
6.001: Lecture 4
Orders of Growth

Computing Factorial

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

• We can run this for various values ofn:

(fact 10)
(fact 100)
(fact 1000)
(fact 10000)

• Takes longer to run asn gets larger,but still manageable for
largen (e.g.,n = 10000)

Fibonacci Numbers
The Fibonacci numbers are described by the following equations:

fib(1) = 1

fib(2) = 1

fib(n) = fib(n − 2) + fib(n − 1) for n ≥ 3

Expanding this sequence, we get

fib(1) = 1

fib(2) = 1

fib(3) = 2

fib(4) = 3

fib(5) = 5

fib(6) = 8

fib(7) = 13

. . .

A Contrast to (fact n): Computing Fibonacci

(define (fib n)
(if (= n 1)

1
(if (= n 2)

1
(+ (fib (- n 1)) (fib (- n 2))))))

• We can run this for various values ofn:

(fib 10)
(fib 20)
(fib 100)
(fib 1000)

• Takesmuch longer to run asn gets larger

A Contrast: Computing Fibonacci

(define (fib n)
(if (= n 1)

1
(if (= n 2)

1
(+ (fib (- n 1)) (fib (- n 2))))))

• Later we’ll see that when calculating(fib n), we need
more than2

n

2 addition operations

• For example, to calculate(fib 100), we need to use+ at
least250 = 1125899906842624 times

• For example, to calculate(fib 2000), we need to use+ at
least21000 =

107150860718626732094842504906000181056
140481170553360744375038837035105112493
612249319837881569585812759467291755314
682518714528569231404359845775746985748
039345677748242309854210746050623711418
779541821530464749835819412673987675591
655439460770629145711964776865421676604
29831652624386837205668069376
times



A Contrast: Computing Fibonacci

• A rough estimate: the universe is approximately1010years=
3 × 1017seconds old

• Fastest computer around can do≈ 250 × 1012 arithmetic
operations a second, or≈ 1030 operations in the lifetime of
the universe

• 2100 ≈ 1030

• So with a bit of luck, we could run(fib 200) in the lifetime
of the universe...

• A more precise calculation gives around 1000 hours to solve
(fib 100)

• That’s 1000 6.001 lectures, or 40 semesters, or 20 years of
6.001...

An Overview of This Lecture

• Measuring time requirements of a function

• Asymptotic notation

• Calculating the time complexity for different functions

• Measuring space requirements of a function

Measuring the Time Complexity of a Function

• Supposen is a parameter that measures the size of a problem

• Let t(n) be the amount of time necessary to solve a problem
of sizen

• What do we mean by “the amount of time”?: how do we
measure “time”?

Typically, we’ll define t(n) to be thenumber of
primitive arithmetic operations (e.g., the number
of additions) required to solve a problem of sizen

An Example: Factorial

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

• Define t(n) to be the number of multiplications required by
(fact n)

• By looking atfact, we can see that:

t(0) = 0

t(n) = 1 + t(n − 1) for n ≥ 1

• In other words: solving(fact n) for anyn ≥ 1 requires
one more multiplication than solving(fact (- n 1))

Expanding the Recurrence

t(0) = 0

t(n) = 1 + t(n − 1) for n ≥ 1

t(0) = 0

t(1) = 1 + t(0) = 1

t(2) = 1 + t(1) = 2

t(3) = 1 + t(2) = 3

. . .

In general:
t(n) = n



Expanding the Recurrence

t(0) = 0

t(n) = 1 + t(n − 1) for n ≥ 1

• How would we prove thatt(n) = n for all n?

• Proof by induction (see the last lecture):

– Base case:t(n) = n is true forn = 0

– Inductive case: ift(n) = n then it follows thatt(n+1) =
n + 1

A Second Example: Computing Fibonacci

(define (fib n)
(if (= n 1)

1
(if (= n 2)

1
(+ (fib (- n 1)) (fib (- n 2))))))

• Define t(n) to be the number of additions required by
(fib n)

• By looking atfib, we can see that:

t(1) = 0

t(2) = 0

t(n) = 1 + t(n − 1) + t(n − 2) for n ≥ 3

• In other words: solving(fib n) for anyn ≥ 3 requires one
more addition than solving(fib (- n 1)) and solving
(fib (- n 2))

Looking at the Recurrence

t(1) = 0

t(2) = 0

t(n) = 1 + t(n − 1) + t(n − 2) for n ≥ 3

• We can see thatt(n) ≥ t(n − 1) for all n

• So, forn ≥ 3 we have

t(n) = 1 + t(n − 1) + t(n − 2)

≥ 2t(n − 2)

• Every time n increases by 2, we more than double the
number of additions that are required

• If we iterate the argument, we get

t(n) ≥ 2t(n − 2) ≥ 4t(n − 4) ≥ 8t(n − 6) . . .

• A little more math shows that

t(n) ≥ 2
n

2 = (
√

2)n

Different Rates of Growth

n t(n) = log n t(n) = n t(n) = n2 t(n) = n3 t(n) = 2n

(logarithmic) (linear) (quadratic) (cubic) (exponential)
1 0 1 1 1 2
10 3.3 10 100 1000 1024
100 6.6 100 10,000 106 1.3 × 1030

1,000 10.0 1,000 106 109 1.1 × 10300

10,000 13.3 10,000 109 1012 —
100,000 16.68 100,000 1012 1015 —



Aysmptotic Notation

• Formal definition:

We sayt(n) has order of growthΘ(f(n)) if there are
constantsk, k1 andk2 such that for alln ≥ k, we
havek1f(n) ≤ t(n) ≤ k2f(n)

Examples

• t(n) = n has order of growthΘ(n), because

k1 × n ≤ t(n) ≤ k2 × n

for all n ≥ k if we pick k = k1 = k2 = 1

• t(n) = 8n has order of growthΘ(n), because

k1 × n ≤ t(n) ≤ k2 × n

for all n ≥ k if we pick k = 1, andk1 = k2 = 8

Examples

• t(n) = 3n2 has order of growthΘ(n2), because

k1 × n2 ≤ t(n) ≤ k2 × n2

for all n ≥ k if we pick k = 1, andk1 = k2 = 3

• t(n) = 3n2 + 5n + 3 has order of growthΘ(n2), because

k1 × n2 ≤ t(n) ≤ k2 × n2

for all n ≥ k if we pick k = 5, k1 = 3, andk2 = 8

Motivation

• In many cases, calculating the precise expression fort(n) is
laborious, e.g,

t(n) = 5n3 + 6n2 + 8n + 7 or t(n) = 4n3 + 18n2 + 14

• In both of these cases,t(n) has order of growthΘ(n3)

• Advantages of asymptotic notation:

– In many cases, it’s much easy to show thatt(n) has a particular order
of growth (e.g.,Θ(n3)), rather than calculating a precise expression
for t(n)

– Usually, the order of growth iswhat we really care about: the most
important thing about the above functions is that they’re both cubic
(i.e., have order of growthΘ(n3))

Some Common Orders of Growth

• Θ(1) (constant)

• Θ(log n) (logarithmic growth)

• Θ(n) (linear growth)

• Θ(n2) (quadratic growth)

• Θ(n3) (cubic growth)

• Θ(2n) (exponential growth)

• Θ(αn) for anyα > 1 (exponential growth)

An Example: Factorial

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

• Define t(n) to be the number of multiplications required by
(fact n)

• By looking atfact, we can see that:

t(0) = 0

t(n) = 1 + t(n − 1) for n ≥ 1

• Solving this recurrence givest(n) = n, so order of growth is
Θ(n)



A General Result

• For any recurrence of the form

t(0) = c1

t(n) = c2 + t(n − 1) for n ≥ 1

wherec1 is a constant that is≥ 0,
andc2 is a constant that is> 0,
we havelinear growth (i.e.,Θ(n))

• Why? If we expand this out we get

t(n) = c1 + n × c2

which has order of growthΘ(n)

Another Example of Linear Growth

(define (exp a n)
(if (= n 0)

1
(* a (exp a (- n 1)))))

• (exp a n) calculatesa raised to the powern
(e.g.,(exp 2 3) has the value8)

• Define the size of the problem to ben (the second parameter)
definet(n) to be the number of arithmetic operations required
(=, ∗ or +)

• By looking atexp, we can see thatt(n) has the form:

t(0) = 1

t(n) = 2 + t(n − 1) for n ≥ 1

A More Efficient version of (exp a n)

(define (exp2 a n)
(if (= n 0)

1
(if (even? n)

(exp2 (* a a) (/ n 2))
(* a (exp2 a (- n 1))))))

• This makes use of the trick

ab = (a × a)
b

2

The Order of Growth of (exp2 a n)

(define (exp2 a n)
(if (= n 0)

1
(if (even? n)

(exp2 (* a a) (/ n 2))
(* a (exp2 a (- n 1))))))

• If n is even, then 1 step reduces ton/2 sized problem

• If n is odd, then 2 steps reduces ton/2 sized problem

• Thus in2k steps reduces ton/2k sized problem

• We are done when problem size is just 1, which implies order
of growth in time ofΘ(log n)

The Order of Growth of (exp2 a n)

(define (exp2 a n)
(if (= n 0)

1
(if (even? n)

(exp2 (* a a) (/ n 2))
(* a (exp2 a (- n 1))))))

• t(n) has the following form:

t(0) = 0

t(n) = 1 + t(n/2) if n is even

t(n) = 1 + t(n − 1) if n is odd

• It follows thatt(n) = 2 + t((n − 1)/2) if n is odd

Another General Result

• For any recurrence of the form

t(0) = c1

t(n) = c2 + t(n/2) for n ≥ 1

wherec1 is a constant that is≥ 0,
andc2 is a constant that is> 0,
we havelogarithmic growth (i.e.,Θ(log n))

• Intuition: at each step wehalve the size of the problem

• We can only halven aroundlog n times before we reach the
base case (e.g.,n = 0)



Different Rates of Growth

n t(n) = log n t(n) = n t(n) = n2 t(n) = n3 t(n) = 2n

(logarithmic) (linear) (quadratic) (cubic) (exponential)
1 0 1 1 1 2
10 3.3 10 100 1000 1024
100 6.6 100 10,000 106 1.3 × 1030

1,000 10.0 1,000 106 109 1.1 × 10300

10,000 13.3 10,000 109 1012 —
100,000 16.68 100,000 1012 1015 —

Back to Fibonacci

(define (fib n)
(if (= n 1)

1
(if (= n 2)

1
(+ (fib (- n 1)) (fib (- n 2))))))

• By looking atfib, we can see that:

t(1) = 0

t(2) = 0

t(n) = 1 + t(n − 1) + t(n − 2) for n ≥ 3

and forn ≥ 3 we have

t(n) ≥ 2t(n − 2)

A General Result

• If we can show

t(0) = c1

t(n) ≥ c2 + α × t(n − β) for n ≥ 1

wherec1 ≥ 0, c2 > 0
α is a constant that is> 1
β is an integer that is≥ 1

we get exponential growth

• Intuition? Every time weadd β to the problem sizen, the
amount of computation required ismultiplied by a factor ofα
that is greater than1

Why is Our Version of fib so Inefficient?

(define (fib n)
(if (= n 1)

1
(if (= n 2)

1
(+ (fib (- n 1)) (fib (- n 2))))))

• When computing (fib 6), the recursion computes
(fib 5) and(fib 4)

• The computation of(fib 5) then involves computing
(fib 4) and(fib 3). At this point,(fib 4) has been
computedtwice. Isn’t this wasteful?!

Why is Our Version of fib so Inefficient?

• A Computation tree: we’ll use

5

4 3

to signify that computing(fib 5) involves recursive calls
to (fib 4) and(fib 3)

The Computation Tree for (fib 7)

7

6

5

4

3

2 1

2

3

2 1

4

3

2 1

2

5

4

3

2 1

2

3

2 1

• There’s a lot of repeated computation here: e.g.,(fib 3) is
recomputed 5 times



An Efficient Implementation of Fibonacci

(define (fib2 n) (fib-iter 0 1 0 n))

(define (fib-iter i a b n)
(if (= i n)

b
(fib-iter (+ i 1) (+ a b) a n)))

• Recurrence (t(n) is number of additions):

t(0) = 0

t(n) = 2 + t(n − 1) for n ≥ 1

• Order of growth oft(n) is Θ(n)

• If you trace the function, you’ll see that we avoid repeated
computations. We’ve gone from exponential growth to linear
growth!!

(fib2 5)
(fib-iter 0 1 0 5)
(fib-iter 1 1 1 5)
(fib-iter 2 2 1 5)
(fib-iter 3 3 2 5)
(fib-iter 4 5 3 5)
(fib-iter 5 8 5 5)
=> 5

How Much Space (Memory) Does a Procedure Require?

• So far, we’ve considered the order of growth oft(n) for
various functions.t(n) is the time for the procedure to run
when given an input of sizen

• Now let’s defines(n) to be thespaceor memory requirements
of a procedure when the problem size isn. What is the order
of growth ofs(n)?

Tracing Factorial

(define (fact n)
(if (= n 0)

1
(* n (fact (- n 1)))))

• A trace offact, showing that it leads to a recursive process,
with pending operations

(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 (* 1 (fact 0)))))
(* 4 (* 3 (* 2 (* 1 1))))
(* 4 (* 3 (* 2 1)))
...
24

Tracing Factorial

• In general, running(fact n) leads ton pending operations

• Each pending operation takes a constant amount of memory

• In this case,s(n) has order of growthΘ(n)
i.e., linear growth in space

A Contrast: Iterative Factorial

(define (ifact n) (ifact-helper 1 1 n))

(define (ifact-helper product counter n)
(if (> counter n)

product
(ifact-helper (* product counter)

(+ counter 1)
n)))



A Contrast: Iterative Factorial
• A trace of(ifact 4):

(ifact 4)
(ifact-helper 1 1 4)
(ifact-helper 1 2 4)
(ifact-helper 2 3 4)
(ifact-helper 6 4 4)
(ifact-helper 24 5 4)
24

• (ifact n) has no pending operations, sos(n) has an order
of growth that isΘ(1). Its time complexityt(n) is Θ(n)

• In contrast,(fact n) hast(n) = Θ(n) ands(n) = Θ(n),
i.e., linear growth in both space and time

• In general,iterative processes often have a lower order of
growth fors(n) thanrecursive processes

Summary

• We’ve describe how to calculatet(n), the time complexity of
a procedure as a function of the size of its input

• We’ve introduced asymptotic notation for orders of growth
(e.g.,Θ(n), Θ(n2))

• There is ahuge difference between exponential order of
growth and non-exponential growth (e.g., if your procedure
t(n) = Θ(2n), you will not be able to run it for large values of
n)

• We’ve given examples of functions with linear, logarithmic,
and exponential growth fort(n). Main point: you should
be able to work out the order of growth oft(n) for simple
procedures in scheme

• The space requirements,s(n), for a function depend on the
number of pending operations. Iterative processes tend to have
fewer pending operations.


