6.001: Lecture 4 Orders of Growth

Fibonacci Numbers

The Fibonacci numbers are described by the following equations:

$$
\begin{aligned}
& f i b(1)=1 \\
& \operatorname{fib}(2)=1 \\
& f i b(n)=f i b(n-2)+f i b(n-1) \text { for } n \geq 3
\end{aligned}
$$

Expanding this sequence, we get

$$
\begin{aligned}
f i b(1) & =1 \\
\operatorname{fib}(2) & =1 \\
\operatorname{fib}(3) & =2 \\
\operatorname{fib}(4) & =3 \\
\operatorname{fib}(5) & =5 \\
\operatorname{fib}(6) & =8 \\
\operatorname{fib}(7) & =13
\end{aligned}
$$

A Contrast to (fact n): Computing Fibonacci

```
define (fib n)
    (if (= n 1)
        1
        (if (= n 2)
            1
            (+ (fib (- n 1)) (fib (- n 2))))))
```

- We can run this for various values of n :

```
(fib 10)
(fib 20)
(fib 100)
(fib 1000)
```

- Takes much longer to run as n gets larger

A Contrast: Computing Fibonacci

```
(define (fib n)
    (if (= n 1)
            1
        (if (= n 2)
            1
            (+ (fib (- n 1)) (fib (- n 2))))))
```

- Later we'll see that when calculating (fib n), we need more than $2^{\frac{n}{2}}$ addition operations
- For example, to calculate (fib 100), we need to use + at least $2^{50}=1125899906842624$ times
- For example, to calculate (fib 2000), we need to use + at least $2^{1000}=$

107150860718626732094842504906000181056 140481170553360744375038837035105112493 612249319837881569585812759467291755314 682518714528569231404359845775746985748 039345677748242309854210746050623711418 779541821530464749835819412673987675591 655439460770629145711964776865421676604 29831652624386837205668069376 times

A Contrast: Computing Fibonacci

- A rough estimate: the universe is approximately 10^{10} years $=$ 3×10^{17} seconds old
- Fastest computer around can do $\approx 250 \times 10^{12}$ arithmetic operations a second, or $\approx 10^{30}$ operations in the lifetime of the universe
- $2^{100} \approx 10^{30}$
- So with a bit of luck, we could run (fib 200) in the lifetime of the universe...
- A more precise calculation gives around 1000 hours to solve (fib 100)

An Overview of This Lecture

- Measuring time requirements of a function
- Asymptotic notation
- Calculating the time complexity for different functions
- Measuring space requirements of a function
- That's 10006.001 lectures, or 40 semesters, or 20 years of 6.001...

Measuring the Time Complexity of a Function

- Suppose n is a parameter that measures the size of a problem
- Let $t(n)$ be the amount of time necessary to solve a problem of size n
- What do we mean by "the amount of time"?: how do we measure "time"?

Typically, we'll define $t(n)$ to be the number of primitive arithmetic operations (e.g., the number of additions) required to solve a problem of size n

An Example: Factorial

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

- Define $t(n)$ to be the number of multiplications required by (fact n)
- By looking at fact, we can see that:

$$
\begin{aligned}
& t(0)=0 \\
& t(n)=1+t(n-1) \text { for } n \geq 1
\end{aligned}
$$

- In other words: solving (fact n) for any $n \geq 1$ requires one more multiplication than solving (fact (-n 1))

Expanding the Recurrence

$t(0)=0$
$t(n)=1+t(n-1)$ for $n \geq 1$

$$
\begin{aligned}
& t(0)=0 \\
& t(1)=1+t(0)=1 \\
& t(2)=1+t(1)=2 \\
& t(3)=1+t(2)=3
\end{aligned}
$$

In general:

$$
\mathrm{t}(\mathrm{n})=\mathrm{n}
$$

Expanding the Recurrence

$t(0)=0$
$t(n)=1+t(n-1)$ for $n \geq 1$

- How would we prove that $t(n)=n$ for all n ?
- Proof by induction (see the last lecture):
- Base case: $t(n)=n$ is true for $n=0$
- Inductive case: if $t(n)=n$ then it follows that $t(n+1)=$ $n+1$

A Second Example: Computing Fibonacci

(define (fib n)
(if (= n 1)
1
(if $(=\mathrm{n} 2)$
1
(+ (fib (- n 1)) (fib (- n 2))))))

- Define $t(n)$ to be the number of additions required by (fib n)
- By looking at $f i b$, we can see that:

```
t(1) = 0
t(2) = 0
t(n)=1+t(n-1)+t(n-2) for }n\geq
```


Looking at the Recurrence

- In other words: solving (fib n) for any $n \geq 3$ requires one more addition than solving (fib (-n 1)) and solving (fib (- n 2))

$$
\begin{aligned}
t(1) & =0 \\
t(2) & =0 \\
t(n) & =1+t(n-1)+t(n-2) \text { for } n \geq 3
\end{aligned}
$$

- We can see that $t(n) \geq t(n-1)$ for all n
- So, for $n \geq 3$ we have

$$
\begin{aligned}
t(n) & =1+t(n-1)+t(n-2) \\
& \geq 2 t(n-2)
\end{aligned}
$$

- Every time n increases by 2, we more than double the number of additions that are required
- If we iterate the argument, we get

$$
t(n) \geq 2 t(n-2) \geq 4 t(n-4) \geq 8 t(n-6) \ldots
$$

- A little more math shows that

$$
t(n) \geq 2^{\frac{n}{2}}=(\sqrt{2})^{n}
$$

Different Rates of Growth

n	$t(n)=\log n$ (logarithmic)	$t(n)=n$ (linear)	$t(n)=n^{2}$ (quadratic)	$t(n)=n^{3}$ (cubic)	$t(n)=2^{n}$ (exponential)
1	0	1	1	1	2
10	3.3	10	100	1000	1024
100	6.6	100	10,000	10^{6}	1.3×10^{30}
1,000	10.0	1,000	10^{6}	10^{9}	1.1×10^{300}
10,000	13.3	10,000	10^{9}	10^{12}	-
100,000	16.68	100,000	10^{12}	10^{15}	-

- Formal definition:

We say $t(n)$ has order of growth $\Theta(f(n))$ if there are constants k, k_{1} and k_{2} such that for all $n \geq k$, we have $k_{1} f(n) \leq t(n) \leq k_{2} f(n)$

Examples

- $t(n)=n$ has order of growth $\Theta(n)$, because

$$
k_{1} \times n \leq t(n) \leq k_{2} \times n
$$

for all $n \geq k$ if we pick $k=k_{1}=k_{2}=1$

- $t(n)=8 n$ has order of growth $\Theta(n)$, because

$$
k_{1} \times n \leq t(n) \leq k_{2} \times n
$$

for all $n \geq k$ if we pick $k=1$, and $k_{1}=k_{2}=8$

Examples

- $t(n)=3 n^{2}$ has order of growth $\Theta\left(n^{2}\right)$, because

$$
k_{1} \times n^{2} \leq t(n) \leq k_{2} \times n^{2}
$$

for all $n \geq k$ if we pick $k=1$, and $k_{1}=k_{2}=3$

- $t(n)=3 n^{2}+5 n+3$ has order of growth $\Theta\left(n^{2}\right)$, because

$$
k_{1} \times n^{2} \leq t(n) \leq k_{2} \times n^{2}
$$

for all $n \geq k$ if we pick $k=5, k_{1}=3$, and $k_{2}=8$

Motivation

- In many cases, calculating the precise expression for $t(n)$ is laborious, e.g,

$$
t(n)=5 n^{3}+6 n^{2}+8 n+7 \quad \text { or } \quad t(n)=4 n^{3}+18 n^{2}+14
$$

- In both of these cases, $t(n)$ has order of growth $\Theta\left(n^{3}\right)$
- Advantages of asymptotic notation:
- In many cases, it's much easy to show that $t(n)$ has a particular order of growth (e.g., $\Theta\left(n^{3}\right)$), rather than calculating a precise expression for $t(n)$
- Usually, the order of growth is what we really care about: the most important thing about the above functions is that they're both cubic (i.e., have order of growth $\Theta\left(n^{3}\right)$)

Some Common Orders of Growth

- $\Theta(1)$ (constant)
- $\Theta(\log n)$ (logarithmic growth)
- $\Theta(n)$ (linear growth)
- $\Theta\left(n^{2}\right)$ (quadratic growth)
- $\Theta\left(n^{3}\right)$ (cubic growth)
- $\Theta\left(2^{n}\right)$ (exponential growth)
- $\Theta\left(\alpha^{n}\right)$ for any $\alpha>1$ (exponential growth)

An Example: Factorial

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

- Define $t(n)$ to be the number of multiplications required by (fact n)
- By looking at fact, we can see that:

$$
\begin{aligned}
& t(0)=0 \\
& t(n)=1+t(n-1) \text { for } n \geq 1
\end{aligned}
$$

- Solving this recurrence gives $t(n)=n$, so order of growth is $\Theta(n)$

A General Result

- For any recurrence of the form

$$
\begin{aligned}
& t(0)=c_{1} \\
& t(n)=c_{2}+t(n-1) \text { for } n \geq 1
\end{aligned}
$$

where c_{1} is a constant that is ≥ 0,
and c_{2} is a constant that is >0,
we have linear growth (i.e., $\Theta(n)$)

- Why? If we expand this out we get

$$
t(n)=c_{1}+n \times c_{2}
$$

which has order of growth $\Theta(n)$

Another Example of Linear Growth

```
(define (exp a n)
    (if (= n 0)
            1
            (* a (exp a (- n 1)))))
```

- (\exp a n) calculates a raised to the power n (e.g., (exp 2 3) has the value 8)
- Define the size of the problem to be n (the second parameter) define $t(n)$ to be the number of arithmetic operations required ($=, *$ or +)
- By looking at exp, we can see that $t(n)$ has the form:

$$
\begin{aligned}
t(0) & =1 \\
t(n) & =2+t(n-1) \text { for } n \geq 1
\end{aligned}
$$

A More Efficient version of (exp a n)

(define ($\exp 2$ a n)
(if (= n 0)
1
(if (even? n)
($\exp 2$ (* a a) (/ n 2))
(* a (exp2 a (- n 1))))))

- This makes use of the trick

$$
a^{b}=(a \times a)^{\frac{b}{2}}
$$

The Order of Growth of (exp2 a n)

```
(define (exp2 a n)
    (if (= n 0)
        1
        (if (even? n)
            (exp2 (* a a) (/ n 2))
            (* a (exp2 a (- n 1))))))
```

- If n is even, then 1 step reduces to $n / 2$ sized problem
- If n is odd, then 2 steps reduces to $n / 2$ sized problem
- Thus in $2 k$ steps reduces to $n / 2^{k}$ sized problem
- We are done when problem size is just 1 , which implies order of growth in time of $\Theta(\log n)$

The Order of Growth of (exp2 a n)

```
(define (exp2 a n)
    (if (= n 0)
        1
        (if (even? n)
            (exp2 (* a a) (/ n 2))
            (* a (exp2 a (- n 1))))))
```

- $t(n)$ has the following form:

$$
\begin{aligned}
t(0) & =0 \\
t(n) & =1+t(n / 2) \text { if } n \text { is even } \\
t(n) & =1+t(n-1) \text { if } n \text { is odd }
\end{aligned}
$$

- It follows that $t(n)=2+t((n-1) / 2)$ if n is odd

Another General Result

- For any recurrence of the form

$$
\begin{aligned}
t(0) & =c_{1} \\
t(n) & =c_{2}+t(n / 2) \text { for } n \geq 1
\end{aligned}
$$

where c_{1} is a constant that is ≥ 0,
and c_{2} is a constant that is >0,
we have logarithmic growth (i.e., $\Theta(\log n)$)

- Intuition: at each step we halve the size of the problem
- We can only halve n around $\log n$ times before we reach the base case (e.g., $n=0$)

Different Rates of Growth

n	$t(n)=\log n$ (logarithmic)	$t(n)=n$ (linear)	$t(n)=n^{2}$ (quadratic)	$t(n)=n^{3}$ (cubic)	$t(n)=2^{n}$ (exponential)
1	0	1	1	1	2
10	3.3	10	100	1000	1024
100	6.6	100	10,000	10^{6}	1.3×10^{30}
1,000	10.0	1,000	10^{6}	10^{9}	1.1×10^{300}
10,000	13.3	10,000	10^{9}	10^{12}	-
100,000	16.68	100,000	10^{12}	10^{15}	-

A General Result

- If we can show

$$
\begin{aligned}
t(0) & =c_{1} \\
t(n) & \geq c_{2}+\alpha \times t(n-\beta) \text { for } n \geq 1
\end{aligned}
$$

where $c_{1} \geq 0, c_{2}>0$
α is a constant that is >1
β is an integer that is ≥ 1
we get exponential growth

- Intuition? Every time we add β to the problem size n, the amount of computation required is multiplied by a factor of α that is greater than 1

Back to Fibonacci

```
(define (fib n)
    (if (= n 1)
        1
        (if (= n 2)
            1
            (+ (fib (- n 1)) (fib (- n 2))))))
```

- By looking at fib, we can see that:

$$
\begin{aligned}
t(1) & =0 \\
t(2) & =0 \\
t(n) & =1+t(n-1)+t(n-2) \text { for } n \geq 3
\end{aligned}
$$

and for $n \geq 3$ we have

$$
t(n) \geq 2 t(n-2)
$$

Why is Our Version of $f i b$ so Inefficient?

```
(define (fib n)
    (if (= n 1)
        1
        (if (= n 2)
            1
            (+ (fib (- n 1)) (fib (- n 2))))))
```

- When computing (fib 6), the recursion computes (fib 5) and (fib 4)
- The computation of (fib 5) then involves computing (fib 4) and (fib 3). At this point, (fib 4) has been computed twice. Isn't this wasteful?!

Why is Our Version of $f i b$ so Inefficient?

- A Computation tree: we'll use

5

to signify that computing (fib 5) involves recursive calls to (fib 4) and (fib 3)

The Computation Tree for (fib 7)

- There's a lot of repeated computation here: e.g., (fib 3) is recomputed 5 times

An Efficient Implementation of Fibonacci

```
(define (fib2 n) (fib-iter 0 1 0 n))
(define (fib-iter i a b n)
    (if (= i n)
        b
            (fib-iter (+ i 1) (+ a b) a n)))
```

- Recurrence $(t(n)$ is number of additions):

$$
\begin{aligned}
t(0) & =0 \\
t(n) & =2+t(n-1) \text { for } n \geq 1
\end{aligned}
$$

- Order of growth of $t(n)$ is $\Theta(n)$

How Much Space (Memory) Does a Procedure Require?

- So far, we've considered the order of growth of $t(n)$ for various functions. $t(n)$ is the time for the procedure to run when given an input of size n
- Now let's define $s(n)$ to be the space or memory requirements of a procedure when the problem size is n. What is the order of growth of $s(n)$?

Tracing Factorial

- In general, running (fact n) leads to n pending operations
- Each pending operation takes a constant amount of memory
- In this case, $s(n)$ has order of growth $\Theta(n)$ i.e., linear growth in space
- If you trace the function, you'll see that we avoid repeated computations. We've gone from exponential growth to linear growth!!
(fib2 5)
(fib-iter 010 5)
(fib-iter 1115)
(fib-iter 221 5)
(fib-iter 3 2 5)
(fib-iter 45 5)
(fib-iter 585 5)
=> 5

Tracing Factorial

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

- A trace of fact, showing that it leads to a recursive process, with pending operations
(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 (* 1 (fact 0)))))
(* 4 (* 3 (* $2(* 11)))$)
(* 4 (* 3 (* 2 1)))
24

A Contrast: Iterative Factorial

```
(define (ifact n) (ifact-helper 1 1 n))
(define (ifact-helper product counter n)
    (if (> counter n)
            product
            (ifact-helper (* product counter)
                                    (+ counter 1)
                            n)))
```


A Contrast: Iterative Factorial

- A trace of (ifact 4):
(ifact 4)
(ifact-helper 114)
(ifact-helper 124)
(ifact-helper 23 4)
(ifact-helper 64 4)
(ifact-helper 245 4)
24
- (ifact n) has no pending operations, so $s(n)$ has an order of growth that is $\Theta(1)$. Its time complexity $t(n)$ is $\Theta(n)$
- In contrast, (fact n) has $t(n)=\Theta(n)$ and $s(n)=\Theta(n)$, i.e., linear growth in both space and time
- In general, iterative processes often have a lower order of growth for $s(n)$ than recursive processes

Summary

- We've describe how to calculate $t(n)$, the time complexity of a procedure as a function of the size of its input
- We've introduced asymptotic notation for orders of growth (e.g., $\left.\Theta(n), \Theta\left(n^{2}\right)\right)$
- There is a huge difference between exponential order of growth and non-exponential growth (e.g., if your procedure $t(n)=\Theta\left(2^{n}\right)$, you will not be able to run it for large values of n)
- We've given examples of functions with linear, logarithmic, and exponential growth for $t(n)$. Main point: you should be able to work out the order of growth of $t(n)$ for simple procedures in scheme
- The space requirements, $s(n)$, for a function depend on the number of pending operations. Iterative processes tend to have fewer pending operations.

