
Intro to Data Structures and Algorithms © MergeSort, Slide 1

The Sorting Problem

Input: A sequence of n numbers 〈〈〈〈a1,a2,...,an〉〉〉〉

Output: A permutation (reordering)
〈〈〈〈b1,b2,...,bn〉〉〉〉 of the input sequence such that
b1 ≤ b2 …≤ bn

Example:

• Input: 〈〈〈〈 31,41,59,26,41,58 〉〉〉〉

• Output: 〈〈〈〈 26,31,41,41,58,59 〉〉〉〉

Intro to Data Structures and Algorithms © MergeSort, Slide 2

Sorting - The Data

• In practice, we usually sort records with keys

and satellite data (non-key data)

• Sometimes, if the records are large,

we sort pointers to the records

• For now, we ignore satellite data

assume that we are dealing only with keys only

i.e. focus on sorting algorithms

Intro to Data Structures and Algorithms © MergeSort, Slide 3

Recursion

Insertion-Sort(A,n)

if n > 1

Insertion-Sort(A,n-1)

Put-In-Place(A[n],A,n)

T(n) = T(n-1) + n

Intro to Data Structures and Algorithms © MergeSort, Slide 4

Divide and Conquer

Divide

the problem into several (disjoint) sub-problems

Conquer

the sub-problems by solving them recursively

Combine

the solutions to the sub-problems

into a solution for the original problem

Intro to Data Structures and Algorithms © MergeSort, Slide 5

Divide and Conquer

Running Time:
n = n1 + n2 + … + nk

T(n) = Tdivide(n) +

+ T(n1) + T(n2) + … + T(nk) +

+ Tcombine(n)

If all sub-problems are of same size:

n = nsub * (n/nsub)

T(n) = Tdivide(n) +

+ nsub*T(n/nsub) +

+ Tcombine(n)

Intro to Data Structures and Algorithms © MergeSort, Slide 6

Merge-Sort

Divide: Split the list into 2 equal sized sub-lists

Conquer: Recursively sort each of these sub-lists

(using Merge-Sort)

Combine: Merge the two sorted sub-lists

to make a single sorted list

T(n) = Tsplit(n) + 2T(n/2) + Tmerge(n)

Intro to Data Structures and Algorithms © MergeSort, Slide 7

Merge

Merge(A,p,q,r) p ≤≤≤≤ q < r

Point to the beginning of each sub-array

choose the smallest of the two elements

move it to merged array

and advance the appropriate pointer

Running Time: cn for some constant c > 0
and n = r-p+1

Intro to Data Structures and Algorithms © MergeSort, Slide 8

Merge-Sort

Merge-Sort(A,p,r)

if p < r

q ←←←←
Merge-Sort(A,p,q)

Merge-Sort(A,q+1,r)

Merge(A,p,q,r)

To sort A = 〈〈〈〈A[1],A[2],…,A[n]〉〉〉〉:
Merge-Sort(A,1,n)





 ++++

2

rp

Intro to Data Structures and Algorithms © MergeSort, Slide 9

Merge-Sort
Running Time:

T(n)= TD(n) + 2T(n/2) + TM(n)

T(1)= c1 for some c1>0

TD(n)= c2 for some c2>0

TM(n)= c3n for some c3>0

We can show that

T(n) = dnlogn for some d>0

Intro to Data Structures and Algorithms © MergeSort, Slide 10

Properties of Sorting Algorithms
• In place

only a constant number of elements of the input array are ever
stored outside the array

• Comparison based

the only operation we can perform on keys

is to compare two keys

A non-comparison based sorting algorithm
– looks at values of individual elements

– requires some prior knowledge

• Stable

elements with the same key keep their order

Intro to Data Structures and Algorithms © MergeSort, Slide 11Intro to Data Structures and Algorithms ©

Heap Sort

• Running time – roughly nlog(n)

like Merge Sort

unlike Insertion Sort

• In place

like Insertion Sort

unlike Merge Sort

• Uses a heap

Intro to Data Structures and Algorithms © MergeSort, Slide 12

Binary TreesBinary Trees

Intro to Data Structures and Algorithms © MergeSort, Slide 13Intro to Data Structures and Algorithms ©

Binary Trees

Recursive Definition:

A binary tree

• contains no nodes (ΛΛΛΛ),

or

• has 3 disjoint components:
– a root node, with

– one binary subtree called its left subtree, and

– one binary subtree called its right subtree

root

rightleft

Intro to Data Structures and Algorithms © MergeSort, Slide 14Intro to Data Structures and Algorithms ©

Complete Binary Trees

A Binary Tree is complete if every internal node has
exactly two children and all leaves are at the same depth:

Leaf: a node
whose subtrees
are empty

depth of a node:
of edges on
path to the root

Intro to Data Structures and Algorithms © MergeSort, Slide 15Intro to Data Structures and Algorithms ©

Complete Binary Trees

Height of a node: Number of edges on longest path
to a leaf

Height of a tree = height of its root

A complete binary tree of Lemma:
height h has 2h+1-1 nodes

By induction on hProof:
h=0: leaf, 21-1=1 node

h>0: Tree consists of two complete trees of height h-1 plus
the root. Total: (2h-1) + (2h-1) +1 = 2h+1-1

Intro to Data Structures and Algorithms © MergeSort, Slide 16Intro to Data Structures and Algorithms ©

Almost Complete Binary Trees

An almost complete binary tree is a complete tree
possibly missing some nodes on the right side of the
bottom level:

Intro to Data Structures and Algorithms © MergeSort, Slide 17Intro to Data Structures and Algorithms ©

(Binary) Heaps - ADT

• An almost complete binary tree

• each node contains a key

• Keys satisfy the heap property:

each node’s key ≥≥≥≥ its children’s keys

Intro to Data Structures and Algorithms © MergeSort, Slide 18Intro to Data Structures and Algorithms ©

Binary Tree

An array implementation:

• root - at A[1]

• parent(i) is in A[i/2]
– Left(i) is in A[2i]

– Right(i) is in A[2i+1]

height of a node - longest path down to a leaf

height of the tree - height of the root

Intro to Data Structures and Algorithms © MergeSort, Slide 19Intro to Data Structures and Algorithms ©

Implementing Heaps by Arrays

Parent(A,i)

return [i/2]

Left(A,i)

return 2i

Right(A,i)

return (2i+1)

16

10 13

8 5 9 3

2 1 4

1111 3333 5555 6666 7777 8888 10101010

A =

2222 99994444

16 13 5 9 3 2 410 18

Heapify(A,i) – fix Heap properties given a violation at position i

Intro to Data Structures and Algorithms © MergeSort, Slide 20

16

1 13

10 5 9 3

2 8 4

16 13 10 5 9 3 2 8 4A = 1

Heapify Example

Heapify(A,i) – fix Heap properties given a violation at position i

Intro to Data Structures and Algorithms © MergeSort, Slide 21

16

1 13

10 5 9 3

2 8 4

16 13 10 5 9 3 2 8 4A = 1

Heapify Example

Intro to Data Structures and Algorithms © MergeSort, Slide 22

16

10 13

1 5 9 3

2 8 4

16 13 5 9 3 2 4A = 10

Heapify Example

81

Intro to Data Structures and Algorithms © MergeSort, Slide 23

16

10 13

8 5 9 3

2 1 4

16 13 5 9 3 2 4A = 10

Heapify Example

18

1

1

1

Intro to Data Structures and Algorithms © MergeSort, Slide 24Intro to Data Structures and Algorithms ©

Heapify

Heapify(A,i)

1 left ←←←← Left(i) /* 2i */

2 right ←←←← Right(i) /* 2i+1 */

3 if left ≤≤≤≤ heap-size and A[left] > A[i]

4 largest ←←←← left

5 else largest ←←←← i

6 if right ≤≤≤≤ heap-size and A[right] > A[largest]

7 largest ←←←← right

8 if largest ≠≠≠≠ i

9 swap(A[i],A[largest])

10 Heapify(A,largest)

Intro to Data Structures and Algorithms © MergeSort, Slide 25Intro to Data Structures and Algorithms ©

Heapify - Running Time

• c1 > 0 - to fix relationships among

A[i], A[Left(i)], A[Right(i)]

• Height of the tree is logn, so

T(n) ≤≤≤≤ dlogn

⇒⇒⇒⇒ Heapify on a node of height h takes roughly dh
steps

Intro to Data Structures and Algorithms © MergeSort, Slide 26Intro to Data Structures and Algorithms ©

Build-Heap

BuildHeap(A)

1 heapsize[A] ←←←← length[A]

2 for i ←←←← length[A]/2 downto 1

3 Heapify(A,i)

Running Time: at most cn for some c>0

(After BuildHeap – A[1] stores max element)

Intro to Data Structures and Algorithms © MergeSort, Slide 27Intro to Data Structures and Algorithms ©

Build-Heap - Running Time

• We have about n/2 calls to Heapify

• Cost of ≤≤≤≤ dlogn - for each call to
Heapify

=> TOTAL: ≤≤≤≤ d(n/2)logn

But we can do better and show a cost of cn to

achieve a total running time linear in n.

Intro to Data Structures and Algorithms © MergeSort, Slide 28

• Assume N = 2K
–1 (a full binary tree of height k)

– Level 1: k -1 steps for 1 item
– Level 2: k - 2 steps for 2 items
– Level 3: k - 3 steps for 4 items
– In general: Level i : k - i steps for 2i-1 items
– Until Level k-1: 1 step for 2k-2 items

N c'

1)-kc(2)2 ik (c Steps Total k1i
1k

1i

=

−=−= −
−

=
∑ By induction

on k

Build-Heap - Running Time

Intro to Data Structures and Algorithms © MergeSort, Slide 29Intro to Data Structures and Algorithms ©

Heap-Sort

Heap-Sort(A)

1 Build-Heap(A)

2 for i ←←←← heap-size[A] downto 2

3 swap A[1] ↔↔↔↔ A[i] /* extract-max */

4 heap-size[A] ←←←← heap-size[A]-1

5 Heapify(A,1) /* fix heap */

Running Time: at most dnlgn for some d>0

Intro to Data Structures and Algorithms © MergeSort, Slide 30Intro to Data Structures and Algorithms ©

Priority Queue ADT

Priority Queue – a set of elements S, each with a key

Operations:

• insert(S,x) - insert element x into S

S ←←←← S U {x}

• max(S) - return element of S with largest key

• extract-max(S) - remove and return element

of S with largest key

Intro to Data Structures and Algorithms © MergeSort, Slide 31Intro to Data Structures and Algorithms ©

Heap-Maximum

Heap-Maximum(A)

1 if heap-size[A] ≥≥≥≥ 1

2 return(A[1])

=> Running Time: constant

Intro to Data Structures and Algorithms © MergeSort, Slide 32Intro to Data Structures and Algorithms ©

Heap Extract-Max

Heap-Extract-Max(A)

1 if heap-size[A] < 1

2 error “heap underflow”

3 max ←←←← A[1]

4 A[1] ←←←← A[heap-size[A]]

5 heap-size[A] ←←←← heap-size[A]-1

6 Heapify(A,1)

7 return max

Running Time: dlgn + c = d’lgn

when heap-size[A] = n

Intro to Data Structures and Algorithms © MergeSort, Slide 33

16

10 13

8 5 9 3

2 1 4

16 13 5 9 3 2 4A = 10

Heap Insert

18

12

_12

12

Intro to Data Structures and Algorithms © MergeSort, Slide 34

5

16

10 13

8 5 9 3

2 1 4

16 13 5 9 3 2 4A = 10

Heap Insert

18

_

12

12

512

_5

16 13 9 3 2 410 18 51216 13 9 3 2 412 18 510

10

_125512

12

10

Intro to Data Structures and Algorithms © MergeSort, Slide 35Intro to Data Structures and Algorithms ©

Heap-Insert

Heap-Insert(A,key)

1 heap-size[A] ←←←← heap-size[A]+1

2 i ←←←← heap-size[A]

3 while i>0 and A[parent(i)]<key

4 A[i] ←←←← A[parent(i)]

5 i ←←←← parent(i)

6 A[i] ←←←← key

Running Time: dlgn

when heap-size[A] = n

Intro to Data Structures and Algorithms © MergeSort, Slide 36Intro to Data Structures and Algorithms ©

PQ Sorting

PQ-Sort(A)

1 S ←←←← φφφφ

2 for i ←←←← 1 to n

3 Heap-Insert(S,A[i])

4 for i ←←←← n downto 1

5 SortedA[i] ←←←← Extract-Max(S)

PQ here stands for Priority Queue

