = 15

Truncation error:  sigma(16)/sigma(1)=3.030e−02
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Rank 20
[ 512 x 512 ] image,   svd rank = 20

Truncation error:  sigma(21)/sigma(1)=2.292e−02
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Rank 30
[ 512 x 512 ] image,   svd rank = 30

Truncation error:  sigma(31)/sigma(1)=1.519e−02
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Rank 50
[ 512 x 512 ] image,   svd rank = 50

Truncation error:  sigma(51)/sigma(1)=9.987e−03
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Rank 70
[ 512 x 512 ] image,   svd rank = 70

Truncation error:  sigma(71)/sigma(1)=7.237e−03
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Original (Rank 512)
[ 210 x 280 ] original image
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Rank 3
[ 210 x 280 ] image,   svd rank = 3

Truncation error:  sigma(4)/sigma(1)=9.982e−02
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Rank 5
[ 210 x 280 ] image,   svd rank = 5

Truncation error:  sigma(6)/sigma(1)=5.124e−02
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Rank 10
[ 210 x 280 ] image,   svd rank = 10

Truncation error:  sigma(11)/sigma(1)=2.690e−02
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Rank 15
[ 210 x 280 ] image,   svd rank = 15

Truncation error:  sigma(16)/sigma(1)=1.869e−02
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Rank 20
[ 210 x 280 ] image,   svd rank = 20

Truncation error:  sigma(21)/sigma(1)=1.390e−02
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Rank 30
[ 210 x 280 ] image,   svd rank = 30

Truncation error:  sigma(31)/sigma(1)=9.384e−03
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Rank 40
[ 210 x 280 ] image,   svd rank = 40

Truncation error:  sigma(41)/sigma(1)=6.457e−03
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Rank 50
[ 210 x 280 ] image,   svd rank = 50

Truncation error:  sigma(51)/sigma(1)=5.271e−03
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SVD: Proof of existence

Theorem: (Any matrix has a SVD decomposition)
For any A ∈ C

m×n, there exist unitary matrices U ∈ C
m×m,V ∈ C

n×n,
and a nonnegative diagonal matrix Σ ∈ C

m×n such that A = UΣV H.
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SVD: Proof of existence

Theorem: (Any matrix has a SVD decomposition)
For any A ∈ C

m×n, there exist unitary matrices U ∈ C
m×m,V ∈ C

n×n,
and a nonnegative diagonal matrix Σ ∈ C

m×n such that A = UΣV H.

Outline of proof: Let v1 = arg max
‖x‖2=1

‖Ax‖2. Let Av1 = σ1u1 with

σ1 ≥ 0, ‖u1‖2 = 1 Then clearly σ1 = ‖A‖2.

Extend u1 and v1 into unitary matrices Û = [u1,U2], V̂ = [v1,V2], then

ÛHAV̂ =

[
σ1 w

A2

]

, where A2 = UH
2 AV2.

Show that w = 0. Then apply induction to A2.
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SVD: Proof of existence

Theorem: (Any matrix has a SVD decomposition)
For any A ∈ C

m×n, there exist unitary matrices U ∈ C
m×m,V ∈ C

n×n,
and a nonnegative diagonal matrix Σ ∈ C

m×n such that A = UΣV H.

Outline of proof: Let v1 = arg max
‖x‖2=1

‖Ax‖2. Let Av1 = σ1u1 with

σ1 ≥ 0, ‖u1‖2 = 1 Then clearly σ1 = ‖A‖2.

Extend u1 and v1 into unitary matrices Û = [u1,U2], V̂ = [v1,V2], then

ÛHAV̂ =

[
σ1 w

A2

]

, where A2 = UH
2 AV2.

Show that w = 0. Then apply induction to A2.

(Uniqueness: Assume σi ’s are in nonincreasing order. If A is square and σj

are distinct, then left/right singular vectors uj , vj are uniquely determined up
to complex signs.)
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Proof of Schur Decomposition

Theorem: (Schur decomposition)
Any A ∈ C

n×n can be decomposed as A = QSQ∗, where Q is unitary
and S is upper triangular.
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Proof of Schur Decomposition

Theorem: (Schur decomposition)
Any A ∈ C

n×n can be decomposed as A = QSQ∗, where Q is unitary
and S is upper triangular.

Proof. Pick an eigenpair (λ1, x) of A, with ‖x‖2 = 1. Augment x into a
unitary U1 := [x ,U2], then

U∗1 AU1 =

[
x∗Ax x∗AU2

U∗2 Ax U∗2 AU2

]

=

[
λ1 x∗AU2

0 U∗2 AU2

]

.

Apply induction: Assume that U∗2 AU2 has Schur decomposition
Q2S2Q∗2 . Then

U∗1 AU1 =

[
λ1 x∗AU2

0 Q2S2Q∗2

]

=

[
1 0
0 Q2

] [
λ1 x∗AU2Q2

0 S2

] [
1 0
0 Q∗2

]

.

Multiply U1,U∗1 on both sizes to obtain the Q, S as in A = QSQ∗.
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A Corollary of Schur Decomposition

Corollary: Any normal matrix is unitarily diagonalizable.
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A Corollary of Schur Decomposition

Corollary: Any normal matrix is unitarily diagonalizable.

Proof. Let A be a normal matrix with A = QSQ∗. Since AA∗ = A∗A,
one must have SS∗ = S∗S. It now remains to show that a triangular
normal matrix must be diagonal. Let

S =

[
s11 t∗

S2

]

.

Then |s11|2 = |s11|2 + t∗t =⇒ t = 0. Since S2 is also normal and
upper triangular, one can use the same trick to show that S2 must be
diagonal.
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Jordan-Wielandt Theorem

This theorem can be stated as an exercise: Let the SVD of A ∈ C
m×n

be A = UΣV H. Find the eigendecomposition of
[

0 AH

A 0

]

.
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Variational Principle (VP) for σi ’s

Characterization of σi ’s (based on the VP of eigenvalues of hermitian
matrices: notice that ‖Ax‖2 =

√
x∗A∗Ax) . Let A ∈ C

m×n with SVD

A = UΣV ∗, Σ = diag(σi), V = [v1, v2, · · · , vn],

with σi ’s in nonincreasing order. Let Vk = span{v1, · · · , vk}.
Then

σ1 = max{‖Ax‖2 : ‖x‖2 = 1, x ∈ C
n}

σ2 = max{‖Ax‖2 : ‖x‖2 = 1, x ∈ C
n, x ⊥ V1}

· · ·
σk+1 = max {‖Ax‖2 : ‖x‖2 = 1, x ∈ C

n, x ⊥ Vk} .

More generally,

σk+1 = min
Wk⊂C

n

dim(Wk )=k

max
x∈Cn, ‖x‖2=1

x⊥Wk

{‖Ax‖2} .

for k = 0,1, · · · ,n − 1 .
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(semi-) Variational Principle

Theorem: For any A ∈ C
m×n, u ∈ C

m, v ∈ C
n,

σmax(A) = max
u 6=0

max
v 6=0

|u∗Av |
‖u‖2 ‖v‖2

= max
‖u‖2=1

max
‖v‖2=1

|u∗Av |.

The following generalization is often used to prove the triangular
inequalities for the norms defined by various sum of σi ’s.

Theorem: For any A ∈ C
m×n, with nonincreasing σi ’s,

k∑

i=1

σi(A) = max
U∈Cm×k

U∗U=Ik

max
V∈Cn×k

V∗V=Ik

|trace (U∗AV )|.

Proof. Apply SVD and Cauchy inequality.
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Pseudo-inverse (Generalized Inverse)

Given A ∈ C
m×n, A+ ∈ C

n×m is called pseudo-inverse of A if

1. AA+A = A
2. A+AA+ = A+

Such A+ always exists, but uniqueness is not guaranteed. A+ is
called the Moore-Penrose pseudoinverse of A if a further condition is
added

3. Both AA+ and A+A are hermitian

This condition guarantees uniqueness. In practice pseu-doinverse A+

mainly refers to the Moore-Penrose pseudoinverse.

If the full SVD of A ∈ C
m×n is A = UΣV ∗, where

[
Σk

0

]

∈ R
m×n,

with σk > 0 and σj = 0, j > k , then A+ can be easily obtained by

A+ = VΣ+U∗, where Σ+ =

[

Σ-1
k

0

]

∈ R
n×m .
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Some properties of pseudo-inverse

ker (A+) = ker (A∗), range (A+) = range (A∗)

(A+)+ = A

(AT)+ = (A+)T, A
+
= A+, (A∗)+ = (A+)∗

A = AA∗A∗+ = A∗+A∗A

A+ = A+A+∗A∗ = A∗A+∗A+

A+ = (A∗A)+A∗, If A has full column-rank, A+ = (A∗A)-1A∗

A+ = A∗(AA∗)+, If A has full row-rank, A+ = A∗(AA∗)-1

A+ = lim
δց0

(A∗A + δI)−1A∗ = lim
δց0

A∗(AA∗ + δI)−1

(AA+)2 = AA+, (A+A)2 = A+A
(important, related to orthogonal-projectors (later))
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On QR decompositions

Projectors, orthogonal projectors, reflectors

Computing QR factorization (GS, MGS, Householder, Givens)

Solving least squares by QR and SVD
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Projectors

A projector is a square matrix P that satisfies

P2 = P

If v ∈ range(P), then Pv = v
Since with v = Px ,
Pv = P2x = Px = v

Projection along the line
Pv − v ∈ null(P)

Since P(Pv − v) =
P2v − Pv = 0

b

b

range (P)

v

Pv

P2 = P is not enough to introduce an orthogonal projector (later)
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Complementary Projectors, Complementary Subspaces

For projector P, the matrix I − P is its complementary projector
I − P projects on the nullspace of P:

If Pv = 0, then (I − P)v = v , so null(P) ⊆ range(I − P)
For any y ∈ range(I − P), y = (I − P)v , then Py = (P − P2)v = 0;
so range(I − P) ⊆ null(P)
Therefore

range(I − P) = null(P), null(I − P) = range(P)

That is,

null(I − P) ∩ null(P) = {0}
or, range(P) ∩ null(P) = {0}

A projector separates C
m into two spaces S1, S⊥2 , with

range(P) = S1 and null(P) = S⊥2 .
That is, P is the projector along null(P) onto range(P).
Any x ∈ C

m can be decomposed as x = x1 + x2, where
x1 ∈ range(P), x2 ∈ null(P): x = Px + (I − P)x .
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A more general view of a projector

Lemma: Given any two dimension n (n < m) subspaces S1 and S2, if
S1 and S2 are not orthogonal (i.e., S1 ∩ S⊥2 = {0}), then for any
x ∈ C

m, there exists a projector P such that Px ∈ S1, x − Px ⊥ S2.
(Px is the unique projection of x onto S1 along S⊥2 .
And the projector is called a projector onto S1 along S⊥2 .)

b

b

b

S1

S2

x

Px

When S1 = S2, the projector is called an orthogonal projector,
otherwise it is called an oblique projector.
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Orthogonal Projectors

b

b

range (P)

v

Pv

Definition (geometric): A projector P is orthogonal if

range(P) = (null(P))⊥

(More generally, an orthogonal projector projects onto a
subspace S1 along a subspace S⊥2 which is orthogonal to S1.)

Definition (algebraic): A projector P is orthogonal if P∗ = P

Definition (analytic): A projector P is orthogonal if ‖P‖2 = 1
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Equivalence of the definitions

Theorem: For any projector P,

range(P) = (null(P))⊥ ⇐⇒ P = P∗.

Proof. The (⇐=) part is straightforward by the known fact (related to
the Rank-nullity theorem) that

range(P∗) = (null(P))⊥.

For the (=⇒) part: Given any x ∈ C
m, let y = Px ∈ range (P). Since

range(P) = (null(P))⊥ = range(P∗), y ∈ range (P∗). Now apply the
properties of a projector,

y = Py = P2x = Px

y = P∗y = P∗Px ,

which lead to Px = P∗Px , or (P − P∗P)x = 0, for all x ∈ C
m. This is

only possible when P = P∗P, taking conjugate transpose gives

P = P∗ = P∗P.
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Equivalence of the definitions

Theorem: For any projector P,

‖P‖2 = 1 ⇐⇒ P = P∗.

Proof. The (⇐=) part is straightforward and can be proved in several
different ways, we list two here:

(1) P = P∗ =⇒ P is unitarily diagonalizable, let P = QΛQ∗, then
P2 = P =⇒ Λ2 = Λ =⇒ Λ can only have 1 or 0 on its diagonal
=⇒ ‖P‖2 = 1.

(2) 〈Px , Px〉 = 〈x , P∗Px〉 =
〈

x , P2x
〉

= 〈x , Px〉
=⇒ ‖Px‖2

2 ≤ ‖x‖2 ‖Px‖2 =⇒ ‖Px‖2 ≤ ‖x‖2 =⇒ ‖P‖2 ≤ 1.
But since ‖P‖2 ≥ 1 for all P2 = P, it must be ‖P‖2 = 1.

The (=⇒) part is more involved but can also be proved in several different
ways. One of them is to use the fact that sin(θ) = 1

‖P‖2
, where θ is the angle

between range (P) and null(P). Therefore ‖P‖2 = 1 implies that
range (P) ⊥ null(P), which is equivalent to P being orthogonal, from previous
equivalence proof we get P = P∗.

Two other proofs based on matrix decompositions are listed below.
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Prove that P2 = P, ‖P‖2 = 1 =⇒ P = P∗

By SVD of P: Assume rank (P) = k ≤ m. Let P = UkΣk V ∗
k be the

TSVD of P, with Σk nonsingular. Then

P2 = P =⇒ Σk V ∗
k UkΣk = Σk =⇒ V ∗

k Uk = Σ-1
k .

Therefore V ∗
k Uk is diagonal. In addition, since Uk ,Vk are columns of

unitary matrices, the diagonal elements of V ∗
k Uk are all ≤ 1 by Cauchy

inequality. But since ‖P‖2 = 1, we have σi(P) ≤ 1. Hence it must be
that V ∗

k Uk = Σ-1
k = Ik , therefore Uk = Vk , and P = UkΣk U∗

k = P∗.
(Comment: This proof shows that the singular values, as well as eigenvalues, of
an orthogonal projector must be 1 or 0.)

By Schur-decomposition of P: Let P = QSQ∗, then
P2 = P =⇒ S2 = S. Let diag(S) = (sii), comparing diagonal elements
of S2 = S we have sii = 1 or 0 for all i . Assume S is ordered as

S =

[

S11 S12

S22

]

, where diag(S11) = Ik , diag(S22) = 0m−k . Then clearly

S2
22 = S22 =⇒ S22 = (0)m−k . Now use the condition ‖S‖2 = 1 to show

that S12 = (0) and S11 = Ik : Let si: = S(i , :), i = 1 : k , by variational

principal, σ1(S) = 1 ≥ e∗i Ss∗i:
‖ei‖2‖si:‖2

=
si:s

∗
i:

‖si:‖2
= ‖si:‖2.
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Equivalence of the definitions

Theorem: For any projector P,

range(P) = (null(P))⊥ ⇐⇒ ‖P‖2 = 1.

(straightforward from the previous two equivalences, however, it is a good
exercise to show the equivalence directly)
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Equivalence of the definitions

Theorem: For any projector P,

range(P) = (null(P))⊥ ⇐⇒ ‖P‖2 = 1.

Proof. For the (⇐=) part, ‖P‖2 ≥ 1 easily follows from P2 = P. Now
show ‖P‖2 ≤ 1: Since range(P) ⊥ null(P), and (I − P)x ∈ null(P) for
any x , x = Px + (I − P)x is an orthogonal decomposition, by the
Pythagorean theorem ‖x‖2 ≥ ‖Px‖2, hence ‖P‖2 ≤ 1.

For the (=⇒) part: Given any nonzero x , y , with x ∈ range(P),
y ∈ null(P), need to show x ⊥ y :

Decompose x as x = αy + r where r ⊥ y and α ∈ C, then by the
Pythagorean theorem, ‖x‖2

2 = |α|2 ‖y‖2
2 + ‖r‖

2
2. However, P is a

projector with ‖P‖2 = 1,

x = Px = αPy + Pr = Pr =⇒ ‖x‖2 = ‖Pr‖2 ≤ ‖P‖2 ‖r‖2 = ‖r‖2 .

This is only possible when α = 0, i.e., x = r =⇒ x ⊥ y . Therefore
range(P) ⊥ null(P) =⇒ P is orthogonal.
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Projection with orthonormal basis

Given V ∈ C
m×k with orthonormal columns, (i.e., V ∗V = Ik ), find the

orthogonal projectors PV and PV⊥ that projects onto range (V ) and
(range (V ))⊥ respectively.
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Projection with orthonormal basis

Given V ∈ C
m×k with orthonormal columns, (i.e., V ∗V = Ik ), find the

orthogonal projectors PV and PV⊥ that projects onto range (V ) and
(range (V ))⊥ respectively.

Note that an orthogonal P needs to satisfy P2 = P = P∗

Since range (PV ) = range (V ),

PV = VV ∗.

The complement I − PV is the PV⊥ , (note [V ,V⊥] is unitary)

PV⊥ = V⊥V⊥
∗ = I − VV ∗ .

Special cases
Rank-1 orthogonal projector (project onto a unit direction q)

Pq = qq∗

Rank m − 1 orthogonal projector (eliminate component in a unit
direction q)

Pq⊥ = I − qq∗ (also written as P⊥q)

Y. Zhou Math-6316/CS-7366, SMU 89/209



Projection with arbitrary basis

Given A ∈ C
m×k with rank (A) = k , for the orthogonal projectors PA

and PA⊥ that projects onto range (A) and (range (A))⊥ respectively.
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Projection with arbitrary basis

Given A ∈ C
m×k with rank (A) = k , for the orthogonal projectors PA

and PA⊥ that projects onto range (A) and (range (A))⊥ respectively.

Easily done if QR decomposition of A is available.

Can do without QR of A:
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Projection with arbitrary basis

Given A ∈ C
m×k with rank (A) = k , for the orthogonal projectors PA

and PA⊥ that projects onto range (A) and (range (A))⊥ respectively.

Easily done if QR decomposition of A is available.
Can do without QR of A:

For any v ∈ C
m, PAv ∈ range(A). Then

PAv − v ⊥ range(A), or A∗(PAv − v) = 0,

Set PAv = Ax , then

A∗(Ax − v) = 0 ⇐⇒ A∗Ax = A∗v

Since A∗A is nonsingular,

x = (A∗A)−1A∗v

Finally, PAv = Ax = A(A∗A)−1A∗v , giving the orthogonal projector

PA = A(A∗A)−1A∗; by complement PA⊥ = I − PA .
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Projection with arbitrary basis

Given A ∈ C
m×k with rank (A) = k , for the orthogonal projectors PA

and PA⊥ that projects onto range (A) and (range (A))⊥ respectively.

Easily done if QR decomposition of A is available.

Can do without QR of A:

Another way to look at it:
Since range(PA) ⊆ range(A) and P∗ = P, we have PA = AMA∗ for
some M = M∗ ∈ C

k×k

Since P2 = P, we have AMA∗AMA∗ = AMA∗

Notice that A∗A is nonsingular, we pick M = (A∗A)−1, which readily
makes PA = AMA∗ = A(A∗A)−1A∗ an orthogonal projector (since
P2 = P = P∗) to range(A).
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Relation to pseudo-inverse

Recall that
A+ = (A∗A)+A∗ = A∗(AA∗)+

If A has full column rank,

A+ = (A∗A)-1A∗

So the orthogonal projector that projects onto range (A) (column
space of A) is

PA = A(A∗A)+A∗ = AA+ .

Similarly, the orthogonal projector that projects onto range (A∗) (row
space of A) is

PA∗ = A∗(AA∗)+A = A+A .
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The QR Factorization (main idea)

Find orthonormal vectors that span the successive spaces
spanned by the columns of A:

〈a1〉 ⊆ 〈a1,a2〉 ⊆ 〈a1,a2,a3〉 ⊆ . . .

This means that (for full rank A),
〈
q1,q2, . . . ,qj

〉
=
〈
a1,a2, . . . ,aj

〉
, for j = 1, . . . ,n
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The QR Factorization (matrix structure)

In matrix form,
〈
q1,q2, . . . ,qj

〉
=
〈
a1,a2, . . . ,aj

〉
becomes

[

a1

∣
∣
∣
∣
∣

a2

∣
∣
∣
∣
∣
· · ·

∣
∣
∣
∣
∣

an

]

=

[

q1

∣
∣
∣
∣
∣

q2

∣
∣
∣
∣
∣
· · ·

∣
∣
∣
∣
∣

qn

]









r11 r12 · · · r1n

r22
...

. . .
...

rnn









or

A = QR

This is the thin QR factorization (also called reduced QR)

Orthogonal extension from Q ∈ C
m×n to Q̃ = [Q,Q⊥] ∈ C

m×m,
and adding zero rows to R gives the full QR factorization .

Y. Zhou Math-6316/CS-7366, SMU 93/209



The structure of full and thin QR Factorizations

Let A be an m × n matrix (for m ≥ n)

The full QR factorization is A = Q̃R̃, where Q̃ is m ×m unitary, R̃
is m × n upper-triangular.

A = Q̃ R̃

The thin QR Factorization is more compact, A = QR, where Q is
the first m × n part of Q̃, R is the top n × n upper-triangular part
of R̃

A = Q

R
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Gram-Schmidt Orthogonalization

Find new qj orthogonal to q1, . . . ,qj−1 by subtracting
components along previous vectors

vj = aj − (q∗1 aj)q1 − (q∗2 aj)q2 − · · · − (q∗j−1aj)qj−1

Normalize to get qj = vj/‖vj‖
We then obtain a reduced QR factorization A = QR, with

rij = q∗i aj , (i 6= j)

and

|rjj | = ‖aj −
j−1
∑

i=1

rijqi‖2
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Classical Gram-Schmidt

Straight-forward application of Gram-Schmidt orthogonalization
Numerically unstable

Algorithm: Classical Gram-Schmidt
for j = 1 to n

vj = aj

for i = 1 to j − 1
rij = q∗i aj

vj = vj − rijqi

rjj = ‖vj‖2

qj = vj/rjj

Matlab implementation (uses BLAS-2)

R ( 1 ,1 ) = norm ( A ( : , 1 ) ) ; Q ( : , 1 ) = A ( : , 1 ) / R ( 1 ,1 ) ;
f o r j = 2 : n ,

R ( 1 : j−1,j ) = Q ( : , 1 : j−1) ' * A ( : , j ) ;
Q ( : , j ) = A ( : , j ) − Q ( : , 1 : j−1) * R ( 1 : j−1,j ) ;
R (j , j ) = norm ( Q ( : , j ) ) ;
i f ( R (j , j ) == 0 ) , e r r o r ( [ ' columns l i n e a r l y dependent ' ] ) ; end
Q ( : , j ) = Q ( : , j ) / R (j , j ) ;

end
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Existence and Uniqueness

Every A ∈ C
m×n (m ≥ n) has a full QR factorization and a thin

QR factorization.
Proof. For full rank A, Gram-Schmidt process proves existence
of thin A = QR. Otherwise, when vj = 0 choose arbitrary vector
orthogonal to previous qi .
For full QR, add orthogonal extension to Q and zero rows to R.

Each A ∈ C
m×n (m ≥ n) of full rank has a unique thin QR

decomposition A = QR, with rjj > 0.
Proof. Again Gram-Schmidt, rjj > 0 uniquely determines the
sign.
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Gram-Schmidt Projections

The orthogonal vectors produced by Gram-Schmidt can be
written in terms of orthogonal projectors

q1 =
P1a1

‖P1a1‖
, q2 =

P2a2

‖P2a2‖
, . . . , qn =

Pnan

‖Pnan‖

where

Pj = I − Q̂j−1Q̂∗j−1 with Q̂j−1 =

[

q1

∣
∣
∣
∣
∣

q2

∣
∣
∣
∣
∣
· · ·

∣
∣
∣
∣
∣

qj−1

]

Pj projects orthogonally onto the space orthogonal to
〈
q1, . . . ,qj−1

〉
, and rank(Pj) = m − (j − 1)
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The Modified Gram-Schmidt (MGS) Algorithm

The projection Pj can equivalently be written as

Pj = P⊥qj−1 · · ·P⊥q2P⊥q1

where

P⊥q = I − qq∗

P⊥q projects orthogonally onto the space orthogonal to q, and
rank(P⊥q) = m − 1

The Classical Gram-Schmidt algorithm computes an orthogonal
vector by

vj = Pjaj

while the Modified Gram-Schmidt algorithm uses

vj = P⊥qj−1 · · ·P⊥q2P⊥q1aj
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Classical vs. Modified Gram-Schmidt

MGS is only a simple modification of CGS: use the most current
vector for projection (e.g., orth. A = [a1, · · · ,an] ∈ C

m×n)

Classical GS (CGS)

1. For j = 1, ...,n Do:
2. qj := aj

3. For i = 1, . . . , j − 1 Do
rij =

〈
aj , qi

〉

qj := qj − rijqi

4. EndDo
5. rjj = ‖qj‖2. If rjj = 0 exit
6. qj := qj/rjj

7. EndDo

Modified GS (MGS)

1. For j = 1, ...,n Do:
2. qj := aj

3. For i = 1, . . . , j − 1 Do
rij =

〈
qj , qi

〉

qj := qj − rijqi

4. EndDo
5. rjj = ‖qj‖2. If rjj = 0 exit
6. qj := qj/rjj

7. EndDo

The above MGS partially uses P2 = P for any orthogonal
projector P (theoretically equivalent, numerically not equivalent)

Question: For this version of MGS, is there a BLAS-2 implementation
of steps 3–4, such as that for CGS?
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MGS (BLAS-2 version)

Can reorganize MGS s.t. inner loops use BLAS-2 operations, as in
CGS. Compute R row by row instead of column by column.

Modified GS (MGS2)

For j = 1, ...,n Do:
qj := aj

EndDo
For j = 1, . . . ,n Do

rjj = ‖qi‖2
If rjj = 0 exit
qj := qj/rjj

For i = j + 1, ...,n Do:
rji =

〈
qi , qj

〉

qi := qi − rjiqj

EndDo
EndDo

Q = A ; R = zeros (n , n ) ;
f o r j = 1 : n ,

R (j , j ) = norm ( Q ( : , j ) ) ;
i f ( R (j , j ) == 0 ) ,

e r r o r ( ' l i n e a r l y dependent columns ' ) ;
end
Q ( : , j ) = Q ( : , j ) / R (j , j ) ;
R (j , j+1:n ) =Q ( : , j ) ' * Q ( : , j+1:n ) ;
Q ( : , j+1:n ) =Q ( : , j+1:n )−Q ( : , j ) *R (j , j+1:n ) ;

end

This version of MGS essentially uses the relation

Pj = P⊥qj−1 · · ·P⊥q2P⊥q1 and do individual projection one by one,
while CGS apply Pj at once.
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Compare CGS with MGS for the vectors (choose ǫ s.t. 1 + ǫ2 ≈ 1)

a1 = (1, ǫ,0,0)T , a2 = (1,0, ǫ,0)T , a3 = (1,0,0, ǫ)T

Classical:

v1 ← (1, ǫ,0,0)T , r11 =
√

1 + ǫ2 ≈ 1, q1 = v1/1 = (1, ǫ,0,0)T

v2 ← (1,0, ǫ,0)T , r12 = qT
1 a2 = 1, v2 ← v2 − 1q1 = (0,−ǫ, ǫ,0)T

r22 =
√

2ǫ, q2 = v2/r22 = (0,−1,1,0)T /
√

2

v3 ← (1,0,0, ǫ)T , r13 = qT
1 a3 = 1, v3 ← v3 − 1q1 = (0,−ǫ,0, ǫ)T

r23 = qT
2 a3 = 0, v3 ← v3 − 0q2 = (0,−ǫ,0, ǫ)T

r33 =
√

2ǫ, q3 = v3/r33 = (0,−1,0,1)T /
√

2

Modified:

v1 ← (1, ǫ,0,0)T , r11 =
√

1 + ǫ2 ≈ 1, q1 = v1/1 = (1, ǫ,0,0)T

v2 ← (1,0, ǫ,0)T , r12 = qT
1 v2 = 1, v2 ← v2 − 1q1 = (0,−ǫ, ǫ,0)T

r22 =
√

2ǫ, q2 = v2/r22 = (0,−1,1,0)T /
√

2

v3 ← (1,0,0, ǫ)T , r13 = qT
1 v3 = 1, v3 ← v3 − 1q1 = (0,−ǫ,0, ǫ)T

r23 = qT
2 v3 = ǫ/

√
2, v3 ← v3 − r23q2 = (0,−ǫ/2,−ǫ/2, ǫ)T

r33 =
√

6ǫ/2, q3 = v3/r33 = (0,−1,−1,2)T /
√

6

Check Orthogonality:
Classical: qT

2 q3 = (0,−1, 1, 0)(0,−1, 0, 1)T/2 = 1/2
Modified: qT

2 q3 = (0,−1, 1, 0)(0,−1,−1, 2)T/
√

12 = 0

MGS is numerically stable (less sensitive to rounding errors)



Flops counts of Gram-Schmidt QR

Count each +,−, ∗, /,√· as one flop,
only look at the higher order terms

Orthonormalize A ∈ R
m×n, (m ≥ n)

Modified GS (MGS)

1. For j = 1, ...,n Do:
2. qj := aj

3. For i = 1, . . . , j − 1 Do
rij =

〈
qj , qi

〉

qj := qj − rijqi

4. EndDo
5. rjj = ‖qj‖2. If rjj = 0 exit
6. qj := qj/rjj

7. EndDo

Each rij =
〈
qj , qi

〉
,qj := qj − rijqi step

needs about 4m flops

Need to do it approximately this many
times

n∑

j=1

j−1
∑

i=1

1 ≈
∫ n

1

∫ j−1

1
1didj ≈ n2

2

Approximate total flops for MGS (same for
CGS)

4m
n2

2
= 2mn2
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Gram-Schmidt as Triangular Orthogonalization

Gram-Schmidt can be considered as multiplying with triangular
matrices to make orthogonal columns. E.g., at 1st step:

[

a1

∣
∣
∣
∣
∣

a2

∣
∣
∣
∣
∣
· · ·

∣
∣
∣
∣
∣

an

]








1
r11

−r12
r11

−r13
r11

· · ·
1

1
. . .







=

[

q1

∣
∣
∣
∣
∣

q(2)
2

∣
∣
∣
∣
∣
· · ·

∣
∣
∣
∣
∣

q(2)
n

]

After n steps we get a product of triangular matrices

A R1R2 · · ·Rn
︸ ︷︷ ︸

R−1

= Q

“Triangular orthogonalization”
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Householder Orthogonal Triangularization

The Householder method multiplies by unitary matrices to make
a triangular matrix. E.g., at 1st step:

Q1A =










r11 X · · · X
0 X · · · X
0 X · · · X
...

...
. . .

...
0 X · · · X










After all the steps we get a product of orthogonal matrices

Qn · · ·Q2Q1
︸ ︷︷ ︸

Q∗

A = R

“Orthogonal triangularization”
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Introducing Zeros by Householder Reflectors

Qk introduces zeros below the diagonal in column k
Preserves all the zeros previously introduced











× × ×

× × ×

× × ×

× × ×

× × ×











A(0) := A

Q1−→











X X X
0 X X
0 X X
0 X X
0 X X











A(1) := Q1A

Q2−→











× × ×

X X
0 X
0 X
0 X











A(2) := Q2Q1A

Q3−→











× × ×

× ×

X
0
0











A(3) := Q3Q2Q1A

Question: what shape is Qk ?
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Introducing Zeros by Householder Reflectors

Qk introduces zeros below the diagonal in column k
Preserves all the zeros previously introduced











× × ×

× × ×

× × ×

× × ×

× × ×











A(0) := A

Q1−→











X X X
0 X X
0 X X
0 X X
0 X X











A(1) := Q1A

Q2−→











× × ×

X X
0 X
0 X
0 X











A(2) := Q2Q1A

Q3−→











× × ×

× ×

X
0
0











A(3) := Q3Q2Q1A

Question: what shape is Qk ?

Qk =

[
Ik−1 0

0 Hk

]

∈ C
m×m, Hk = Im−k+1 − 2vk v∗k , vk ∈ C

m−k+1.
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Introducing Zeros by Householder Reflectors

Qk introduces zeros below the diagonal in column k
Preserves all the zeros previously introduced











× × ×

× × ×

× × ×

× × ×

× × ×











A(0) := A

Q1−→











X X X
0 X X
0 X X
0 X X
0 X X











A(1) := Q1A

Q2−→











× × ×

X X
0 X
0 X
0 X











A(2) := Q2Q1A

Q3−→











× × ×

× ×

X
0
0











A(3) := Q3Q2Q1A

Question: what shape is Qk ?

Qk =

[
Ik−1 0

0 Hk

]

∈ C
m×m, Hk = Im−k+1 − 2vk v∗k , vk ∈ C

m−k+1.

Question: what is vk ?
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Introducing Zeros by Householder Reflectors

Qk introduces zeros below the diagonal in column k
Preserves all the zeros previously introduced











× × ×

× × ×

× × ×

× × ×

× × ×











A(0) := A

Q1−→











X X X
0 X X
0 X X
0 X X
0 X X











A(1) := Q1A

Q2−→











× × ×

X X
0 X
0 X
0 X











A(2) := Q2Q1A

Q3−→











× × ×

× ×

X
0
0











A(3) := Q3Q2Q1A

Question: what shape is Qk ?

Qk =

[
Ik−1 0

0 Hk

]

∈ C
m×m, Hk = Im−k+1 − 2vk v∗k , vk ∈ C

m−k+1.

Question: what is vk ?

ṽk = A(k−1)(k : m, k), vk ← α ‖ṽk‖2 e1−ṽk , (α =?), vk ←
vk

‖vk‖2
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The Householder Algorithm

Choice of reflector: vk = α ‖ṽk‖2 e1 − ṽk ,
To minimize cancellation error, choose α = −sign(ṽk (1)) .
Equivalently, vk = sign(ṽk (1)) ‖ṽk‖2 e1 + ṽk .

Compute the factor R of a QR factorization of A ∈ C
m×n, (m ≥ n)

Leave result in place of A, (i.e., overwrite A by R).

Store reflection vectors vk for later use.

Algorithm: (QR by Householder reflectors)
For k = 1 to n

x = Ak :m,k

vk = sign(x(1))‖x‖2e1 + x
vk = vk/‖vk‖2

Ak :m,k :n = Ak :m,k :n − 2vk (v∗k Ak :m,k :n)
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Implicit application of Q

The idea is that Qk w for any w ∈ C
m is only about 4(m − k + 1)

operation due to the special structure of Qk

Compute Q∗b = Qn · · ·Q2Q1b implicitly:

Algorithm: Implicit Calculation of Q∗b
For k = 1 to n

bk :m = bk :m − 2vk (v∗k bk :m)

Compute Qx = Q1Q2 · · ·Qnx implicitly:

Algorithm: Implicit Calculation of Qx
For k = n downto 1

xk :m = xk :m − 2vk (v∗k xk :m)

To create Q explicitly, apply the calculation of Qx to x = I
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Flop counts of Householder QR

Algorithm: (QR by Householder reflectors)
For k = 1 to n

x = Ak :m,k

vk = sign(x(1))‖x‖2e1 + x
vk = vk/‖vk‖2

Ak :m,k :n = Ak :m,k :n − 2vk (v∗k Ak :m,k :n)

Look at the highest order: Most work done by

Ak :m,k :n = Ak :m,k :n − 2vk (v∗k Ak :m,k :n)

2(m − k)(n − k) for the dot products v∗
k Ak :m,k :n

(m − k)(n − k) for the outer product 2vk (· · · )
(m − k)(n − k) for the subtraction Ak :m,k :n − · · ·

4(m − k)(n − k) major work per iteration
Including the outer loop, the total becomes

n∑

k=1

4(m − k)(n − k) = 4
n∑

k=1

(mn − k(m + n) + k2)

≈ 4(mn2 − (m + n)n2/2 + n3/3) = 2mn2 − 2n3/3
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QR via Givens Rotations

Recall Givens rotation G(θ) =

[
cos θ − sin θ
sin θ cos θ

]

rotates x ∈ R
2

anticlockwisely by θ

To set an element to zero, choose cos θ and sin θ so that

[
cos θ − sin θ
sin θ cos θ

] [
xi

xj

]

=

[√

x2
i + x2

j

0

]

or

cos θ =
xi

√

x2
i + x2

j

, sin θ =
−xj

√

x2
i + x2

j

“Orthogonal Triangularization”
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QR via Givens Rotations

Introduce zeros in column from bottom and up








× × ×

× × ×

× × ×

× × ×









(3,4)
−→









× × ×

× × ×

X X X
0 X X









(2,3)
−→









× × ×

X X X
0 X X

× ×









(1,2)
−→









X X X
0 X X

× ×

× ×









(3,4)
−→









× × ×

× ×

X X
0 X









(2,3)
−→









× × ×

X X
0 X

×









(3,4)
−→R

Flop count 3mn2 − n3 (or 50% more than Householder QR)
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Linear Least Squares Problems

In general, an over-determined system such as Ax = b,
(A ∈ C

m×n, with m > n), has no solution
A least square solution tries to minimize the 2-norm of the
residual r = b − Ax :

Least Square problem:
Given A ∈ C

m×n,m ≥ n,b ∈ C
m, solve min

x∈Cn
‖Ax − b‖2 .

Geometric Interpretation

For any x ∈ C
n, Ax ∈ range(A)

Minimizing ‖b − Ax‖2 means finding
the shortest distance from b to
range(A)

Need Ax = Pb where P is an
orthogonal projector onto range(A),
i.e., r ⊥ range(A)

b

range (A)

b

r = b − Ax

y= Pb = Ax

Y. Zhou Math-6316/CS-7366, SMU 112/209



Solving Least Squares Problems

Essentially, we solve Ax = Pb, which always has a solution.

Different ways representing P leads to different methods.

If A = QR, then P = QQ∗

Ax = Pb =⇒ QRx = QQ∗b =⇒ Rx = Q∗b

If A = UΣV ∗, than P = UU∗

Ax = Pb =⇒ UΣV ∗x = UU∗b =⇒ ΣV ∗x = U∗b

(Most stable but also most expensive among the three)

If A is full rank, then P = A(A∗A)-1A∗ (note PP∗ = P∗P,P2 = P)

Ax = Pb =⇒ Ax = A(A∗A)-1A∗b =⇒ A∗Ax = A∗b.

This is called the normal equations. (Least expensive, but also
least accurate among the three if A has close to linearly
dependent columns.)
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Solving LS: via thin QR decomposition

Using thin QR: A = QR, Q ∈ C
m×n,R ∈ C

n×n.
Project b onto range(A) as Pb = QQ∗b

Insert into Ax = Pb to get QRx = QQ∗b, or Rx = Q∗b

Algorithm: Least Squares via QR Factorization

1. Compute the thin QR factorization A = QR

2. Compute the vector Q∗b (without forming Q)

3. Solve the upper-triangular system Rx = Q∗b for x

Major cost: thin QR Factorization ∼ 2mn2 − 2n3/3 flops

Good stability, relatively fast. (Used in MATLAB’s “backslash” \)
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Solving LS: via SVD

Compute SVD of A: A = UΣV ∗, Q ∈ C
m×n,Σ ∈ R

n×n,V ∈ C
n×n.

Project b onto range(A) as Pb = UU∗b

Insert into Ax = Pb to get UΣV ∗x = UU∗b, or ΣV ∗x = U∗b

Algorithm: Least Squares via SVD

1. Compute the reduced SVD A = UΣV ∗

2. Compute the vector U∗b

3. Solve the diagonal system Σw = U∗b for w

4. Set x = Vw

Major cost: SVD of A ∼ 2mn2 + 11n3 flops

Very good stability properties, use if A is close to rank-deficient
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Solving LS: via Normal Equations

If A has full rank, A∗A is square, (hermitian) positive definite

Solve by Cholesky factorization (Gaussian elimination)

Algorithm: Least Squares via Normal Equations

1. Form the matrix A∗A and the vector A∗b

2. Compute the Cholesky factorization A∗A = R∗R

3. Solve the lower-triangular system R∗w = A∗b for w

4. Solve the upper-triangular system Rx = w for x

Major cost: Forming A∗A and Cholesky ∼ mn2 + n3/3 flops

Fast, but sensitive to rounding errors (particularly so when A is
close to rank deficient)
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LS by normal equations

In fact, the normal equation A∗Ax = A∗b is a necessary condition for
min
x∈Cn
‖Ax − b‖2 (no need to assume A full rank).

The is readily seen from the geometric view:

r ⊥ range (A) =⇒ A∗r = A∗(Ax − b) = 0 =⇒ A∗Ax = A∗b.

It can also be obtained by expanding min
x∈Cn
‖Ax − b‖2

2 as

f (x) = x∗A∗Ax − b∗Ax − x∗A∗b + b∗b,

then set the first order derivative of f (x) w.r.t. x to 0. This also leads
to the normal equation A∗Ax = A∗b.
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On solving linear equations Ax = b, A ∈ C
m×n (with m = n)

Gaussian Elimination via LU and pivoted LU

Cholesky decomposition for A SPD or (H)PD

Conditioning and stability
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The LU Factorization

Compute A = LU, where L,U ∈ C
m×m, L is unit lower triangular,

U is upper triangular

Obtain U by sequentially subtracting multiples of rows:
Left multiply by elementary matrices, each Li introduces zeros
below diagonal of column i .







× × × ×
× × × ×
× × × ×
× × × ×







A

L1
→







× × × ×
0 X X X
0 X X X
0 X X X







L1A

L2
→







× × × ×
× × ×
0 X X
0 X X







L2L1A

L3
→







× × × ×
× × ×
× ×
0 X







L3L2L1A

Lm−1 · · · L2L1
︸ ︷︷ ︸

L−1

A = U =⇒ A = LU where L = L−1
1 L−1

2 · · · L−1
m−1

“Triangular triangularization”
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The Matrices Lk

At step k , eliminate elements below Akk :

xk =
[

x1k · · · xkk xk+1,k · · · xmk
]∗

Lk xk =
[

x1k · · · xkk 0 · · · · · · · · · 0
]∗

The multipliers ℓjk =
xjk

xkk
appear in Lk :

Lk =













1
. . .

1
−ℓk+1,k 1

...
. . .

−ℓmk 1













=
m∏

j=k+1

Ea(k , j ,−ℓjk )

Recall: Ea(k , j , c) = I + cejeT
k , E -1

a (k , j , c) = Ea(k , j ,−c)
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Structure of L in A = LU

Each Lk is an elementary matrix:
Let ℓk = [0, · · · , 0, ℓk+1,k , · · · , ℓm,n]

∗, then Lk = I − ℓk e∗k .
By Sherman-Morison, (or direct verification)

L-1
k = I − ℓk e∗k

e∗k ℓk − 1
= I + ℓk e∗k

L−1
k L−1

k+1 = (I + ℓk e∗k )(I + ℓk+1e∗k+1) = I + ℓk e∗k + ℓk+1e∗k+1

The product L = L−1
1 L−1

2 · · · L−1
m−1 is obtained by inserting ℓk into

the k-th column of I

L = L−1
1 L−1

2 · · · L−1
m−1 =










1
ℓ21 1
ℓ31 ℓ32 1
...

...
. . .

. . .
ℓm1 ℓm2 · · · ℓm,m−1 1
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Gaussian Elimination (without pivoting)

Algorithm: Factorize A ∈ C
m×m into A = LU, (no pivoting)

L = I, U = A (can overwrite A by L and U to avoid using L,U)
For k = 1 to m − 1

for j = k + 1 to m
ℓjk = ujk/ukk

uj,k :m = uj,k :m − ℓjk uk,k :m

Inner loop can use matrix operations, e.g., (overwrite A)

f o r k = 1 : m−1
i f ( A (k , k ) == 0) ,

e r r o r ( ' w i thou t p i vo t i ng , LU decomposit ion f a i l s ' )
e lse

A ( k+1:m , k ) = A ( k+1:m , k ) / A (k , k ) ;
A ( k+1:m , k+1:m ) = A ( k+1:m , k+1:m )−A ( k+1:m , k ) *A (k , k+1:m ) ;

end
end

Operation count ∼∑m
k=1 2(m − k)(m − k) ∼ 2

∑m
k=1 k2 ∼ 2m3/3
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Pivoting

At step k of no pivoting LU, the (k , k) element is used (as pivot)
to introduce zeros in k-column below the (k , k) element









× × × × ×
xkk X X X
× × × ×
× × × ×
× × × ×









→









× × × × ×
xkk × × ×
0 X X X
0 X X X
0 X X X









But any nonzero element i ≥ k in column k can be used as pivot:








× × × × ×
× × × ×
× × × ×
x ik X X X
× × × ×









→









× × × × ×
0 X X X
0 X X X

xik × × ×
0 X X X
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Pivoting

Also, any nonzero row element j ≥ k can be used as pivot:








× × × × ×
× × × ×
× × × ×
X x ij X X
× × × ×









→









× × × × ×
X 0 X X
X 0 X X
× xij × ×
X 0 X X









Choose different pivots to avoid zero or very small pivots
(reduce instability) !

Pivoting means first exchanging rows (or columns) s.t. the
diagonal pivot has larger magnitude, then applying the standard
(no-pivot) LU

A computer code might account for the pivoting indirectly instead
of actually moving the data
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Partial (row) Pivoting

Full pivoting searches among all valid pivots, i.e., at k-th step,
choose maxi≥k,j≥k |aij | as pivot, (interchange rows and columns),
expensive
Partial pivoting considers a pivot in column k only, i.e., choose
maxi≥k |aik | as pivot, (interchange rows)









× × × × ×
× × × ×
× × × ×
x ik X X X
× × × ×









Pivot selection

P1
−→









× × × × ×
x ik X X X
× × × ×
X X X X
× × × ×









Row interchange

L1
−→









× × × × ×
xik × × ×
0 X X X
0 X X X
0 X X X









Elimination

In terms of matrices:

Lm−1Pm−1 · · · L2P2L1P1A = U,

where Pi ’s are the elementary matrices, each used to switch two
rows when a pivot is necessary.
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The PA = LU Factorization

To combine all Lk and all Pk into matrices, rewrite as

Lm−1Pm−1 · · · L2P2L1P1A = U

(L′m−1 · · · L′2L′1)(Pm−1 · · ·P2P1)A = U

where

L′k = Pm−1 · · ·Pk+1Lk P−1
k+1 · · ·P−1

m−1

This gives the LU factorization of A

PA = LU
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Gaussian Elimination with Partial Pivoting

Algorithm: Gaussian Elimination for PA = LU
U = A,L = I,P = I
for k = 1 to m − 1

Select i ≥ k to maximize |uik |
uk,k :m ↔ ui,k :m (interchange two rows)
ℓk,1:k−1 ↔ ℓi,1:k−1

pk,: ↔ pi,:

for j = k + 1 to m
ℓjk = ujk/ukk

uj,k :m = uj,k :m − ℓjk uk,k :m

Can overwrite A by L and U (saves the memory for storing L,U)

When used to solve Ax = b, no need to store P either, can apply
P directly to b and solve PAx = Pb =⇒ LUx = Pb.

Flops: similar to no pivoting, ∼ 2m3/3.
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Gaussian Elimination with Partial Pivoting

Matlab code using PPGE to solve Ax = b. Overwrite A by L and U,
P is not stored but directly applied to A and b.

f o r j = 1 : n−1
% choose the one wi th l a r g e s t magnitude from A( j : n , j ) as p i v o t
[ amax , ip ] = max( abs ( A ( j : n , j ) ) ) ;

% i p from above i s i n [ 1 : n−j +1 ] , po i n t i t to t r ue row number i n A
ip = ip + j−1;
i f ( ip ˜= j ) ,

% apply Pj to both A and b , t h i s i s noth ing but row swamping
tmp=A ( ip , j : n ) ; A ( ip , j : n ) =A (j , j : n ) ; A (j , j : n ) =tmp ;
tmp = b ( ip ) ; b ( ip ) = b ( j ) ; b ( j ) = tmp ;

end
i f ( A (j , j ) ˜=0) ,

% apply the standard gauss e l i m i n a t i o n
A ( j+1:n , j ) = A ( j+1:n , j ) / A (j , j ) ;
A ( j+1:n , j+1:n ) = A ( j+1:n , j+1:n ) − A ( j+1:n , j ) *A (j , j+1:n ) ;
b ( j+1:n ) = b ( j+1:n ) − A ( j+1:n , j ) *b ( j ) ;

e lse
e r r o r ( ' s i n g u l a r mat r i x ' ) ;

end
end
x = t r i u ( A )\b ;
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Full Pivoting

If pivots are selected from a different column, permutation
matrices Qk for the columns are required:

Lm−1Pm−1 · · · L2P2L1P1AQ1Q2 · · ·Qm−1 = U

(L′m−1 · · · L′2L′1)(Pm−1 · · ·P2P1)A(Q1Q2 · · ·Qm−1) = U

Set

L = (L′m−1 · · · L′2L′1)
−1

P = Pm−1 · · ·P2P1

Q = Q1Q2 · · ·Qm−1

to obtain

PAQ = LU
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Cholesky Factorization

Compute with R upper triangular;
or A = LDL∗ for L unit lower triangular

Need A to be symmetric/hermitian;
need positive definiteness1 of A for A = R∗R

Utilize symmetry, complexity is ∼ m3/3
(reduced by half that of general LU)

Some applications: Solve Ax = b when A is SPD, such as in the
Hessian matrices (quasi-Newton methods for nonlinear
optimization), and covariance matrices (Monte Carlo simulation,
and Kalman filters)

1For A ∈ Cn×n, A is PD if x∗Ax > 0, ∀x ∈ Cn 6= 0; this condition implicitly
guarantees A∗ = A. While for A ∈ Rn×n, A is PD if xTAx > 0, ∀x ∈ Rn 6= 0; but this
does not guarantee AT = A, hence one needs A to be SPD to guarantee existence of
A = RTR.
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Computing Cholesky Factorization A = R∗R

Let α =
√

a11. The first step for A = R∗R is

A :=

[
a11 w∗

w A(1)

]

=

[
α 0

w/α I

] [
α w∗/α
0 A(1) − ww∗/a11

]

=

[
α 0

w/α I

] [
1 0
0 A(1) − ww∗/a11

] [
α w∗/α
0 I

]

=: R∗1 A1R1

That is, R(1,1) =
√

A(1,1), R(1,2:n) = A∗(2:n,1)/R(1,1).

Can apply the same to A(2) := A(1) − ww∗/a11 (also PD, why?)

A = R∗1

[
1 0
0 R̃∗2 Ã2R̃2

]

R1 = R∗1 R∗2 A2R2R1, R2 =

[
1 0
0 R̃2

]

, A2 =

[
1 0
0 Ã2

]

Note R(2,2) =
√

A(2)
(1,1), R(2,2:n) = A(2)

(2:n,1)

∗
/R(2,2).

Apply the same recursively to diagonal block of A(k)
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Computing A = R∗R (A is PD, two versions)

R = A ;
f o r k = 1 : n

f o r j = k+1 : n % only update upper t r i a n g u l a r pa r t ( symmetry )
R (j , j : n ) = R (j , j : n ) − R (k , j : n ) *R (k , j ) ' / R (k , k ) ;

end
i f ( R (k , k ) <= 0 ) ,

e r r o r ( 'A i s not HPD, t r y ' 'A=Rˆ *DR ' ' ins tead ' ) ,
end
R (k , k : n ) = R (k , k : n ) / s q r t ( R (k , k ) ) ;

end
R = t r i u ( R ) ;

R = zeros (n , n ) ;
f o r i = 1 : n ,

tmp = A (i , i ) − R ( 1 : i−1,i ) ' * R ( 1 : i−1,i ) ;
i f ( tmp <= 0 ) ,

e r r o r ( 'A i s not HPD, t r y ' 'A=Rˆ *DR ' ' ins tead ' ) ,
end
R (i , i ) = s q r t ( tmp ) ;
f o r j = i+1 : n

R (i , j ) = ( A (i , j ) − R ( 1 : i−1,i ) ' * R ( 1 : i−1,j ) ) / R (i , i ) ;
end

end
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Computing A = R∗DR (two of several versions)

R = eye ( n ) ; % the re turned R i s u n i t upper t r i a n g u l a r
f o r j = 1 : n−1,

dv ( j ) = r e a l ( A (j , j ) ) ;
R (j , j+1:n ) = A (j , j+1:n ) / dv ( j ) ;
f o r i = j+1 : n % only update upper t r i a n g u l a r row elements

A (i , i : n ) = A (i , i : n ) − R (j , i ) ' * dv ( j ) *R (j , i : n ) ;
end

end
dv ( n ) = A (n , n ) ; % D=diag ( dv ( 1 : n ) )

R = eye ( n ) ;
f o r j = 1 : n−1,

dv ( j ) = r e a l ( A (j , j ) ) ;
f o r i = j+1:n

R (j , i ) = A (j , i ) / dv ( j ) ;
f o r k = j+1 : i %only update lower t r i a n g u l a r column elements

A (k , i ) = A (k , i ) − R (j , i ) *dv ( j ) *R (j , k ) ' ;
end

end
end
dv ( n ) = A (n , n ) ;
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Solving nonsingular triangular systems

Solving Ux = b: (backward substitution)

n∑

k=i

uik xk = bi , i = 1, · · · ,n

=⇒ xi =
bi −

∑n
k=i+1 uik xk

uii
, i = n, · · · ,1

Solving Lx = b: (forward substitution)

i∑

k=1

lik xk = bi , i = 1, · · · ,n

=⇒ xi =
bi −

∑i−1
k=1 lik xk

lii
, i = 1, · · · ,n

Complexity for triangular solves: ∼ O(n2)
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On Conditioning and Stabilities

General definition of Condition Numbers

Accuracy of (numerical) solutions
Stability

Forward stability
Backward stability
Mixed stability

Main picture: Accuracy depend on two things
1. Conditioning of the underlying problem
2. Stability of the algorithm used to solve the problem

Y. Zhou Math-6316/CS-7366, SMU 135/209



Conditioning, Condition number

Absolute Condition Number of a function f : X → Y at x :

κ̂(f , x) = sup
δx 6=0

‖f (x + δx)− f (x)‖
‖δx‖

If f is differentiable,

κ̂(f , x) = ‖Jf (x)‖

where the Jacobian (Jf )ij = ∂fi/∂xj , and the matrix norm is
induced by the norms on X and Y .
Relative Condition Number

κ(f , x) =
κ̂

‖f (x)‖ / ‖x‖ = sup
δx 6=0

(‖f (x + δx)− f (x)‖
‖f (x)‖

/‖δx‖
‖x‖

)

If f is differentiable,

κ(f , x) =
‖Jf (x)‖
‖f (x)‖/‖x‖

Y. Zhou Math-6316/CS-7366, SMU 136/209



Conditioning, Condition number

Example : The function f (x) = αx
Absolute condition number κ̂ = ‖Jf‖ = α

Relative condition number κ = ‖Jf ‖
‖f (x)‖/‖x‖ = α

αx/x = 1

Example : The function f (x) =
√

x
Absolute condition number κ̂ = ‖Jf‖ = 1

2
√

x

Relative condition number κ = ‖Jf ‖
‖f (x)‖/‖x‖ = 1/(2

√
x)√

x/x
= 1

2

Example : The function f (x) = x1 − x2 (with∞-norms)
Absolute condition number κ̂ = ‖Jf‖ = ‖(1,−1)‖ = 2
Relative condition number

κ =
‖Jf‖

‖f (x)‖/‖x‖ =
2

|x1 − x2|/max{|x1|, |x2|}

Ill-conditioned (in the relative sense) when x1 ≈ x2

(This is the well-known cancellation problem when subtracting two
close numbers)
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Conditioning, Condition number

Consider f (x) = Ax , with A ∈ C
m×n

κ =
‖Jf‖

‖f (x)‖/‖x‖ = ‖A‖ ‖x‖‖Ax‖

For A square and nonsingular, use ‖x‖/‖Ax‖ ≤ ‖A−1‖:

κ ≤ ‖A‖‖A−1‖

(equality achieved for the last right singular vector x = vn)

κ = ‖A‖‖A−1‖ is also the condition number for f (b) = A−1b
(solution of linear system)

Condition number of matrix A:

κ(A) := ‖A‖2‖A−1‖2 =
σ1

σn
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Condition of System of Equations

For fixed b, consider f (A) = A−1b

Perturb A by δA and find perturbation δx :

(A + δA)(x + δx) = b

Use Ax = b and assume (δA)(δx) ≈ 0:

(δA)x + A(δx) = 0 =⇒ δx = −A−1(δA)x

Condition number of problem f :

κ =
‖δx‖
‖x‖

/‖δA‖
‖A‖ ≤

‖A−1‖‖δA‖‖x‖
‖x‖

/‖δA‖
‖A‖ = ‖A−1‖‖A‖ = κ(A)
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O(ǫmachine) notation

The notation ϕ(t) = O(ψ(t)) means there is a constant C such
that, for t close to a limit (often 0 or∞), |ϕ(t)| ≤ Cψ(t)

Example : sin2 t = O(t2) as t → 0 means | sin2 t | ≤ Ct2 for some
C

If ϕ depends on additional variables, the notation

ϕ(s, t) = O(ψ(t)) uniformly in s

means there is a constant C such that |ϕ(s, t)| ≤ Cψ(t) for any s

Example : (sin2 t)(sin2 s) = O(t2) uniformly as t → 0, but not if
sin2 s is replaced by s2

In bounds such as ‖x̃ − x‖ ≤ Cκ(A)ǫmachine‖x‖, C does not
depend on A or b, but it might depend on the dimension m
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Accuracy of an algorithm

For a problem described as f : X → Y , which is assumed
differentiable,
Apply (discrete) approximation and solve by an algorithm,
described as f̃ : X → Y . (f̃ (x) is the computed value of f (x))
f̃ (x) has absolute error ‖f̃ (x)− f (x)‖ and relative error

‖f̃ (x)− f (x)‖
‖f (x)‖

Algorithm is accurate if (for all x ∈ X )

‖f̃ (x)− f (x)‖
‖f (x)‖ = O(ǫmachine)

where O(ǫmachine) is “on the order of ǫmachine”
Constant in O(ǫmachine) is likely to be large in many problems
(rounding error exists for x)
More realistic to compare f̃ (x) with f (x̃), where x̃ is an
approximation of the exact x
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Stability of an algorithm

An algorithm f̃ : X → Y for a problem f : X → Y is stable if (for all
x ∈ X )

‖f̃ (x)− f (x̃)‖
‖f (x̃)‖ = O(ǫmachine)

for some x̃ with

‖x̃ − x‖
‖x‖ = O(ǫmachine)

“Nearly the right answer to nearly right data/problem”

An algorithm f̃ for a problem f is backward stable if (for all x ∈ X )

f̃ (x) = f (x̃) for some x̃ with
‖x̃ − x‖
‖x‖ = O(ǫmachine)

“Exactly the right answer to nearly the right data/problem”
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Stability, Backward Stability

x

x̃

f̃ (x)

f (x)

f (x̃)

f

f̃

fbackward error
‖x−x̃‖

forward error
‖f (x)−f̃ (x)‖

b

b

b

b

f̃ is stable (in the mixed forward-backward sense): Nearly right solution to a
nearly right problem.

x

x̃

f (x̃) = f̃ (x)

f (x)

f

f̃

fbackward error
‖x−x̃‖

forward error
‖f (x)−f̃ (x)‖

b

b

b

b

f̃ is backward stable: Exactly right solution to a nearly right problem.
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Linking forward error with backward error

Assume that forward error, backward error, and condition number are
defined mutually consistently, then a rule of thumb in error analysis is

(forward error) ≤ C ∗ (condition number) ∗ (backward error)

That is, ∥
∥
∥f (x)− f̃ (x)

∥
∥
∥ ≤ Cκ̂(f , x) ‖x − x̃‖ ,

which may be considered as an approximation of the 1st order Taylor
expansion.

If f is backward stable, then by the definition of κ̂(f , x) we see the
constant C can be set to 1.

Idea of backward error analysis: Backward error reveals the
stability of the algorithm, isolated from the conditioning of the
underlying problem. (While forward error depends on both
stability of algorithm and conditioning of problem.)
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Three types of stability

Small forward error
condition number , i.e., (‖f̃ (x)−f (x)‖

κ(f ,x) )
=⇒ forward stable algorithm

Small mixed error (
∥
∥
∥f̃ (x)− f (x̃)

∥
∥
∥)

=⇒ stable algorithm (in mixed forward-backward sense)
Small backward error (‖x̃ − x‖)

=⇒ backward stable algorithm

Backward stability is the strongest among the three:

Backward stable =⇒ stable

Backward stable =⇒ forward stable

Comment: However, the above definition for forward stability is not
universally accepted. It is also possible to require small “forward error” for
forward stability. In this case “backward stability” does not imply “forward
stability”. An example is the QR factorization by GS, which may be
considered “forward unstable” (Q factor may not be orthogonal), though it is
backward stable.
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Accuracy of a Backward Stable Algorithm

Theorem: If a backward stable algorithm is used to solve a problem f
with condition number κ, then the relative errors satisfy

‖f̃ (x)− f (x)‖
‖f (x)‖ = O(κ(f , x)ǫmachine) .

Proof. The definition of condition number gives

‖f (x̃)− f (x)‖
‖f (x)‖ ≤ (κ(f , x) + o(1))

‖x̃ − x‖
‖x‖

where o(1)→ 0 as ǫmachine → 0.

Backward stability of f̃ means f̃ (x) = f (x̃) for x̃ such that

‖x̃ − x‖
‖x‖ = O(ǫmachine)

Combining these gives the desired result.
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Backward Stability of Householder QR

For a QR factorization A = QR computed by Householder
triangularization, the factors Q̃ and R̃ satisfy

Q̃R̃ = A + δA,
‖δA‖
‖A‖ = O(ǫmachine)

Exactly the right QR factorization of a slightly perturbed A

Here R̃ is the R computed by the algorithm using floating points

However, Q̃ is a product of exactly unitary reflectors:

Q̃ = Q̃1Q̃2 · · · Q̃n

where Q̃k is implicitly given by the computed ṽk (since Q is
generally not formed explicitly)
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Backward Stability of Solving Ax = b with QR

Algorithm: Solving Ax = b by QR Factorization

1. QR = A using Householder, represent Q by reflectors

2. y = Q∗b implicitly using reflectors

3. x = R−1y by back substitution

Step 1 is backward stable (from previous slide)

Step 2 can be shown to be backward stable:

(Q̃ + δQ)ỹ = b, ‖δQ‖ = O(ǫmachine)

Step 3 is backward stable (will be shown later):

(R̃ + δR)x̃ = ỹ ,
‖δR‖
‖R̃‖

= O(ǫmachine)
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Backward Stability of Solving Ax = b with QR

Put the three steps together to show backward stability of the
algorithm:

(A +∆A)x̃ = b,
‖∆A‖
‖A‖ = O(ǫmachine)

Proof. Steps 2 and 3 give

b = (Q̃ + δQ)(R̃ + δR)x̃ =
[

Q̃R̃ + (δQ)R̃ + Q̃(δR) + (δQ)(δR)
]

x̃

Step 1 (backward stability of Householder) gives

b =
[

A + δA + (δQ)R̃ + Q̃(δR) + (δQ)(δR)
]

x̃

= (A +∆A)x̃
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Backward Stability of Solving Ax = b with QR

δA is small compared to A, therefore

‖R̃‖
‖A‖ ≤ ‖Q̃

∗‖‖A + δA‖
‖A‖ = O(1)

Now show that each term in ∆A is small:

‖(δQ)R̃‖
‖A‖ ≤ ‖δQ‖‖R̃‖‖A‖ = O(ǫmachine)

‖Q̃(δR)‖
‖A‖ ≤ ‖Q̃‖‖δR‖

‖R̃‖
‖R̃‖
‖A‖ = O(ǫmachine)

‖(δQ)(δR)‖
‖A‖ ≤ ‖δQ‖‖δR‖‖A‖ = O(ǫ2

machine
)
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Backward Stability of Solving Ax = b with QR

Add the terms to show that ∆A is small:

‖∆A‖
‖A‖ ≤

‖δA‖
‖A‖ +

‖(δQ)R̃‖
‖A‖ +

‖Q̃(δR)‖
‖A‖ +

‖(δQ)(δR)‖
‖A‖

= O(ǫmachine)

Since the algorithm is backward stable, it is also accurate:

‖x̃ − x‖
‖x‖ = O(κ(A)ǫmachine)
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On Floating Points

Representation
Precision (or size of Significand, or significant digits):

an integer p ≥ 1
Exponent size:

two bounds emin and emax, with an integer e ∈ [emin, emax]

Base (or Radix):
an integer β ≥ 2
β = 2 — binary format (most common in computers)
β = 10 — decimal format
β = 16 — hexadecimal

IEEE single and double precision floating point data type

Floating point arithmetic
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Floating Point Representations

A floating point (number) system is a subset of the real numbers R,
with elements represented by

±mβe−p = ±m
βp β

e

The β is the base (also called radix)

The p is the precision

The e is the exponent — an integer bounded by [emin,emax]

The m is the significand — an integer satisfying 0 ≤ m ≤ βp − 1

An equivalent form of the floating point (number) is

±0.d1d2 · · · dp × βe = ±
(

d1

β
+

d2

β2 + · · ·+ dp

βp

)

βe,

0 ≤ di ≤ β − 1, and d1 6= 0 for normalized numbers.
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Floating Point Representations (continued)

Two advantages of normalized representation:
Uniqueness of representation
For β = 2, d1 ≡ 1, which does not need to be stored (saved one
extra bit for a longer significand (also called mantissa))

For normalized floating points: To represent 0, use e = emin − 1.

For nonzero normalized floating points, βp−1 ≤ m ≤ βp − 1
(uniqueness of representation)
Range of nonzero normalized floating points (symmetric w.r.t. 0)

βemin−1 ≤ |fl(y)| ≤ βemax(1− β−p)

Minimum when d1 = 1, di = 0 (i > 1), e = emin, i.e., 1
β
βemin .

Maximum when di = β − 1 (i ≥ 1), e = emax, i.e.,
(

p
∑

i=1

β − 1
β i

)

βemax = βemax(1− β−p).

Or, by using mβe−p: βp−1βemin−p ≤ |fl(y)| ≤ (βp − 1)βemax−p.
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Machine epsilon and unit roundoff

Machine epsilon (ǫmachine), is sometimes called unit roundoff (µ),
(while some authors uses µ = ǫmachine/2 for a good reason)

The IEEE standard does not define the terms “machine epsilon”
and unit roundoff
ǫmachine provides an upper bound on the relative error due to
rounding. That is, for any non-zero real number y within the
normalized range of a floating point system,

∣

∣

∣

∣

fl(y)− y
y

∣

∣

∣

∣

≤ ǫmachine

A few (essentially) equivalent (but slightly different) definitions exist:
E.g., ǫmachine measures the distance from 1 to the adjacent larger

floating point, i.e., from 1
β
β to ( 1

β
+ 1

β
p )β, ǫmachine = β1−p

The definition ǫmachine = β1−p assumes “rounding to zero” (i.e.,
directed rounding towards zero with truncation)
If “rounding to nearest” is used, then ǫmachine =

1
2β

1−p, which is the
unit roundoff as is (quite often) used
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Floating Point Numbers

The gaps between adjacent numbers scale with the size of the
numbers

For all x ∈ R in the range of a floating point system, there exists
a floating point number fl(x) such that |x − fl(x)| ≤ ǫmachine|x |
Example: β = 2,p = 3,emin = −1,emax = 3, normalized

(
d1

2
+

d2

22 +
d3

23

)

2e, e ∈ {−1,0,1,2,3},

d1 ≡ 1, d2,d3 ∈ {0,1}, (essentially only need two bits for p = 3)

0 1 2 3 4 5 6 71
4

1
2

Number of floating points between adjacent powers of 2: 2p−1 − 1.
(# of floating points between adjacent powers of β: (β − 1)βp−1 − 1)
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Denormalized (or Subnormal) Numbers

With normalized significand, ∃ a “gap” between 0 and βemin−1

This can result in x − y = 0 even though x 6= y , and code
fragments like if x 6= y then z = 1/(x − y) might break
Solution: Allow non-normalized significand when the exponent is
emin (i.e, d1 can be 0 when e = emin)
This gradual underflow garantees that

x = y ⇐⇒ x − y = 0

Subnormal numbers have lower relative precision than
normalized numbers

Example: β = 2,p = 3,emin = −1,emax = 3
(
d1/2 + d22−2 + d32−3) 2e, e ∈ {−1,0,1,2,3}, di ∈ {0,1}.

0 1 2 3 4 5 6 71
4

1
2

Y. Zhou Math-6316/CS-7366, SMU 157/209



Two equivalent floating point representations

The (normalized) representation just discussed uses

±mβe−p = ±m
βp β

e, where βp−1 ≤ m ≤ βp − 1

The range of m implies that this representation is essentially

±0.d1d2 · · · dp × βe = ±
(

d1

β
+

d2

β2 + · · ·+ dp

βp

)

βe,

where 0 ≤ di ≤ β − 1, and d1 6= 0.

Another equivalent representation (more often used, as used in IEEE) is

±d1.d2 · · · dp × βe−1 = ±
(

d1 +
d2

β1 + · · ·+ dp

βp−1

)

βe−1,

where 0 ≤ di ≤ β − 1, and d1 6= 0.

No essential difference at all, except that in order to represent the same floating
point numbers, the emin and emax of the first representation should be 1 greater
than that of the second representation. (which can cause some confusion.)
For example, the previous example using the second representation should be
β = 2,p = 3,emin = −2,emax = 2.
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An exercise

The following shows a portion of a floating point system

0

0

βemin

βemin

βemin+1

βemin+1

βemin+2

βemin+2

βemin+3

βemin+3

The top one contains the normalized, while the bottom one contains
both the normalized and the subnormal, floating points.

1. Which representation is the system using,
the 0.d1d2 · · · dp × βe or the d1.d2 · · · dp × βe ?

2. Determine the possible values of β and p for this system.
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An exercise

The following shows a portion of a floating point system

0

0

βemin

βemin

βemin+1

βemin+1

βemin+2

βemin+2

βemin+3

βemin+3

The top one contains the normalized, while the bottom one contains
both the normalized and the subnormal, floating points.

1. Which representation is the system using,
the 0.d1d2 · · · dp × βe or the d1.d2 · · · dp × βe ?

2. Determine the possible values of β and p for this system.
Answer: To solve this problem, apply the formula that determines the number of floating points between adjacent powers of β,

which is (β − 1)βp−1 − 1. (This formula can be obtained in several ways.)

Here, since (β − 1)βp−1 − 1 = 11, the only two integer solution pairs are (β, p) = (4, 2) and (13, 1). (Note the proportion
of gap is not drawn correctly to reveal the value of β.)
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Special Quantities

±∞ is returned when an operation overflows

x/±∞ = 0 for any number x , x/0 = ±∞ for any nonzero
number x

Operations with infinity are defined as limits, e.g.

4−∞ = lim
x→∞

4− x = −∞

NaN (Not a Number) is returned when the an operation has no
well-defined finite or infinite result .
— Examples: ∞−∞,∞/∞, 0/0, NaN⊙ x
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IEEE 754 binary formats

Floating-point numbers are stored in computer data as three parts
(from left to right): 1. the sign bit, 2. the exponents, 3. the significand.

Sign bit (S) Exponent bits (E) Significand bits (M)

The IEEE 754 standard was created in the early 1980s (published version
IEEE 754-1985), which has been followed by almost all modern machines.
Current version is IEEE 754-2008, which is a revision of IEEE 754-1985 and
adds the half-precision type.

IEEE 754 standard represent floating point data using bit sizes as

Precision Type Sign
Exponent bits,
[emin,emax]

Significand bits,
(bits precision)

Total bits Exponent bias

Half 1 5, [-14,15] 10, (11) 16 15
Single 1 8, [-126,127] 23, (24) 32 127
Double 1 11, [-1022,1023] 52, (53) 64 1023
Quadruple 1 15, [-16382, 16383] 112, (113) 128 16383

In binary formats the exponent is stored as an unsigned number,
with a fixed ”bias” to account for the ± sign of an exponent.
The listed [emin,emax] assume the 1.d1d2d3 · · · dp × 2e format.
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IEEE Single Precision

1 sign bit, 8 exponent bits, 23 significand bits:

0 00000000 0000000000000000000000000000000
S E (8 bits) M (23 physical bits, effective 24 bits)

0/1 emin=1−127=−126
emax=28−2−127=127

223−1 # of floating reals in (2e, 2e+1),
for every integer e∈[emin,emax]

Represented number:

(−1)S × 1.M × 2E−127

Special cases:

E = 0 0 < E < 255 E = 255
M = 0 ±0 Powers of 2 ±∞
M 6= 0 Denormalized Ordinary numbers NaN
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IEEE Single Precision

1 sign bit, 8 exponent bits, 23 significand bits:

0 00000000 0000000000000000000000000000000
S E (8 bits) M (23 physical bits, effective 24 bits)

0/1 emin=1−127=−126
emax=28−2−127=127

223−1 # of floating reals in (2e, 2e+1),
for every integer e∈[emin,emax]

Represented number:

(−1)S × 1.M × 2E−127

Special cases:

E = 0 0 < E < 255 E = 255
M = 0 ±0 Powers of 2 ±∞
M 6= 0 Denormalized Ordinary numbers NaN

Comment: Giving up two strings for exponents (representing E = 0 and E = 255) to store the special 0 and ∞.

That is why emin = −126 and emax = 127.
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IEEE Single Precision, Examples

S E M Quantity

0 11111111 00000100000000000000000 NaN

1 11111111 00100010001001010101010 NaN

0 11111111 00000000000000000000000 ∞

0 10000001 10100000000000000000000 +1 · 2129−127 · 1.101 = 6.5

0 10000000 00000000000000000000000 +1 · 2128−127 · 1.0 = 2

0 00000001 00000000000000000000000 +1 · 21−127 · 1.0 = 2−126

0 00000000 10000000000000000000000 +1 · 2−126 · 0.1 = 2−127

0 00000000 00000000000000000000001 +1 · 2−126 · 2−23 = 2−149

0 00000000 00000000000000000000000 0

1 00000000 00000000000000000000000 −0

1 10000001 10100000000000000000000 −1 · 2129−127 · 1.101 = −6.5

1 11111111 00000000000000000000000 −∞
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IEEE Single and Double Precision binary data type

Single precision Double precision
Significand size (p) 24 bits 53 bits
Exponent size 8 bits 11
Exponent bias 27 − 1 = 127 210 − 1 = 1023
Total size 32 bits 64 bits
emax +127 +1023
emin -126 -1022
Smallest normalized 2−126 ≈ 10−38 2−1022 ≈ 10−308

Largest normalized 2127 ≈ 1038 21023 ≈ 10308

unit roundoff (β−p) 2−24 ≈ 6 · 10−8 2−53 ≈ 10−16
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Floating Point Arithmetic

Define fl(x) as the closest floating point approximation to x

By the definition of ǫmachine, we have for the relative error:

For all x ∈ R in the range of a floating point system,
there exists ǫ with |ǫ| ≤ ǫmachine such that fl(x) = x(1 + ǫ)

The result of an operation ⊛ using floating point numbers is
fl(a ⊛ b)

The arithmetic is said to rounds correctly if fl(a ⊛ b) is the
nearest floating point number to a ⊛ b. In a floating point system
that rounds correctly (IEEE standard does), the following
property holds:
For all floating point x , y , there exists ǫ with |ǫ| ≤ ǫmachine such
that x ⊛ y = (x ∗ y)(1 + ǫ)

Tie-breaking rule: Round to nearest even (i.e., set the least
significant bit to 0)
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A few examples (In Matlab, with IEEE single precision)

>> single (2ˆ23 + [ 1 : 2 2 ] ) − single (2 ˆ23 )
ans = 1 2 3 4 5 6 7 8 9 10 11 ←֓

12 13 14 15 16 17 18 19 20 21 22
>> single (2ˆ24 + [ 1 : 2 2 ] ) − single (2 ˆ24 )
ans = 0 2 4 4 4 6 8 8 8 10 12 ←֓

12 12 14 16 16 16 18 20 20 20 22
>> single (2ˆ25 + [ 1 : 2 2 ] ) − single (2 ˆ25 )
ans = 0 0 4 4 4 8 8 8 8 8 12 ←֓

12 12 16 16 16 16 16 20 20 20 24
>> single (2ˆ26 + [ 1 : 2 2 ] ) − single (2 ˆ26 )
ans = 0 0 0 0 8 8 8 8 8 8 8 ←֓

16 16 16 16 16 16 16 16 16 24 24
>> single (2 ˆ27 ) + [ 1 : 2 2 ] − single (2 ˆ27 )
ans = 0 0 0 0 0 0 0 0 16 16 16 ←֓

16 16 16 16 16 16 16 16 16 16 16
>> single (2 ˆ28 ) + [ 1 : 2 2 ] − single (2 ˆ28 )
ans = 0 0 0 0 0 0 0 0 0 0 0 ←֓

0 0 0 0 0 32 32 32 32 32 32
>> single (2 ˆ29 ) + [ 1 : 2 2 ] − single (2 ˆ29 )
ans = 0 0 0 0 0 0 0 0 0 0 0 ←֓

0 0 0 0 0 0 0 0 0 0 0
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A few examples (In Matlab, with IEEE double precision)

>> 2ˆ52 + [ 1 : 2 2 ] − 2ˆ52
ans = 1 2 3 4 5 6 7 8 9 10 11 ←֓

12 13 14 15 16 17 18 19 20 21 22
>> 2ˆ53 + [ 1 : 2 2 ] − 2ˆ53
ans = 0 2 4 4 4 6 8 8 8 10 12 ←֓

12 12 14 16 16 16 18 20 20 20 22
>> 2ˆ54 + [ 1 : 2 2 ] − 2ˆ54
ans = 0 0 4 4 4 8 8 8 8 8 12 ←֓

12 12 16 16 16 16 16 20 20 20 24
>> 2ˆ55 + [ 1 : 2 2 ] − 2ˆ55
ans = 0 0 0 0 8 8 8 8 8 8 8 ←֓

16 16 16 16 16 16 16 16 16 24 24
>> 2ˆ56 + [ 1 : 2 2 ] − 2ˆ56
ans = 0 0 0 0 0 0 0 0 16 16 16 ←֓

16 16 16 16 16 16 16 16 16 16 16
>> 2ˆ57 + [ 1 : 2 2 ] − 2ˆ57
ans = 0 0 0 0 0 0 0 0 0 0 0 ←֓

0 0 0 0 0 32 32 32 32 32 32
>> 2ˆ58 + [ 1 : 2 2 ] − 2ˆ58
ans = 0 0 0 0 0 0 0 0 0 0 0 ←֓

0 0 0 0 0 0 0 0 0 0 0
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A few examples (In Matlab, with IEEE double precision)

>> format long e

>> eps /2
ans = 1.110223024625157e−16
>> 1. + eps /2 − 1.
ans = 0

>> eps / 1 . 5
ans = 1.480297366166875e−16
>> 1. + eps / 1 . 5 − 1.
ans = 2.220446049250313e−16

>> 2. + eps − 2.
ans = 0
>> 2. + 1 .1* eps − 2.
ans = 4.440892098500626e−16
>> 2. + 2*eps − 2.
ans = 4.440892098500626e−16

>> 4. + 2*eps − 4.
ans = 0
>> 4. + 3*eps − 4.
ans = 8.881784197001252e−16
>> 4. + 4*eps − 4.
ans = 8.881784197001252e−16
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A few examples (In Matlab, with IEEE double precision)

>> 2ˆ9* eps
ans = 1.136868377216160e−13
>> 1024. + 2ˆ9* eps − 1024.
ans = 0
>> 1024. + (1+1.e−16) *2 ˆ9* eps − 1024.
ans = 0
>> 1024. + (1+eps ) *2 ˆ9* eps − 1024.
ans = 2.273736754432321e−13
>> 1024. + 2ˆ10* eps − 1024.
ans = 2.273736754432321e−13

>> 2ˆ11. + 2ˆ10* eps − 2ˆ11.
ans = 0
>> 3*2ˆ10* eps
ans = 6.821210263296962e−13
>> [ 2ˆ11 + 3*2ˆ10* eps − 2ˆ11 , 2ˆ11 + 5*2ˆ10* eps − 2ˆ11 ]
ans = 9.094947017729282e−13 9.094947017729282e−13

>> 2ˆ1000*eps
ans = 2.379227053564453e+285
>> 2ˆ1001+ 2ˆ1000*eps − 2ˆ1001
ans = 0

>> [ 2ˆ1022*eps , 2ˆ1023 + 2ˆ1022*eps − 2ˆ1023 ]
ans = 9.979201547673599e+291 0
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On eigenvalue problems and related algorithms

Properties related to eigen-problems
A few representative algorithms

Power method, inverse iteration, shift-inverse iteration
RQI
The QR algorithm
Jacobi iteration, Divide-and-Conquer

Computing SVD
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The Eigenvalue Problem

The standard eigenvalue problem for m ×m matrix A is

Ax = λx

with eigenvalues λ and eigenvectors x (x 6= 0)

In the direction of an eigenvector, A is “condensed” into a scalar λ

Eigenvalue decomposition of A: (assume A has complete
eigenvectors)

A = XΛX−1 or AX = XΛ

Columns of X are eigenvectors, with corresponding eigenvalues
on diagonal of Λ

In “eigenvector coordinates”, A is diagonal:

Ax = b → (X−1b) = Λ(X−1x)
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Eigen-subspace, invariant subspace, multiplicity

The span of eigenvectors corresponding to an eigenvalue λ form
an eigen-subspace Eλ

Dimension of Eλ = dim(null(A− λI)) = geometric multiplicity of λ
The span of k linearly independent eigenvectors (corresponding
to eigenvalues) form a dimension-k eigen-subspace Yk , which is
invariant under A

AYk = Yk Sk , with Sk ∈ C
k×k

The characteristic polynomial of A is

pA(z) = det(zI − A) = (z − λ1)(z − λ2) · · · (z − λm)

λ is eigenvalue of A⇐⇒ pA(λ) = 0
If λ is eigenvalue, then ∃x 6= 0, λx − Ax = 0. Hence λI − A is
singular, det(λI − A) = 0.

Multiplicity of a root λ to pA = algebraic multiplicity of λ
Any A ∈ C

m×m has m eigenvalues, counted with algebraic
multiplicity
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Similarity Transformations

The map A 7→ X−1AX is a similarity transformation of A

A,B ∈ C
m×m are called similar if there is a similarity

transformation B = X−1AX
A and X−1AX have the same characteristic polynomials,
eigenvalues, and multiplicities:

The characteristic polynomials are the same:

pX−1AX (z) = det(zI − X−1AX ) = det(X−1(zI − A)X )

= det(X−1)det(zI − A)det(X ) = det(zI − A) = pA(z)

Therefore, the algebraic multiplicities are the same
If Eλ is eigenspace for A, then X−1Eλ is eigenspace for X−1AX , so
geometric multiplicities are the same
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Algebraic Multiplicity ≥ Geometric Multiplicity

Let n first columns of V̂ be orthonormal basis of the eigenspace
for λ

Extend V̂ to square unitary V , and form

B = V ∗AV =

[
λI C
0 D

]

Since

det(zI − B) = det(zI − λI)det(zI − D) = (z − λ)ndet(zI − D)

the algebraic multiplicity of λ (as eigenvalue of B) is ≥ n

A and B are similar; so the same is true for λ of A
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Defective and Diagonalizable Matrices

An eigenvalue is called defective if its algebraic multiplicity > its
geometric multiplicity

A defective matrix is any matrix with at least one defective
eigenvalue

A nondefective or diagonalizable matrix has equal algebraic and
geometric multiplicities for all eigenvalues

A is nondefective ⇐⇒
A is diagonalizable (i.e., ∃X nonsingular, s.t. A = XΛX−1)

(⇐=) If A = XΛX−1, A is similar to Λ and has the same eigenvalues
and multiplicities. But Λ is diagonal and thus nondefective.
(=⇒) Nondefective A has m linearly independent eigenvectors.
Take these as the columns of X , then A = XΛX−1.
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Eigenvalue-Revealing Factorizations

Three common Eigenvalue-Revealing Factorizations:

Diagonalization A = XΛX−1 (any nondefective A)

Unitary diagonalization A = QΛQ∗ (any normal A)

Unitary triangularization (Schur factorization) A = QSQ∗ (any A)

A few direct consequences of these decompositions:

trace (A) = trace (QSQ∗) = trace (S) =
∑m

j=1 λj

det (A) = det (QSQ∗) = det (S) =
∏m

j=1 λj

Since it is known (by SVD) that |det (A) | =∏m
j=1 σj , we get

m∏

j=1

|λj | =
m∏

j=1

σj
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Eigenvalues and roots of polynomials

Well-known: Roots of a polynomial lead to eigenvalues:
Eigenvalues of A are the roots of pA(λ) = 0

Conversely: Eigenvalues lead to roots of a given polynomial.
For any given p(z) = zm + am−1zm−1 + · · ·+ a1z + a0, it can be
shown that the roots of p are the eigenvalues of its companion
matrix

A =











0 −a0
1 0 −a1

1 0 −a2

1
. . .

...
. . . 0 −am−2

1 −am−1











Conclusion: Finding eigenvalues of a matrix is equivalent to
solving for roots of a polynomial
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Eigenvalue Algorithms

The obvious method: Find roots of pA(λ), is ill-conditioned

Instead, compute Schur factorization A = QSQ∗ by introducing
zeros

This can not be done in a finite number of steps. In fact

Any eigenvalue solver for A ∈ C
m×m with m ≥ 5 must be iterative

Reason: Consider a general polynomial of degree m

p(z) = zm + am−1zm−1 + · · ·+ a1z + a0

There is no closed-form expression for the roots of p: (Abel, 1842)
In general, the roots of polynomial equations higher than
fourth degree cannot be written in terms of a finite number of
operations

Schur factorization is utilized for computing all eigenvalues

Next we first look at iterative algorithms for computing only one
eigenvalue
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Eigenvalue Algorithms (compute 1 eigenvalue)

The Power Iteration (Power method)
Arguably “the mother of most eigenvalue algorithms”
Reveals the “essential ratio” that determines convergence rate
The QR algorithm, as well as sparse eigen-algorithms such as
Arnoldi/Lanczos/Davidson are all variations of power method
(including its block and shift-inverse versions)

The Shift-Inverse Iteration
Essentially “power iteration”, but applied to a shift-inverse matrix

The Rayleigh-Quotient Iteration (RQI)
Essentially “power iteration”, but applied to a shift-inverse matrix,
where the shift is the current Rayleigh-quotient

r(x) =
x∗Ax
x∗x

, x ∈ C
m, x 6= 0
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The Power Iteration

Algorithm: The simple Power Iteration

Choose v (0) = a unit length (random) vector
for k = 0, 1, 2, . . .

w = Av (k) (apply A)
λ(k) = (v (k))∗w (Rayleigh quotient, note

∥
∥v (k)

∥
∥

2 ≡ 1)
v (k+1) = w/‖w‖2 (normalize)

Questions:

1. Under what condition does it converge?
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The Power Iteration

Algorithm: The simple Power Iteration

Choose v (0) = a unit length (random) vector
for k = 0, 1, 2, . . .

w = Av (k) (apply A)
λ(k) = (v (k))∗w (Rayleigh quotient, note

∥
∥v (k)

∥
∥

2 ≡ 1)
v (k+1) = w/‖w‖2 (normalize)

Questions:

1. Under what condition does it converge?
2. How to determine convergence?
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The Power Iteration

Algorithm: The simple Power Iteration

Choose v (0) = a unit length (random) vector
for k = 0, 1, 2, . . .

w = Av (k) (apply A)
λ(k) = (v (k))∗w (Rayleigh quotient, note

∥
∥v (k)

∥
∥

2 ≡ 1)
v (k+1) = w/‖w‖2 (normalize)

Questions:

1. Under what condition does it converge?
2. How to determine convergence?

Convergence may be determined from |λ(k+1) − λ(k)|, or from the
angle between v (k+1) and v (k), or by the residual norm
∥

∥

∥
Av (k) − λ(k)v (k)

∥

∥

∥

3. If it converges, what does it converge to?
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Convergence of Power Iteration

Assume diagonalizable. Expand initial v (0) in the eigenvector
basis {qi}, and apply Ak :

v (0) = a1q1 + a2q2 + · · ·+ amqm

v (k) = ck Ak v (0) = ck (a1λ
k
1q1 + a2λ

k
2q2 + · · ·+ amλ

k
mqm)

= ckλ
k
1(a1q1 + a2(λ2/λ1)

k q2 + · · ·+ am(λm/λ1)
k qm)

If |λ1| > |λ2| ≥ · · · ≥ |λm| and qT
1 v (0) 6= 0, then

‖v (k) − (±q1)‖ = O(

∣
∣
∣
∣

λ2

λ1

∣
∣
∣
∣

k

), |λ(k) − λ1| =







O(
∣
∣
∣
λ2
λ1

∣
∣
∣

2k
), if A = A∗

O(
∣
∣
∣
λ2
λ1

∣
∣
∣

k
), if A 6= A∗

Converges to the largest eigen-pair, unless eigenvector
q1 ⊥ v (0), which is unlikely if v (0) is (uniformly/Gaussian) random
Linear convergence, factor ≈ |λ2/λ1| (the gap-ratio), at each
iteration
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The Shift-Inverse Iteration

Power method converges to maxi |λi | only, and if gap-ratio
|λ2/λ1| ≈ 1−, then very slow convergence
Apply power iteration on (A− µI)−1, (eigenvalues (λj − µ)−1,
converges to a λ closest to µ, with potentially much improved
gap-ratio)

Algorithm: Shift-Inverse Iteration

Choose a shift µ, and set v (0) = some unit length (random) vector
for k = 1,2, . . .

Solve (A− µI)w = v (k−1) for w apply (A− µI)−1

v (k) = w/‖w‖ normalize
λ(k) = (v (k))∗Av (k) Rayleigh quotient

Converges to eigenvector qJ if the shift µ is closest to a simple λJ

(and second closest to λL 6= λJ ):

‖v (k) − (±qj)‖ = O

(∣
∣
∣
∣

µ− λJ

µ− λL

∣
∣
∣
∣

k
)

; |λ(k) − λJ | = O

(∣
∣
∣
∣

µ− λJ

µ− λL

∣
∣
∣
∣

k̂
)

, k̂ =

{

2k if A = A∗

k if A 6= A∗
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The Rayleigh-Quotient Iteration (RQI)

The shift µ is constant in shift-inverse iteration, (better
convergence if µ is updated to be closer to an eigenvalue)

Improvement: Set µ as the most current Rayleigh quotient

Algorithm: RQI

Choose v (0) = some unit length (random) vector
Compute λ(0) = (v (0))∗Av (0)

for k = 1,2, . . .
Solve (A− λ(k−1)I)w = v (k−1) for w (shift-inverse)
v (k) = w/‖w‖ (normalize)
λ(k) = (v (k))∗Av (k) (current Rayleigh quotient)

Convergence rate:

(locally) Square in v and λ when A is not hermitian

(locally) Cubic in v and 6th order in λ when A is hermitian
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Block Power Method

Also called simultaneous iteration, or subspace iteration, or
orthogonal iteration

Can be used to compute more than 1 eigenpairs

Simultaneously apply Power method to a block of linearly
independent vectors

V (0) = [v (0)
1 , v (0)

2 , · · · , v (0)
n ],

V (k) = Ak V (0) = [Ak v (0)
1 ,Ak v (0)

2 , · · · ,Ak v (0)
n ]

Intrinsically ill-conditioned, since from the Power method we
know all Ak v (0)

i will converge to the dominant eigenvector

Rescue: Find an orthonormal basis of V (k) at each step of
iteration to enforce linear independence of columns
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Block Power Method

Algorithm: The simple Block Power Iteration

Choose V (0) ∈ C
m×n with n orthonormal column vectors

for k = 0, 1, 2, . . .
W = AV (k) (apply A)
Λ(k) = (V (k))∗W (block Rayleigh quotient, for convergence test)
V (k+1)R = W (compute QR of W , orthonormalization)

Under suitable conditions, V (k) converges to an orthonormal
basis of the invariant subspace of A spanned by the first n
dominant eigenvectors
Assume |λ1| ≥ · · · ≥ |λn| > |λn+1| ≥ · · · ≥ |λm|, then the rate of
convergence is linear with factor |λn+1/λn|. With an acceleration
scheme by Stewart (1976),

|λ(k)i − λi | = O(

∣
∣
∣
∣

λn+1

λi

∣
∣
∣
∣

k

), i = 1 : n.
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Computing all eigenvalues

The previously discussed methods compute only partial
eigenvalues, and they only require matrix-vector products, i.e., A
need not be explicitly available, only a subroutine that generates
Ax for any x is necessary (the basic requirement of many sparse
eigen algorithms)
Now we turn to eigen algorithms that compute all eigenvalues,
they are based on matrix decompositions and usually require A
to be explicitly available

Based on unitary similarity transformation
Based on QR decomposition
In essence, they are variants of (shift-inverse) power method, the
choice of shift is quite important
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Schur Factorization and Diagonalization

Compute Schur factorization A = QSQ∗ by “unitary
triangularization”:
Transforming A with similarity transformations

Q∗j · · ·Q∗2 Q∗1
︸ ︷︷ ︸

Q∗

A Q1Q2 · · ·Qj
︸ ︷︷ ︸

Q

which converge to S as j →∞
For practical reason, an eigen algorithm should converge with a
reasonably small j

For hermitian A, the sequence converges to a diagonal matrix

Since a real matrix may have complex eigenvalues (and they
always appear in conjugate pairs), the Q and S in its Schur form
can be complex.
When only real Q and S are desired, then one uses a real Schur
factorization, in which S may have 2× 2 blocks on its diagonal.
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Unitary similarity triangularization

Goal: Compute a Schur factorization A = QSQ∗. Can apply
Householder reflectors from left and right to introduce zeros. But
directly targeting at upper-triangular form is too ambitious







×××××
×××××
×××××
×××××
×××××







A

left mult. Q∗
1

−→







X X X X X
0 X X X X
0 X X X X
0 X X X X
0 X X X X







Q∗1 A

right mult. Q1

−→







X X X X X
X X X X X
X X X X X
X X X X X
X X X X X







Q∗1 AQ1

The right multiplication destroys the zeros previously introduced

We already knew similarity transformation to triangular form in
finite steps would not work (because of Abel’s theorem)

Will need iteration to reach the goal (A = QSQ∗)

Need two phases, so that the iterative phase can be done as
inexpensive (per iteration) as possible
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Two Phases of (dense) Eigenvalues Computations

General A: First to upper-Hessenberg form, then to
upper-triangular








×××××
×××××
×××××
×××××
×××××








A 6= A∗

Phase 1
−→

(finite steps)








×××××
×××××
××××
×××
××








H

Phase 2
−→

(iterative)








×××××
××××
×××
××
×








S

Hermitian A: First to tridiagonal form, then to diagonal (both
because of symmetry)








×××××
×××××
×××××
×××××
×××××








A = A∗

Phase 1
−→

(finite steps)








××
×××
×××
×××
××








S

Phase 2
−→

(iterative)








×
×
×
×
×








D
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First phase: To Hessenberg form

Try to introduce as many zeros in the (finite steps) first phase
Need similarity transform: An (upper) Hessenberg form is the
best possible form without destroying zeros previously introduced
First step unitary similarity transform:






×××××
×××××
×××××
×××××
×××××






A

Q∗1
−→







× × × × ×
X X X X X
0 X X X X
0 X X X X
0 X X X X







Q∗1 A

Q1
−→







× X X X X
× X X X X

X X X X
X X X X
X X X X







Q∗1 AQ1

(zeros introduced by left-mult-Q∗ are kept after right-mult-Q)
Continue in a similar way with column 2:






×××××
×××××
××××
××××
××××






Q∗1 AQ1

Q∗2
−→






× × × × ×
× × × × ×

X X X X
0 X X X
0 X X X






Q∗2 Q∗1 AQ1

Q2
−→







× × X X X
× × X X X
× X X X

X X X
X X X







Q∗2 Q∗1 AQ1Q2

Y. Zhou Math-6316/CS-7366, SMU 190/209



First phase: To Hessenberg form

Reach the (upper) Hessenberg form in m − 2 (finite) steps:

Q∗m−2 · · ·Q∗2 Q∗1
︸ ︷︷ ︸

Q∗

A Q1Q2 · · ·Qm−2
︸ ︷︷ ︸

Q

= H =






×××××
×××××
××××
×××
××






For hermitian A, Hessenberg reduces to tridiagonal (due to
symmetry)





×××××
×××××
×××××
×××××
×××××






A

Q∗1
−→







×××××
XXXXX
0 XXXX
0 XXXX
0 XXXX







Q∗1 A

Q1
−→







×X000
×XXXX

XXXX
XXXX
XXXX







Q∗1 AQ1

· · ·
−→






××
×××
×××
×××
××






T

Producing a hermitian tridiagonal matrix T after m − 2 steps

Q∗m−2 · · ·Q∗2 Q∗1
︸ ︷︷ ︸

Q∗

A Q1Q2 · · ·Qm−2
︸ ︷︷ ︸

Q

= T
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Reduction to Hessenberg by Householder reflectors

Algorithm: Hessenberg by Householder reflectors
for k = 1 to m − 2

x = Ak+1:m,k

vk = sign(x1)‖x‖2e1 + x
vk = vk/‖vk‖2

Ak+1:m,k :m = Ak+1:m,k :m − 2vk (v∗k Ak+1:m,k :m)
A1:m,k+1:m = A1:m,k+1:m − 2(A1:m,k+1:mvk )v∗k

Matlab code:

f u n c t i o n [ H , Q ] = hessen ( A )
[ m , n ]= s ize ( A ) ; H = A ;
i f ( nargout>1) , Q = eye ( n ) ; end
f o r k = 1 : n−2

u = H ( k+1:n , k ) ;
u ( 1 ) = s ign ( u ( 1 ) ) *norm ( u ) +u ( 1 ) ; u = u / norm ( u ) ;
H ( k+1:n , k : n ) = H ( k+1:n , k : n ) − 2*u * ( u ' * H ( k+1:n , k : n ) ) ;
H ( 1 : n , k+1:n ) = H ( 1 : n , k+1:n ) − 2* ( H ( 1 : n , k+1:n ) *u ) *u ' ;
i f ( nargout>1) , % accumulate Q s . t . A = QHQ' ;

% forward accumulat ion ( backward would use less f l o p s )
Q ( 1 : n , k+1:n ) = Q ( 1 : n , k+1:n ) − 2* ( Q ( 1 : n , k+1:n ) *u ) *u ' ;

end
end
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Reduction to Hessenberg (Another implementation)

f u n c t i o n [ u , tau ] = house_gen ( x )
% generates a householder r e f l e c t o r H = I − uu ' s t H* x = tau * e 1 ,
% where | tau |= norm ( x ) , ( note here norm ( u , 2 ) = s q r t ( 2 ) )

u = x ; tau = norm ( x ) ; i f tau == 0 , u ( 1 ) = s q r t ( 2 ) ; re tu rn , end
u = x / tau ;
i f u ( 1 ) >= 0 , u ( 1 ) = u ( 1 ) +1; tau = −tau ; else , u ( 1 ) = u ( 1 )−1; end
u = u / s q r t ( abs ( u ( 1 ) ) ) ;

f u n c t i o n [ H , Q ] = hessen2 ( A )
[ m , n ]= s ize ( A ) ; H=A ;
Q = eye ( n ) ;
f o r k = 1 : n−2

[ Q ( k+1:n , k ) , H ( k+1 ,k ) ] = house_gen ( H ( k+1:n , k ) ) ;
% p r e m u l t i p l y by ( I − uu ' ) , u = Q( k +1:n , k ) ;
H ( k+1:n , k+1:n ) =H ( k+1:n , k+1:n ) − . . .

Q ( k+1:n , k ) * ( Q ( k+1:n , k ) ' * H ( k+1:n , k+1:n ) ) ;
H ( k+2:n , k ) = zeros (n−k−1,1) ;
% p o s t m u l t i p l y by ( I − uu ' )
H ( 1 : n , k+1:n ) =H ( 1 : n , k+1:n )−(H ( 1 : n , k+1:n ) *Q ( k+1:n , k ) ) *Q ( k+1:n , k ) ' ;

end
% accumulate Q, use backward accumulat ion ( less f l o p s )
f o r k = n−2 : −1 : 1

u = Q ( k+1:n , k ) ;
Q ( k+1:n , k+1:n ) = Q ( k+1:n , k+1:n ) − u * ( u ' * Q ( k+1:n , k+1:n ) ) ;
Q ( : , k ) =zeros (n , 1 ) ; Q (k , k ) =1;

end
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Operation counts and stability

Operation count (not twice Householder QR):
Main operations:

Ak+1:m,k :m = Ak+1:m,k :m − 2vk (v∗k Ak+1:m,k :m)

A1:m,k+1:m = A1:m,k+1:m − 2(A1:m,k+1:mvk )v∗k
m∑

k=1

4(m − k)2 + 4m(m − k) = 4m3/3
︸ ︷︷ ︸

QR

+4m3 − 4m3/2 = 10m3/3

For hermitian A, flop count is twice QR divided by two = 4m3/3

The Householder Hessenberg reduction algorithm is backward
stable:

Q̃H̃Q̃∗ = A + δA,
‖δA‖
‖A‖ = O(ǫmachine)

where Q̃ is an exactly unitary matrix based on ṽk
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Main picture of the QR algorithm

Change notation a bit, use V to denote the unitary matrix that transforms A
into H, i.e., V ∗AV = H

i. reduce A to upper Hessenberg form: AV = VH
ii. while not convergent Do :

1. select a shift µ
2. QR factorization of the shifted H: QR = H − µI
3. update V : V ← VQ
4. update H: H ← RQ + µI (= Q∗HQ)

Denote V+ = VQ the updated matrix with columns [v+
1 , v

+
2 , · · · , v+

m ]:

AV = VH = V (QR + µI) ⇒ (A− µI)V = VQR
⇒ (A− µI)v1 = v+

1 r11

(shifted A power iteration on the first column of V )

V ∗(A− µI)−1 = R−1(VQ)∗ ⇒ RV ∗ = (VQ)∗(A− µI)
⇒ VR∗ = (A− µI)∗(VQ) ⇒ vmr∗mm = (A− µI)∗v+

m
(shifted A∗ inverse iteration on the last column of V )
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Understanding the QR algorithm

A step further: If we look at a block of V (e.g., the full V ) instead of
just one single vector, then

(A− µI)V = VQR = V+R

⇒ At each iteration, QR is block power iteration with shift µ

⇒ In total, QR is subspace iteration with variable shifts

VR∗ = (A− µI)∗(VQ) = (A− µI)∗V+

⇒ At each iteration, QR is inverse block power iteration with shift µ

⇒ In total, QR is inverse subspace iteration with variable shifts

(guaranteed convergence with suitably chosen shifts)

That is, QR algorithm does both subspace iteration and shift-inverse
subspace iteration on each column of V at the same time.
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Second phase: From Hessenberg to Triangular

This iterative phase essentially contains two steps

QR factorization of a shifted H: QR = H − µI

Reverse multiplication of the QR factors, plus shift:
H ← RQ + µI

A is pre-processed into a Hessenberg form (V ∗AV = H) because QR
decomposition of H is only of O(m2) complexity, instead of the O(m3) for a
general A. Can use either of two approaches to reduce H to R:

By Givens rotator (only 1 non-zero to zero out per step)

By Householder reflector of length-2 (instead of length-m) per
step . (for real A using real arithmetic, use length-3 reflectors)

The other two key properties:

Each update of H+ = RQ + µI is a similarity transform of the
previous H: H+ = Q∗HQ

Each updated H still maintains upper Hessenberg form (why?)
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Choices of shifts

At a certain iteration step, obtain a shift from a 2× 2 diagonal block of the

current H, say, H2(k) :=
[

hk−1,k−1 hk−1,k

hk−1,k hk,k

]

. Usually obtain a shift from H in

a bottom-to-top manner. That is, k from m downto 2.

Rayleigh-quotient shift: (mainly for hermitian matrix)
Set µ = hk,k , note that hk,k = v∗k Avk is a readily available RQ.
Questions: Why RQ shift can fail to converge for real
nonsymmetric matrix with complex eigenvalues?

Wilkinson shift: Set µ as the eigenvalue of the 2× 2 matrix
H2(k) that is closer to hk,k .
Convergence rate: Quadratic for A 6= A∗, cubic for A = A∗.
Needs on average two QR iterations to converge an eigenvalue,
which makes the QR algorithm behave like a “direct” method.

Francis double shifts: Use (implicitly) both of the eigenvalues of
the 2× 2 matrix H2(k) as the double shifts. (For real A using real
arithmetic)
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Choices of shifts

Need “exceptional shift” for a small set of matrices, e.g.






0 0 0 h
h 0 0 0
0 h 0 0
0 0 h 0






,







0 1 0 0
1 0 10−13 0
0 −10−13 0 1
0 0 1 0
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Deflation of converged eigenvalues in QR algorithm

Mainly utilize the “shift-inverse power” property of the QR
algorithm for fast convergence:
Recall that QR algorithm performs “shift-inverse” iteration on the
last column of V

With Wilkinson shift, the convergence rate is at least quadratic,
and the last column in V typically converges first

Therefore, deflate converged columns in V from the last column
to the first

That is, check convergence in H from bottom up. Typically, the
last subdiagonal elements in H decreases to 0 fastest
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A very simplified sample code of QR algorithm

f u n c t i o n [ H , V ] = qrschur (A , tol ) ;
% compute A=VHV' , where H converges to upper t r i a n g u l a r

[ m , n ] = s ize ( A ) ; H = zeros (n , n ) ;
i f ( nargout > 2) , [ H , V ] = hessen2 ( A ) ; else , [ H ]= hessen ( A ) ; end
k = n ; it = 1; itmax = n ˆ 2 ;
wh i le ( k > 1 & it <=itmax )

% compute the Wi lk inson s h i f t
mu = eig ( H (k−1:k , k−1:k ) ) ;
i f abs ( mu ( 1 )−H (k , k ) )<=abs ( mu ( 2 )−H (k , k ) ) , mu = mu ( 1 ) ;
else , mu = mu ( 2 ) ; end

% compute QR ( should use Givens or length−2 Householder instead ,
% should use i m p l i c i t s h i f t i ns tead of e x p l i c i t s h i f t )
[ Q , R ] = qr ( H ( 1 : k , 1 : k ) − mu * eye ( k ) ) ;
H ( : , 1 : k ) = H ( : , 1 : k ) *Q ; H ( 1 : k , : ) = Q ' * H ( 1 : k , : ) ;

i f ( nargout > 2) , V ( : , 1 : k ) = V ( : , 1 : k ) *Q ; end %update V

% d e f l a t e i f a subdiagonal i s smal l enough
i f abs ( H (k , k−1) ) < tol * ( abs ( H (k−1,k−1) ) +abs ( H (k , k ) ) ) ,

H (k , k−1) = 0 ; k = k−1;
end
it = it + 1;

end
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A few demos of the convergence of the QR algorithm

Click the following links for some online demos

A symmetric, with Wilkinson shift 2

A symmetric, with Rayleigh quotient shift 3

A nonsymmetric, with Wilkinson shift 4

2http://faculty.smu.edu/yzhou/Teach/demo/sym_wilks.gif
3http://faculty.smu.edu/yzhou/Teach/demo/sym_RQshifts.gif
4http://faculty.smu.edu/yzhou/Teach/demo/nonsym_wilks.gif
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Quite a few details left out

When A ∈ R
m×m, do not want to use complex arithmetic, instead,

using real arithmetic, perform implicit double shifts to compute
“real” Schur form.

For the iterative 2nd phase, exploit the “implicit Q theorem” to get
the QR decomposition of the shifted matrix (either H − µI or a
double shifted H2 − sH + tI) without using explicit shift

Using Givens rotator or length-2/3 Householder reflectors for the
iterative process to go from Hessenberg to triangular

Details in Golub and Van Loan’s “matrix computations”,
or, J. Demmel’s “Applied Numerical Linear Algebra”,
or, G. W. Stewart’s “Matrix algorithms, Vol 2”.
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The implicit Q theorem

Theorem: Given A ∈ C
m×m. Let U and V be two unitary matrices,

with U∗AU = H, V ∗AV = G, where H,G are of unreduced upper
Hessenberg form. If u1 = v1, then ui = civi with |ci | = 1, and
|hij | = |gij |.
In words, if A is unitarily transformed into unreduced Hessenberg form by
similarity transformation, and the first columns of the unitary matrices are
identical, then the remaining columns are identical upto a complex sign.

Proof: Quite straightforward noting that uk only depends on
u1, · · · uk−1 in AU = UH when H is unreduced upper Hessenberg.
Comparing columns in AU = UH and AV = VG, it becomes apparent
that u1 = v1 is enough to guarantee that ui is parallel to vi for all i .
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Other Eigen Algorithms 1: Jacobi iteration

Jacobi rotator J =

[
cos θ sin θ
− sin θ cos θ

]

, looks very much like a

Givens rotator, but with an intrinsic difference:
The need to keep a similarity transformation.
E.g., Diagonalize a 2× 2 real symmetric matrix using J

JT
[

a d
d b

]

J =

[
X 0
0 X

]

=⇒ tan(2θ) =
2d

b − a

Iteratively apply transformation to 2 rows and 2 columns of
A ∈ R

m×m

Loop over all pairs of rows/columns, quadratic convergence

O(m2) steps, O(m) operations per step =⇒ O(m3) operation
count
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Other Eigen Algorithms 2: Divide-and-Conquer

Assume T is symmetric tridiagonal, split T into submatrices:

T =

T1

T2

β

β
=

T̂1

T̂2

+
β

β

β

β

The sum of a 2× 2 block-diagonal matrix and a rank-one
correction
Split T and compute eigenvalues of T̂1, T̂2 recursively
Assume diagonalizations T̂1 = Q1D1QT

1 and T̂2 = Q2D2QT
2 have

been computed, then

T =

[
Q1

Q2

]([
D1

D2

]

+ βzzT
)[

QT
1

QT
2

]

with zT = (qT
1 ,q

T
2 ), where qT

1 is last row of Q1 and qT
2 is first row

of Q2
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Secular equation of Divide-and-Conquer

Eigenvalues of T are the eigenvalues of
[
D1

D2

]

+ βzzT

Solve a (nonlinear) secular equation to get eigenvalues of T from
those of T̂1, T̂2

In general, eigenvalues of D + wwT are the roots of the secular
equation

f (λ) := 1 +

m∑

j=1

w2
j

dj − λ
= 0, where wT = [w1,w2, · · · ,wm]

d
1

d
2

d
3

d
4

λ
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Cost of Divide-and-Conquer

Solve the secular equation f (λ) = 0 with a nonlinear solver, such
as Newton’s method on each interval (di ,di+1)

Very fast convergence, typically O(m) flops per root, O(m2) flops
for all roots

Total cost for divide-and-conquer algorithm (for computing
eigenvalues only):

O
(

m2 + 2
m2

22 + 4
m2

42 + 8
m2

82 + · · ·+ m
m2

m2

)

= O(m2)

Most of the operations are spent in reducing A into the
tridiagonal T , and the constant in “Phase 2” is not important

However, for computing eigenvectors, divide-and-conquer
reduces Phase 2 to 4m3/3 flops compared to 6m3 for the QR
algorithm 5

5Stable algorithm for computing eigenvectors within DC developed one decade later
since the 1st DC algorithm was proposed
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Computing SVD

Two phases for dense SVD

Phases 1: (direct finite steps)
Unitary bi-diagonalization
A→ Ũ∗AṼ = B where B is bi-diagonal

Phases 2: (iterative) Iterate from bi-diagonal to diagonal.
Essentially performing QR algorithm on the tridiagonal Hermitian
B∗B, but without forming B∗B explicitly

Most of the important details of computing SVD can be found in
these matlab files:

Phase 1 bi-diagonalization by Householder reflectors (bidiag.m)

Phase 2 iteration to diagonal form (svdbiqr.m) ,
this code calls the implicit shifted QR using Given rotators (biqr.m)

Although mostly coded from scratch, (for small/medium sized
matrices) these codes compute SVD with comparable performance
to the Matlab built-in function svd which calls Lapack
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