The Sorting Problem

Input: A sequence of # numbers (a;,0,,...,a,)

Output: A permutation (reordering)

(by,bs,...,.b,) of the input sequence such that
b;<b,...<b,

Example:
e Input: (31,41,59,26,41,58)
e Qutput: (26,31,41,41,58,59)

Intro to Data Structures and Algorithms © MergeSort, Slide 1

Sorting - The Data

* In practice, we usually sort records with keys
and satellite data (non-key data)

« Sometimes, if the records are large,
we sort pointers to the records

* For now, we ignore satellite data

assume that we are dealing only with keys only
i.e. focus on sorting algorithms

Intro to Data Structures and Algorithms © MergeSort, Slide 2

Recursion

Insertion-Sort (A, n)
if n > 1
Insertion-Sort (A, n-1)
Put-In-Place(A[n],A,n)

T(n) = T(n-1) + n

Intro to Data Structures and Algorithms © MergeSort, Slide 3

Divide and Conquer

Divide
the problem into several (disjoint) sub-problems

Conquer
the sub-problems by solving them recursively

Combine
the solutions to the sub-problems
into a solution for the original problem

Intro to Data Structures and Algorithms © MergeSort, Slide 4

Divide and Conquer

Running Time:

n=n+n, + . +n,

T(n) = Tyivige(n) +
+ T(n;) + T(n,) + .. + T(n,) +
+ I]:lcombine (n)

If all sub-problems are of same size:

n = ng, * (n/ngy,)
T(n) = Ty iq0(n) +
+ n_,*T(n/n_,) +
+ Teombine (1)

Intro to Data Structures and Algorithms © MergeSort, Slide 5

Merge-Sort

Divide: Split the list into 2 equal sized sub-lists

Conguer: Recursively sort each of these sub-lists
(using Merge-Sort)

Combine: Merge the two sorted sub-lists
to make a single sorted list

T(n) = T ;. (n) + 2T(n/2) + T

spli merge (n)

Intro to Data Structures and Algorithms © MergeSort, Slide 6

Merge

Merge (A,p, d, r) Ps=g<r

Point to the beginning of each sub-array
— choose the smallest of the two elements
move it to merged array
and advance the appropriate pointer

Running Time: en for some constant ¢ > 0
and n = r-p+l

Intro to Data Structures and Algorithms © MergeSort, Slide 7

Merge-Sort

Merge-Sort (A, p, r)
if p < r

q« "]

Merge-Sort (A, p, 9)
Merge-Sort (A, gq+1, r)
Merge (A,p,q, r)

Tosort A = (A[1],A[2],..,A[n]):
Merge-Sort (A, 1,n)

Intro to Data Structures and Algorithms © MergeSort, Slide 8

Merge-Sort

Running Time:

T(n)= T,(n) + 2T(n/2) + Tyu(n)

T(l)= c, for some c,>0
T, (n)= c, for some c,>0
T,(n)= c3n for some c;>0

We can show that

T(n) = dnlogn for some d>0

Intro to Data Structures and Algorithms © MergeSort, Slide 9

Properties of Sorting Algorithms

* In place

only a constant number of elements of the input array are ever
stored outside the array

e Comparison based
the only operation we can perform on keys
is to compare two keys

A non-comparison based sorting algorithm
— looks at values of individual elements
— requires some prior knowledge

« Stable
elements with the same key keep their order

Intro to Data Structures and Algorithms © MergeSort, Slide 10

Heap Sort

 Running time — roughly nlog(n)
like Merge Sort
unlike Insertion Sort

* Inplace
like Insertion Sort
unlike Merge Sort

« Uses a heap

Intro to Data Structures and Algorithms © MergeSort, Slide 11

Binary Trees

Recursive Definition: root

A binary tree

« contains no nodes (A),
or

* has 3 disjoint components:
— a root node, with
— one binary subtree called its left subtree, and
— one binary subtree called its right subtree

left right

Intro to Data Structures and Algorithms © MergeSort, Slide 13

Complete Binary Trees

A Binary Tree is complete if every internal node has
exactly two children and all leaves are at the same depth:

Leaf: a node ‘

whose subtrees

are empty ‘ '
depth of a node:

of edges on

path to the root

Intro to Data Structures and Algorithms © MergeSort, Slide 14

Complete Binary Trees

Height of a node: Number of edges on longest path
to a leaf

Height of a free = height of its root

Lemma: A complete binary tree of
height h has 2"*1-1 nodes

Proof: By induction on h
h=0: leaf, 2!-1=1 node

h>0: Tree consists of two complete trees of height h-1 plus
the root. Total: (2h-1) + (2h-1) +1 = 2h+1-1

Intro to Data Structures and Algorithms © MergeSort, Slide 15

Almost Complete Binary Trees

An almost complete binary tree is a complete tree
possibly missing some nodes on the right side of the

bottom level: ‘

Intro to Data Structures and Algorithms © MergeSort, Slide 16

(Binary) Heaps - ADT

* An almost complete binary tree
 each node contains a key

* Keys satisfy the heap property:
each node’s key > its children’s keys

Intro to Data Structures and Algorithms © MergeSort, Slide 17

Binary Tree

An array implementation:

« root -atA[l]

« parent (i) iIsin A[i/2]
- Left (i) isin A[2i]
- Right (i) isin A[2i+1]

height of a node - longest path down to a leaf
height of the tree - height of the root

Intro to Data Structures and Algorithms © MergeSort, Slide 18

Implementing Heaps by Arrays

Parent (A, 1)

return [i/2]

Left (A, i)

return 2i

Right (A, i)

return (2i+1)

Heapify(A,i) - fix Heap properties given a violation at position i

I 2 3 4 5 6 7 8 9 10
A= |16/10/13/ 85| 9|3| 2| 1|4]

Intro to Data Structures and Algorithms © MergeSort, Slide 19

Heapify Example

A=|16] 1]13/10[5| 9| 3| 2| 8| 4]

Heapify(A,i) - fix Heap properties given a violation at position i

Intro to Data Structures and Algorithms © MergeSort, Slide 20

Heapify Example

A=|16] 1]13/10[5| 9| 3| 2| 8| 4]

Intro to Data Structures and Algorithms © MergeSort, Slide 21

Heapify Example

A=|16(10/13] 1|5|9]|3]|2|8] 4]

Intro to Data Structures and Algorithms © MergeSort, Slide 22

Heapify Example

A=|16/1013| 8| 5| 9|3 | 2| 1| 4]

Intro to Data Structures and Algorithms © MergeSort, Slide 23

Heapify

Heapify (A, 1)
1 left < Left (i) /* 21 */

right < Right (i) /* 2i+l */

if left < heap-size and A[left] > A[1i]
largest <« left
else largest <« 1i

if right < heap-size and A[right] > A[largest]
largest <« right

if largest # 1
swap (A[1i],A[largest])

W 00 Jd o 00 d WD

Y
o

Heapify (A, largest)

Intro to Data Structures and Algorithms © MergeSort, Slide 24

Heapify - Running Time

¢« ¢, > 0 - tofix relationships among
A[i], AJ[Left(i)], A[Right(1i)]
* Height of the tree is 1logn, so

T(n) < dlogn

— Heapify on a hode of height h takes roughly dh
steps

Intro to Data Structures and Algorithms © MergeSort, Slide 25

Build-Heap

BuildHeap (A)

1 heapsize[A] <« length[A]

2 for i < length[A]/2 downto 1
3 Heapify (A, 1)

Running Time: at most cn for some >0

(After BuildHeap — A[1l] stores max element)

Intro to Data Structures and Algorithms © MergeSort, Slide 26

Build-Heap - Running Time

 We have about n/2 calls to Heapify

« Cost of < dlogn - for each call to
Heapify

=> TOTAL: £ d(n/2)logn

But we can do better and show a cost of cn to
achieve a total running time linear in n.

Intro to Data Structures and Algorithms © MergeSort, Slide 27

Build-Heap - Running Time

« Assume N = 2X—1(a full binary tree of height 4)
— Level 1: k-1 steps for /item
— Level 2: &k - Zsteps for Zitems
— Level 3: k- 3steps for 4items
— Ingeneral: Leveli: k- /steps for 27 items
— Until Level k-1: 1 step for 252 items

k_1 | . °
Total Steps =c (k-i)2"" =c(2* -k-1) By }(nducflon
= on

=¢c'N |

Intro to Data Structures and Algorithms © MergeSort, Slide 28

Heap—-Sort

Heap—-Sort (A)
Build-Heap (A)
for i < heap-size[A] downto 2
swap A[l] < A[i] /* extract-max */
heap-size[A] < heap-size[A]-1
Heapify (A, 1) /* fix heap */

o & W DD K=

Running Time: at mostdnlgn for some d>0

Intro to Data Structures and Algorithms © MergeSort, Slide 29

Priority Queue ADT

Priority Queue — a set of elements S, each with a key

Operations:

- insert (S, x) - insert element x info S
S « S U {x}
- max (S) - return element of S with largest key

- extract-max(S) - remove and return element

of S with largest key

Intro to Data Structures and Algorithms © MergeSort, Slide 30

Heap—Maximum

Heap—Maximum (A)

1 if heap-size[A] =2 1
2 return(A[l])

=> Running Time: constant

Intro to Data Structures and Algorithms © MergeSort, Slide 31

Heap Extract—-Max

Heap-Extract-Max (4)

if heap-size[A] < 1
error “heap underflow”

max <« A[l]
A[l] « Al[heap—-size[A]]
heap-size[A] <« heap-size[A]-1
Heapify (A, 1)
return max

<N o o2 WD R

Running Time: dlgn + c¢ = d’1lgn
when heap-size[A] = n

Intro to Data Structures and Algorithms © MergeSort, Slide 32

Heap Insert

A=|16/10[13| 8| 5|9|3|2| 14| |

Intro to Data Structures and Algorithms © MergeSort, Slide 33

Heap Insert

A=|16|12|13| 8 |10/ 9| 3| 2| 1|4 | 5]

Intro to Data Structures and Algorithms © MergeSort, Slide 34

Heap—-Insert

Heap—-Insert (A, key)
heap-size[A] < heap-size[A]+1
1 < heap-size[A]
while 1>0 and A[parent (i)]<key
A[i] < A[parent(i)]
1 < parent (i)

o O W DR

A[1] < key

Running Time: dlgn
when heap-size[A]

Intro to Data Structures and Algorithms © MergeSort, Slide 35

I
o)

PQ Sorting

PQO-Sort (4)
1 S « ¢
for 1 «< 1 to n

3 Heap-Insert (S,A[1])
4 for 1 <« n downto 1
5 SortedA[i] <« Extract-Max(S)

PQ here stands for Priority Queue

Intro to Data Structures and Algorithms © MergeSort, Slide 36

