Big-Oh Notation

Formal Definitions

A function $T(n)$ is in $\alpha_{f(n))}$

(upper bound)

iff there exist positive constants k and n_{0}
such that $|T(n)| \leq k|f(n)|$ for all $n \geq n_{0}$.
A function $T(n)$ is in $\Omega(f(n)) \quad$ (lower bound)
iff there exist positive constants k and n_{0} such that $k|f(n)| \leq|T(n)|$ for all $n \geq n_{0}$.
A function $T(n)$ is in $\Theta(f(n))$ (tight bound)
iff it is in $\alpha f(n))$ and it is in $\Omega(f(n))$.
The definition for big-Oh was given on your lecture slides. the rest are presented here for your interest only. Not every function has a tight bound. For example, consider

$$
f(n)=\left\{\begin{array}{cc}
n^{3} & n \text { even } \\
1 & n \text { odd }
\end{array}\right.
$$

In this case, we have $f(n)=\alpha\left(n^{3}\right)$ and $f(n)=\Omega(1)$, but no $\Theta(\cdot)$ bound.
Useful Formulae
$\sum_{i-1}^{n} i=\frac{1}{2} n(n+1) \quad \sum_{i-1}^{n} i^{2}=\frac{1}{4} n(n+1)(2 n+1) \quad \sum_{i-1}^{n} i^{3}=\frac{1}{4} n^{2}(n+1)^{2}$
You should know the first sum above. The rest will be given if you ever need them.
However, you should remember that $\left.\left.\sum_{i-1}^{n} i=\alpha_{\left(n^{2}\right)}\right), \sum_{i-1}^{n} i^{2}=\alpha_{n^{3}}\right)$, and $\sum_{i=1}^{n} i^{3}=\mathcal{O}_{\left(n^{4}\right)}$.

Example 1
What is the big-O of $2 n^{2}+1000 n+5$?
answer: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
You can do this by inspection. To prove it formally, you must to find constants k and n_{0} such that the definition given above holds:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 \mathrm{n}^{2}+1000 \mathrm{n}+5 \quad \mathrm{f}(\mathrm{n})=\mathrm{n}^{2} \\
& \mathrm{~T}(\mathrm{n}) \leq \mathrm{kf}(\mathrm{n}) ? \\
& 2 \mathrm{n}^{2}+1000 \mathrm{n}+5 \leq \mathrm{k} \mathrm{n}^{2} \text { ? } \\
& \text { Yes: for } k=3, n_{0}=1001 \\
& \text { check: } 2\left(1001^{2}\right)+1000(1001)+5=3005007 \\
& \qquad 3\left(1001^{2}\right)=3006003
\end{aligned}
$$

Example 2
Put these in order by big-O bound:
$4 n^{2} \quad \log _{3} n \quad 20 n \quad 2 \quad \log _{2} n \quad n^{n} \quad 3^{n} \quad n \log n \quad 1000 n^{2 / 3} \quad 2^{n} \quad 2^{n+1} \quad \log (n!)$
answer:
$2, \log _{2} n=\log _{3} n, 1000 n^{23}, 20 n, n \log n=\log (n!), 4 n^{2}, 2^{n}=2^{n+1}, 3^{n}, n^{n}$
Some comments:
$\log _{2} n=\log _{5} n$: From highschool math, you should remember that $\log _{b} c=\frac{\log _{d} c}{\log _{4} b}$. Therefore, $\log _{2} n=\frac{\log _{3} n}{\log _{3} 2}$ which is a constant times $\log _{3} n$. When looking at complexity classes, we ignore multiplicative constants.
$2^{n}=2^{n+1}$: because $2^{n+1}=2 \cdot 2^{n}$ which is a constant times 2^{n}.
$2^{n} \neq 3^{n}$: because they do not differ by a constant factor. Divide one by the other: $\frac{3^{n}}{2^{n}}=\left(\frac{3}{2}\right)^{n}$ which is a function of $n-$ not a constant.
$n \log n=\log (n!):$ This is because of Stirling's approximation for the factorial: $n!=\sqrt{2 \pi n}\left(\frac{n}{c}\right)^{n}\left(1+\Theta\left(\frac{1}{n}\right)\right)$. You can just remember the result that $\log (n!)=\Theta(n \log n)$.

```
Algorithm Analysis
Example 1
sum \(=0\);
for (i=0; \(i<3 ; i++)\)
    for \((j=0 ; j<n ; j++)\)
    sum++;
```

$\mathrm{O}(\mathrm{n})$: outer loop is $\mathrm{O}(1)$, inner loop is $\mathrm{O}(\mathrm{n})$
Example 2
sum $=0$;
for $(i=0 ; i<n * n ; i++)$
sum++;
$\mathrm{O}\left(\mathrm{n}^{2}\right)$: loop is $1 . . \mathrm{n}^{2}$
Example 3

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j++)
        A[i] = random(n); // assume random() is O(1)
    sort(A, n); // assume sort() is O(n log n)
}
O(n}\mp@subsup{n}{}{2}\operatorname{log}n)\mathrm{ : outer loop is O(n), inner loop is O(n), but sorting is O(n log n)
            so, the complexity of the algorithm is n(n+n log n)=O(n2}\operatorname{log}n
```


Example 4

```
sum = 0;
for (i = 0; i < n; i++) {
    if (is_even(i)) {
        for (j = 0; j < n; j++)
        sum++;
    } else
        sum = sum + n;
}
O(n2) : outer loop is O(n)
```

 inside the loop: if "true" clause executed for half the values of \(n \rightarrow O(n)\)
 if "false" clause executed for other half \(\rightarrow \mathrm{O}(1)\)
 the innermost loop is \(\mathrm{O}(\mathrm{n})\)
 so the complexity is \(n(n+1)=O\left(n^{2}\right)\)
 Example 5 (recursive)

```
List *SearchList(List *a, int key) { // The list has n elements
    if (a == NULL)
    return NULL; // not found
    else if (a->data == key)
    return a;
    else
    return SearchList(a->next, key);
}
O(n) : This is tail recursion, and it only calls itself once. Draw a picture of the recursive
calls, and you will see that this is O(n).
```

Example 6 (recursive - from lecture slides)
int somefunc(int n) \{
if ($\mathrm{n}<=1$)
return 1;
else
return somefunc(n-1) + somefunc(n-1);
\}
$\mathrm{O}\left(2^{n}\right)$: If you draw a picture of the recursive calls, you will get a full binary tree. The tree is of height n, with 2^{i} leaves at each level. The total number of recursive calls is the sum of the leaves at each level, which is $\sum_{i=1}^{n} 2^{i}=2^{n+1}=\alpha_{2}$).

Example 7 (recursive - Fibonacci)

```
int Fibonacci(int n) {
    if (n <= 2)
            return 1;
    else
            return Fibonacci(n-1) + Fibonacci(n-2);
}
```

$\mathrm{O}\left(2^{\mathrm{n}}\right), \Omega\left(2^{\mathrm{n} / 2}=\Omega\left((\sqrt{2})^{n}\right)\right.$: A picture of the recursion tree is given in your textbook. If you draw the calls with the parameter ($n-1$) on the left, and ($n-2$) on the right, then the tree will be deepest on the left, with a height of n, and least deep on the right, with a height of $n / 2$. Therefore, the size of the tree is greater than a full binary tree of height $n / 2$, but less than a full binary tree of height n. This gives us both upper and lower bounds on the complexity of the function:

- left side is of height $n \rightarrow$ \# leaves $<2^{\mathrm{n}+1} \rightarrow \mathrm{O}\left(2^{\mathrm{n}}\right)$
- right side is of height $n / 2 \rightarrow$ \# leaves $>2^{(n+1) / 2} \rightarrow \Omega\left(2^{n / 2}\right)$

Example 8 (recursive - Fibonacci)
A better way to write a function to calculate the Fibonacci series is to store the last two values. An $O(n)$ iterative version is given in your text. Here is a recursive $O(n)$ version:

```
int Fibonacci(int[] A, int i, int n) {
    if (i <= 2)
        A[i] = 1;
    else
        A[i] = A[i-1] + A[i-2];
    if (i == n)
        return A[i-1] + A[i-2];
    else
        return Fibonacci(A, i+1, n);
}
```

... = Fibonacci(A, 1, n);
$\mathrm{O}(\mathrm{n})$: This is tail recursion again. Draw a picture of the recursion tree, and you'll see there are $O(n)$ recursive calls.
(This version stores all the Fibonacci numbers in an array. If you only wanted the $\mathrm{n}^{\text {th }}$ Fibonacci number, then you only need to store the last two numbers in the series. You could easily re-write this function so that instead of the A array, it had two parameters for the previous and $2^{\text {nd }}$-previous numbers.)

