
ECE242S Tutorial Notes Complexity Analysis

6 February, 2004 Alexander Smith

Big-Oh Notation
Formal Definitions
A function is in (upper bound)

iff there exist positive constants k and n0

such that for all .

A function is in (lower bound)

iff there exist positive constants k and n0

such that for all .

A function is in (tight bound)

iff it is in and it is in .

The definition for big-Oh was given on your lecture slides. the rest are presented here for
your interest only. Not every function has a tight bound. For example, consider

In this case, we have and , but no bound.

Useful Formulae

You should know the first sum above. The rest will be given if you ever need them.

However, you should remember that , , and .

Example 1
What is the big-O of 2n2 + 1000n + 5 ?

answer: O(n2)
You can do this by inspection. To prove it formally, you must to find constants k and n0

such that the definition given above holds:
T(n) = 2n2 + 1000n + 5 f(n) = n2

T(n) # k f(n) ?
2n2 + 1000n + 5 # k n2 ?
Yes: for k = 3, n0 = 1001
check: 2(10012) + 1000(1001) + 5 = 3005007

 3(10012) = 3006003

ECE242S Tutorial Notes Complexity Analysis

6 February, 2004 Alexander Smith

Example 2
Put these in order by big-O bound:

answer:
, = , , , = , , = , ,

Some comments:

= : From highschool math, you should remember that . Therefore,

 which is a constant times . When looking at complexity classes,

we ignore multiplicative constants.

= : because which is a constant times .

� : because they do not differ by a constant factor. Divide one by the other:

 which is a function of n – not a constant.

= : This is because of Stirling’s approximation for the factorial:

. You can just remember the result that .

ECE242S Tutorial Notes Complexity Analysis

6 February, 2004 Alexander Smith

Algorithm Analysis
Example 1
sum = 0;
for (i=0; i<3; i++)

for (j=0; j<n; j++)
sum++;

O(n) : outer loop is O(1), inner loop is O(n)

Example 2
sum = 0;
for (i=0; i<n*n; i++)

sum++;
O(n2) : loop is 1..n2

Example 3
for (i=0; i<n; i++) {

for (j=0; j<n; j++)
A[i] = random(n); // assume random() is O(1)

sort(A, n); // assume sort() is O(n log n)
}
O(n2log n) : outer loop is O(n), inner loop is O(n), but sorting is O(n log n)

 so, the complexity of the algorithm is n(n + n log n) = O(n2log n)

Example 4
sum = 0;
for (i = 0; i < n; i++) {

if (is_even(i)) {
for (j = 0; j < n; j++)
sum++;

} else
sum = sum + n;

}
O(n2) : outer loop is O(n)

inside the loop: if “true” clause executed for half the values of n 6 O(n)
 if “false” clause executed for other half 6 O(1)
 the innermost loop is O(n)

so the complexity is n(n + 1) = O(n2)

ECE242S Tutorial Notes Complexity Analysis

6 February, 2004 Alexander Smith

Example 5 (recursive)
List *SearchList(List *a, int key) { // The list has n elements

if (a == NULL)
return NULL; // not found

else if (a->data == key)
return a;

else
return SearchList(a->next, key);

}
O(n) : This is tail recursion, and it only calls itself once. Draw a picture of the recursive
calls, and you will see that this is O(n).

Example 6 (recursive - from lecture slides)
int somefunc(int n) {

if (n <= 1)
return 1;

else
return somefunc(n-1) + somefunc(n-1);

}
O(2n) : If you draw a picture of the recursive calls, you will get a full binary tree. The tree
is of height n, with 2i leaves at each level. The total number of recursive calls is the sum of

the leaves at each level, which is .

Example 7 (recursive - Fibonacci)
int Fibonacci(int n) {

if (n <= 2)
return 1;

else
return Fibonacci(n-1) + Fibonacci(n-2);

}

O(2n), S(2n/2 = S() : A picture of the recursion tree is given in your textbook. If you

draw the calls with the parameter (n-1) on the left, and (n-2) on the right, then the tree will
be deepest on the left, with a height of n, and least deep on the right, with a height of n/2.
Therefore, the size of the tree is greater than a full binary tree of height n/2, but less than a
full binary tree of height n. This gives us both upper and lower bounds on the complexity
of the function:

- left side is of height n 6 # leaves < 2n+1 6 O(2n)
- right side is of height n/2 6 # leaves > 2(n+1)/2 6 S(2n/2)

ECE242S Tutorial Notes Complexity Analysis

6 February, 2004 Alexander Smith

Example 8 (recursive - Fibonacci)
A better way to write a function to calculate the Fibonacci series is to store the last two
values. An O(n) iterative version is given in your text. Here is a recursive O(n) version:
int Fibonacci(int[] A, int i, int n) {

if (i <= 2)
A[i] = 1;

else
A[i] = A[i-1] + A[i-2];

if (i == n)
return A[i-1] + A[i-2];

else
return Fibonacci(A, i+1, n);

}

... = Fibonacci(A, 1, n);

O(n) : This is tail recursion again. Draw a picture of the recursion tree, and you’ll see
there are O(n) recursive calls.

(This version stores all the Fibonacci numbers in an array. If you only wanted the nth

Fibonacci number, then you only need to store the last two numbers in the series. You
could easily re-write this function so that instead of the A array, it had two parameters for
the previous and 2nd-previous numbers.)

