Big-Oh Notation

Formal Definitions(upper bound)A function T(n) is in $\mathcal{O}(f(n))$ (upper bound)iff there exist positive constants k and n_0 such that $|T(n)| \le k |f(n)|$ for all $n \ge n_0$.A function T(n) is in $\Omega(f(n))$ (lower bound)iff there exist positive constants k and n_0 such that $|f(n)| \le |T(n)|$ for all $n \ge n_0$.A function T(n) is in $\Theta(f(n))$ (lower bound)iff it is in $\mathcal{O}(f(n))$ iff it is in $\mathcal{O}(f(n))$ and it is in $\Omega(f(n))$.

The definition for big-Oh was given on your lecture slides. the rest are presented here for your interest only. Not every function has a tight bound. For example, consider

 $f(n) = \begin{cases} n^3 & n \text{ even} \\ 1 & n \text{ odd} \end{cases}$

In this case, we have $f(n) = O(n^3)$ and f(n) = O(1), but no $\Theta(\cdot)$ bound.

<u>Useful Formulae</u>

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) \qquad \qquad \sum_{i=1}^{n} i^2 = \frac{1}{4}n(n+1)(2n+1) \qquad \qquad \sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$$

You should know the first sum above. The rest will be given if you ever need them.

However, you should remember that $\sum_{i=1}^{n} i = O(n^2)$, $\sum_{i=1}^{n} i^2 = O(n^3)$, and $\sum_{i=1}^{n} i^3 = O(n^4)$.

Example 1 What is the big-O of $2n^2 + 1000n + 5$?

answer: O(n²)

You can do this by inspection. To prove it formally, you must to find constants k and n_0 such that the definition given above holds:

 $\begin{array}{l} T(n) = 2n^2 + 1000n + 5 & f(n) = n^2 \\ T(n) \le k \ f(n) \ ? \\ 2n^2 + 1000n + 5 \le k \ n^2 \ ? \\ Yes: \ for \ k = 3, \ n_0 = 1001 \\ check: \ 2(1001^2) + 1000(1001) + 5 = 3005007 \\ 3(1001^2) = 3006003 \end{array}$

Example 2

Put these in order by big-O bound: $4n^2 \quad \log_2 n \quad 20n \quad 2 \quad \log_2 n \quad n^n \quad 3^n \quad n\log n \quad 1000n^{2/3} \quad 2^n \quad 2^{n+1} \quad \log(n!)$ answer: $2, \quad \log_2 n = \log_3 n, \quad 1000n^{2/3}, \quad 20n, \quad n\log n = \log(n!), \quad 4n^2, \quad 2^n = 2^{n+1}, \quad 3^n, \quad n^n$

Some comments:

 $\log_n n = \log_n n$: From highschool math, you should remember that $\log_n c = \frac{\log_n c}{\log_n b}$. Therefore,

 $\log_2 n = \frac{\log_2 n}{\log_2 2}$ which is a constant times $\log_2 n$. When looking at complexity classes, we ignore multiplicative constants.

- $2^{n} = 2^{n+1}$: because $2^{n+1} = 2 \cdot 2^{n}$ which is a constant times 2^{n} .
- 2ⁿ ≠ 3ⁿ : because they do *not* differ by a constant factor. Divide one by the other: $\frac{3^n}{2^n} = \left(\frac{3}{2}\right)^n$ which is a function of n – not a constant.
- $n\log n = \log(n!)$: This is because of Stirling's approximation for the factorial: $n! = \sqrt{2\pi n} \left(\frac{n}{r}\right)^n \left(1 + \Theta(\frac{1}{n})\right)$. You can just remember the result that $\log(n!) = \Theta(n\log n)$.

Algorithm Analysis

Example 1
sum = 0;
for (i=0; i<3; i++)
 for (j=0; j<n; j++)
 sum++;
O(n): outer loop is O(1), inner loop is O(n)</pre>

Example 2

Example 3

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j++)
        A[i] = random(n); // assume random() is O(1)
        sort(A, n); // assume sort() is O(n log n)
}
</pre>
```

```
O(n^2 \log n) : outer loop is O(n), inner loop is O(n), but sorting is O(n \log n)
so, the complexity of the algorithm is n(n + n \log n) = O(n^2 \log n)
```

```
Example 4
sum = 0;
for (i = 0; i < n; i++) {
    if (is_even(i)) {
        for (j = 0; j < n; j++)
            sum++;
    } else
        sum = sum + n;
}
O(n<sup>2</sup>): outer loop is O(n)
    inside the loop: if "true" clause executed for half the values of n \rightarrow O(n)
        if "false" clause executed for other half \rightarrow O(1)
        the innermost loop is O(n)
        so the complexity is n(n + 1) = O(n<sup>2</sup>)
```

Example 5 (recursive)

```
List *SearchList(List *a, int key) { // The list has n elements
    if (a == NULL)
        return NULL; // not found
    else if (a->data == key)
        return a;
    else
        return SearchList(a->next, key);
}
```

O(n): This is tail recursion, and it only calls itself once. Draw a picture of the recursive calls, and you will see that this is O(n).

```
Example 6 (recursive - from lecture slides)
int somefunc(int n) {
    if (n <= 1)
        return 1;
    else
        return somefunc(n-1) + somefunc(n-1);
}</pre>
```

 $O(2^n)$: If you draw a picture of the recursive calls, you will get a full binary tree. The tree is of height n, with 2^i leaves at each level. The total number of recursive calls is the sum of

```
the leaves at each level, which is \sum_{i=1}^{n} 2^{i} = 2^{n+1} = O(2^{n}).
```

```
Example 7 (recursive - Fibonacci)
```

```
int Fibonacci(int n) {
    if (n <= 2)
        return 1;
    else
        return Fibonacci(n-1) + Fibonacci(n-2);
}</pre>
```

O(2ⁿ), $\Omega(2^{n/2} = \Omega((\sqrt{2})^n)$: A picture of the recursion tree is given in your textbook. If you

draw the calls with the parameter (n-1) on the left, and (n-2) on the right, then the tree will be deepest on the left, with a height of n, and least deep on the right, with a height of n/2. Therefore, the size of the tree is greater than a full binary tree of height n/2, but less than a full binary tree of height n. This gives us both upper and lower bounds on the complexity of the function:

- left side is of height n \rightarrow # leaves < $2^{n+1} \rightarrow O(2^n)$

- right side is of height n/2 \rightarrow # leaves > 2^{(n+1)/2} $\rightarrow \Omega(2^{n/2})$

Example 8 (recursive - Fibonacci)

A better way to write a function to calculate the Fibonacci series is to store the last two values. An O(n) iterative version is given in your text. Here is a recursive O(n) version: int Fibonacci(int[] A, int i, int n) {

```
inte Fibonacci (inte[] A, fine I, fine A, fine A,
```

O(n): This is tail recursion again. Draw a picture of the recursion tree, and you'll see there are O(n) recursive calls.

(This version stores all the Fibonacci numbers in an array. If you only wanted the nth Fibonacci number, then you only need to store the last two numbers in the series. You could easily re-write this function so that instead of the A array, it had two parameters for the previous and 2nd-previous numbers.)